OSSIDORIDUZIONI N H H. H ammoniaca. acido nitroso N = + 3. acido nitrico N = + 5

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "OSSIDORIDUZIONI N H H. H ammoniaca. acido nitroso N = + 3. acido nitrico N = + 5"

Transcript

1 OSSIDORIDUZIONI Le reazioni acido-base sono quelle in cui viene scambiato, fra due specie reagenti, un H. Come si è visto, esistono casi di reazioni acido-base in cui ciò non avviene (definizione di Lewis), e una coppia di elettroni viene donata dalla base all acido. Caratteristica costante di questo tipo di reazioni, comunque, è che l atomo donatore è più elettronegativo dell accettore, e quindi la coppia di elettroni donata in realtà continua a passare la maggior parte del proprio tempo nei pressi dell atomo da cui proviene. Numero di ossidazione Si dicono reazioni di ossidoriduzione le reazioni in cui si ha scambio di elettroni fra le specie reagenti. Per capire meglio, è utile introdurre il concetto di NUMERO DI OSSIDAZIONE, che serve a stabilire quanti sono gli elettroni disponibili per un atomo in un composto. Il N.O. si ottiene sottraendo, dal numero di elettroni esterni di quell atomo, ricavabile dalla tavola periodica, il numero di elettroni che quell atomo ha ancora disponibili dopo aver formato i legami, cioè tutti gli elettroni che fanno parte o di doppietti non impegnati o di legami con atomi meno elettronegativi. Quindi, il numero di ossidazione è negativo se l atomo ha più elettroni di quelli iniziali, positivo se ne ha meno. Esempi: N: V gruppo, 5 elettroni esterni NH 3 : N dispone di tutti gli elettroni indicati in blu, compreso il doppietto, che sono = -3 (si ricordi che gli elettroni hanno carica negativa). HNO 2 : N perde gli elettroni dei legami segnati in rosso e mantiene solo il doppietto: 5-2 = 3 HNO 3 : tutti i 5 elettroni vengono persi: 5-0 = 5 N H H H ammoniaca N = - 3 O N HO O acido nitrico N = 5 N HO O acido nitroso N = 3 In pratica, è come se si trasformassero tutti i legami covalenti in legami ionici, attribuendo interamente gli elettroni di legame all atomo più elettronegativo dei due coinvolti nel legame stesso: a quel punto, il N.O. corrisponde alla carica dello ione risultante. Si noti che il massimo numero di ossidazione possibile corrisponde alla perdita di tutti gli elettroni, e quindi in genere corrisponde al numero del gruppo, come per HNO 3 (se N dovesse perdere ulteriori elettroni, dovrebbe andarli a prendere al livello inferiore, il che non si verifica

2 normalmente). Il numero più basso (più negativo) possibile corrisponde invece all acquisto di tanti elettroni quanti ne servono per completare l ottetto, nel caso di N (-3). Per calcolare il numero di ossidazione di un atomo in un composto ci si può aiutare con alcune semplici regole: Prima regola: il numero di ossidazione degli elementi puri, in qualunque stato fisico, è sempre zero. Infatti, un atomo isolato, o legato con altri atomi identici, non varia la propria disponibilità elettronica. Seconda regola: O, che nei composti forma sempre due legami covalenti, è l elemento più elettronegativo dopo F; quindi il suo numero di ossidazione è sempre -2, tranne che nei legami con F o con se stesso. H, invece, tranne che nei legami con i metalli o con se stesso, ha generalmente numero di ossidazione 1, che corrisponde alla perdita del suo unico elettrone nel legame con atomi più elettronegativi di lui, come quasi tutti i non metalli. Terza regola: gli elementi dei primi due gruppi, nei composti con altri elementi, hanno SEMPRE numero di ossidazione 1 e 2 rispettivamente (formano sempre composti prevalentemente ionici). Quarta regola: il massimo numero di ossidazione di un elemento corrisponde alla perdita di tutti i suoi elettroni esterni, e quindi corrisponde al numero del gruppo di appartenenza, con il segno ; il minimo numero di ossidazione possibile, invece, corrisponde all acquisto di tanti elettroni quanti ne mancano per completare l ottetto, quindi (8 n), con n numero del gruppo, con il segno -. In molti casi queste regole permettono di calcolare il numero di ossidazione di altri elementi per differenza, come nel caso di HNO 3. La somma dei numeri di ossidazione di tutti gli atomi, in una molecola neutra (= priva di carica elettrica), è 0: in questo caso abbiamo 3 ossigeni: (-2 x 3 = -6) e un idrogeno (1) x = 0 e quindi il numero di ossidazione dell azoto è 5. Per l acido nitroso, HNO 2, si ha invece (-2 x 2) 1 x = 0 da cui x = 3. Si può anche arrivare allo stesso risultato disegnando la struttura della molecola. Così facendo si osserva che tutti gli elettroni di N impegnati in legami covalenti con O, che è più elettronegativo, si considerano persi. La perdita di 5 elettroni, negativi, corrisponde ad un numero di ossidazione di 5, che è il massimo numero di ossidazione possibile per N (corrisponde allo stato più ossidato). Nell acido nitrico tutti i 5 elettroni di N sono impegnati in legami con O. L acido nitroso, HNO 2, contiene invece azoto con numero di ossidazione 3: infatti, solo 3 dei 5 elettroni esterni di N sono condivisi con O (e quindi persi), mentre gli altri costituiscono un doppietto non impegnato. 5 (elettroni iniziali) - 2 (elettroni posseduti da N alla fine) = 3 elettroni persi (segno ), numero di ossidazione 3.

3 Reazioni redox. In una reazione di ossidoriduzione (o, in breve, REDOX) vi sono almeno due atomi che variano il proprio numero di ossidazione. Uno degli atomi lo diminuisce (RIDUZIONE, corrisponde all ACQUISTO DI ELETTRONI) e l altro lo aumenta (OSSIDAZIONE, corrisponde alla PERDITA DI ELETTRONI). Non ci può essere ossidazione senza riduzione: gli elettroni non vanno in giro da soli! Tanti elettroni perde la specie che si ossida, tanti ne deve guadagnare quella che si riduce. Attenzione: le COMBUSTIONI sono tutte reazioni redox. Infatti in O 2 O ha numero di ossidazione zero, perché è un elemento puro, mentre in CO 2 e H 2 O, i prodotti delle combustioni, ha sempre N.O. (-2), perché forma sempre 2 legami con atomi meno elettronegativi. Quindi nelle combustioni O si riduce, mentre il combustibile, qualunque sia, si ossida: gli atomi del combustibile, come C, finiscono tutti per legarsi a O, perdendo i propri elettroni. Le reazioni redox possono essere più o meno spontanee; quelle spontanee procedono con liberazione di energia, che può essere dissipata sotto forma di calore oppure utilizzata per compiere lavoro elettrico: quest ultimo risultato si può ottenere costringendo il flusso di elettroni a passare attraverso un circuito, in maniera da ottenere corrente elettrica. Un dispositivo di questo tipo per ottenere energia da una reazione redox spontanea prende il nome di PILA. Pile Un flusso di elettroni da una sostanza ad un altra costituisce un passaggio di corrente elettrica; converrà perciò ricordare che le unità di misura in gioco sono le seguenti: Intensità di corrente Potenziale A V Carica elettrica Energia Potenza C = A s J = C V W = V A I conduttori elettrici si distinguono in conduttori di prima specie, o elettronici, in cui la conduzione è data da un flusso di elettroni (si tratta soprattutto dei metalli), e in conduttori di seconda specie, o ionici, in cui la conduzione è data da un flusso di ioni e quindi avviene con trasporto di materia (sono di questo tipo i composti ionici, fusi o sciolti in acqua). A questo punto, per chiarire quello che succede, consideriamo come esempio il comportamento di una sbarretta di metallo, diciamo zinco, immersa in acqua.

4 Il metallo è costituito da un denso reticolo di ioni positivi tenuti assieme da elettroni relativamente liberi all interno del cristallo. L acqua, essendo un dipolo, agirà sugli ioni positivi del metallo formando interazioni ione-dipolo e portando alcuni degli ioni più superficiali in soluzione: nella figura sono indicate in rosso le cariche positive e in blu le cariche negative. La quantità di ioni che passa in soluzione dipenderà da numerosi fattori, come l energia reticolare del metallo, la densità di carica degli ioni, l entità delle interazioni ione-dipolo ecc. Quindi, ogni metallo avrà una diversa tendenza a rilasciare ioni in soluzione acquosa. Quando il metallo cede ioni positivi all acqua la sua superficie si carica negativamente, perché contiene ora un eccesso di elettroni; dopo un certo tempo, fra metallo e soluzione si instaura un equilibrio. Immaginiamo ora cosa può succedere se costruiamo due di questi sistemi, con due metalli diversi, come Zn e Cu: Zn Zn Cu Cu Gli ioni Cu in soluzione avranno una concentrazione inferiore a, e quindi la sbarretta di Cu avrà una carica negativa minore. Se ora colleghiamo le due sbarrette fra loro con un filo metallico, gli elettroni in eccesso tenderanno a passare da Zn a Cu. Questo fenomeno, però, si arresta subito: una volta che nella soluzione di Zn 2 si sia accumulato un eccesso di carica e sulla sbarretta di rame un eccesso di carica -, il flusso di cariche si interrompe. Per farlo continuare, si può mettere un ponte salino, ovvero un dispositivo di scambio di ioni inerti, in grado di neutralizzare le cariche in eccesso.

5 ANODO e Cu Cu CATODO Si tratta di un tubo di vetro, riempito con un gel contenente ioni, come Na e NO - 3, che non prendono parte alle reazioni del sistema. Gli ioni vengono man mano rilasciati mantenendo la neutralità elettrica nei due scomparti. Il dispositivo finale che abbiamo costruito, e in cui si ha un flusso di corrente, è una PILA. Ciascuno dei due scomparti è un semielemento, in cui avviene una delle due semireazioni; il semielemento negativo, che libera elettroni e in cui avviene l ossidazione Zn 2 e - è detto ANODO, mentre il semielemento positivo, che richiama elettroni e in cui avviene la riduzione Cu 2 e - Cu è detto CATODO. La reazione complessiva è Zn Cu Cu, un ossidoriduzione. In una pila avviene una reazione redox spontanea, e l energia da essa liberata viene utilizzata per compiere lavoro elettrico. Il valore di G per queste reazioni può essere correlato al valore della differenza di potenziale fra due semielementi. Infatti, la variazione di energia libera, espressa in J, equivale alla carica trasferita nel corso del passaggio di elettroni, espressa in coulomb (C), moltiplicata per la differenza di potenziale, espressa in volt (V), tra le specie reagenti: G = - nf E (1) in questa importante formula, F rappresenta la costante di Faraday, che rappresenta la carica elettrica trasportata dal movimento di una mole di elettroni, ed è pari a circa C mol -1, n rappresenta il numero di moli di elettroni in gioco e quindi nf rappresenta la quantità di carica totale trasferita. Il segno negativo indica che, per una differenza di potenziale positiva, si ha una reazione spontanea, con G < 0. Il valore assoluto del potenziale di un semielemento non è noto: si può invece misurare E, cioè la differenza di potenziale fra due semielementi. La scala dei POTENZIALI STANDARD DI RIDUZIONE è una scala di valori di potenziale, espressi in volt (V), relativa SOLO A SEMIREAZIONI DI RIDUZIONE e ha vari aspetti in comune con la scala delle entalpie standard di formazione (vedi Termochimica). Infatti è riferita a condizioni standard (P = 1 atm, [ioni in soluzione] = 1 M), ed è una scala relativa, costruita

6 fissando uno zero arbitrario, che in questo caso corrisponde alla riduzione H e - ½ H 2 il cui potenziale è quindi PER DEFINIZIONE pari a 0 V. In base all equazione (1) si può notare che più una riduzione è spontanea e più il suo valore di E (la differenza di potenziale rispetto al semielemento di riferimento) è positivo; in altre parole, una riduzione che abbia un potenziale positivo è più spontanea di quella di riferimento. Questo ci permette di usare la scala dei potenziali standard per prevedere il verso in cui sarà spontanea una reazione redox a partire da condizioni standard. Ad esempio, i valori di E per la riduzione di Cu 2 e di Zn 2 sono rispettivamente 0,34 V e - 0,76 V; Questo significa che, se costruiamo una pila formata da due semielementi standard, uno dei quali del metallo e l altro di idrogeno, avremo: elettroni Pt H 2 ANODO CATODO Zn Zn H Caso 1: Zn 2 H = Zn 2 H 2 (g) [Attenzione: nel semielemento di idrogeno non compare nessuna specie solida metallica, e quindi il semielemento è formato da una soluzione con [H ] = 1 M, cioè ph 0, sopra la quale vi è una fase gas con p (H 2 )= 1 atm), e un elettrodo (la sbarretta metallica) fatto di un metallo inerte come Pt, che serve solo per la conduzione] In questo caso il metallo ha un potenziale di riduzione negativo, cioè minore rispetto all elettrodo a idrogeno: quindi il polo, dove avviene la riduzione, sarà l idrogeno, mentre il semielemento di zinco sarà l anodo: Zn si ossida. E per questa reazione si ottiene sommando fra loro il potenziale della semireazione di riduzione (in questo caso 0 V) e quello della semireazione di ossidazione: quest ultimo è uguale al potenziale della riduzione cambiato di segno (se la riduzione Zn 2 Zn ha E = - 0,76 V, l ossidazione Zn Zn 2 ha E = 0,76 V); quindi per la pila così costruita E = 0-0,76 V = 0,76 V > 0. La pila funziona spontaneamente nel verso indicato.

7 Se il semielemento metallico, invece di essere di zinco, fosse di rame, si avrebbe invece: elettroni H 2 CATODO Cu Cu Pt H H Cu H H H ANODO Caso 2: H 2 (g) Cu 2 = 2 H Cu In questo caso il rame ha potenziale di riduzione positivo, e quindi ha maggior tendenza a ridursi rispetto all idrogeno: la polarità della pila è inversa rispetto a quella precedente, e la reazione spontanea è quella in cui il metallo si riduce e l idrogeno si ossida. Per questa reazione il potenziale è infatti 0,34 V, > 0. Quindi, in generale, fra due semireazioni avviene nel verso della riduzione quella che ha potenziale di riduzione più alto, mentre avviene nel verso dell ossidazione quella che ha il potenziale di riduzione più basso (più negativo). Perché la reazione redox complessiva sia spontanea, il suo potenziale (ox red) dev essere positivo. Tutto questo trova applicazione non solo nelle pile, ma anche nella previsione di spontaneità di reazioni redox come quelle di corrosione dei metalli. Dei due metalli visti ora come esempio, lo zinco si scioglie in acidi e il rame no: infatti, una lastra di zinco esposta all azione di acqua acida, quindi di H, può essere ossidata spontaneamente secondo la stessa reazione indicata nel caso 1; gli ioni Zn 2 che si formano vanno in soluzione e la lastra metallica si corrode; ovviamente, in questo caso non si ottiene lavoro elettrico, perché gli elettroni non vengono costretti a passare in un opportuno circuito, ma l energia liberata si dissipa nel sistema sotto forma di calore. Tutti i metalli con potenziale di riduzione negativo vengono intaccati dagli acidi a ph 0. Si può notare che questi metalli in generale non si trovano mai in natura allo stato elementare metallico, ma sempre sotto forma di composti, come ad esempio ossidi, perché, se vi fosse in natura un giacimento di ferro o di alluminio allo stato metallico, questo potrebbe facilmente essere ossidato, nel tempo, dalle acque leggermente acide che si trovano nel terreno. I metalli a potenziale positivo, invece, non vengono ossidati dagli acidi; quanto più positivo

8 è il loro potenziale di riduzione, tanto più i metalli sono nobili e resistono all ossidazione. Molti metalli che non si sciolgono in acidi si possono però ossidare all aria in presenza di umidità in base alla reazione 2 M O 2 (g) 2 H 2 O = 2 M 2 4 OH -, perché la semireazione di riduzione dell ossigeno O 2 (g) 2 H 2 O = 4 OH - ha E = 0,40 V; quindi solo i metalli che hanno potenziale di riduzione > 0,40 V resistono alla corrosione da parte dell ossigeno dell aria a ph 14 (standard). Questo significa che in condizioni standard l argento ( 0,80 V) resiste, mentre il rame ( 0,34 V) si ossida. Il metallo più difficile da ossidare, e che infatti è noto e usato come metallo fin dall antichità e si trova in natura solo allo stato metallico, è l oro ( E = 1,5 V). La legge di Nernst Finora si è parlato di reazioni redox in condizioni standard, ovvero in cui le concentrazioni degli ioni in soluzione sono 1 M e le pressioni parziali dei componenti gassosi sono di 1 atm; in queste condizioni G = - nf E, ma è anche (vedi Equilibri) G = -RTln K, e quindi, combinando le due eguaglianze, nf E = RTlnK, da cui lnk = (nf / RT) E. Dato che in genere si considera T = 25 C (298 K), che R = 8,31 J mol -1 K -1, che F = C V mol -1 e che 2,303 è il fattore di conversione fra logaritmo naturale (ln) e logaritmo decimale (log), la relazione diventa: E = (0,059 / n) log K con n = moli di elettroni. In questo modo, i potenziali standard possono essere usati per calcolare la K di equilibrio della reazione redox a 25 C. Vediamo ora come le relazioni viste fin qui vanno modificate per tener conto di sistemi diversi da quelli standard. In quel caso, l energia libera del sistema non è più G ma G e dato che G = G RTlnQ (vedi Equilibri), sostituendo G e G in quest ultima espressione si ottiene: -nf E = -nf E RTlnQ, che divisa per (-nf) dà E = E - (RT/nF) lnq Sostituendo, come prima, gli opportuni valori a F, R e T e inserendo il fattore di conversione fra logaritmi naturali e decimali, si ottiene: E = E - (0,059/n) logq LEGGE DI NERNST ove Q rappresenta il quoziente di reazione (vedi Equilibri).

9 Esempio: calcolare se la reazione seguente sarà spontanea nel verso indicato: Co (s) Fe 2 (aq) = Co 2 (aq) Fe (s) se [Co 2 ] = 0,15 M e [Fe 2 ] = 0,68 M. E = E - (0,059/2) log [Co 2 ] / [Fe 2 ] = (-0,44 0,28) - 0,059/2 log (0,15/0,68) = -0,14 V Rispetto a condizioni standard ( E = - 0,16 V) la reazione nelle condizioni indicate è meno sfavorita, essendo E > E, ma non è comunque spontanea. Si prevede E > E, perché [Co 2 ] < [Fe 2 ] (Legge di azione di massa: c è più reagente che prodotto). E anche possibile calcolare il valore di [Co 2 ] / [Fe 2 ] al quale questa reazione diventa spontanea nel senso indicato: E = 0 quando E = 0,059/2 log [Co 2 ] / [Fe 2 ], da cui si ricava log [Co 2 ] / [Fe 2 ] = - 5,42, cioè [Co 2 ] / [Fe 2 ] =4 x Se [Fe 2 ] = 1 M, la reazione diventa spontanea per [Co 2 ] < 4 x 10-6 M, cioè se c è pochissimo prodotto. Come si vede, il valore di E è preponderante nel determinare E, mentre la variazione dovuta alle concentrazioni è di solito relativamente piccola. Vi sono pile il cui valore di E dipende dal ph: questo succede ogni volta che fra i reagenti o i prodotti compaiono le specie H oppure OH -. Esempio: 2 H 2 e - = H 2 è la reazione di riferimento della scala dei potenziali, e ha E = 0 V. Questo valore di potenziale si riferisce a ph = 0, cioè [H ] = 1 M (condizioni standard). Volendo calcolare il potenziale della stessa reazione a ph 7, occorre applicare la legge di Nernst: E = 0-0,059/2 log p(h 2 ) / [H ] 2, e se p(h 2 ) = 1 atm e ph = 7, E = - 0,059/2 log 1/(10-7 ) 2 = - 0,059/2 log (10 14 ) = -0,413 V, < 0 in quanto la concentrazione del reagente H è minore che in condizioni standard, e quindi la riduzione è meno favorita. Potete calcolare il potenziale a ph 7 per la reazione 2 H 2 O 2 e - = H 2 2 OH -, che è la stessa reazione di prima (la riduzione dell idrogeno da N.O. 1 a zero) ma in ambiente basico (per quest ultima reazione, in cui compare OH -, le condizioni standard corrispondono a ph 14). Per questa reazione E = - 0,83V; il valore di E a ph 7 deve risultare uguale a quello ottenuto dal calcolo precedente, dato che si tratta della stessa reazione. IMPORTANTE: I POTENZIALI REDOX SONO GRANDEZZE INTENSIVE, QUINDI NON DIPENDONO DALLA MASSA. Se il potenziale della reazione Cu 2 2 e - = Cu è 0,34 V, il potenziale della reazione 2 Cu 2 4 e - = 2 Cu E SEMPRE 0,34 V. La reazione fra Au 3 e Ca, bilanciata per pareggiare il numero di elettroni scambiati, è: 2 Au 3 3 Ca = 3 Ca 2 2 Au ma il potenziale standard è sempre E = E red E ox = 1,51 2,87 V = 4,37 V. I potenziali non vanno moltiplicati per i coefficienti stechiometrici.

10 Pile di concentrazione Nelle pile chimiche viste finora, la forza motrice del processo è l avvenire di una reazione chimica spontanea, con G < 0. In base alla legge di Nernst, è anche possibile costruire una pila la cui forza motrice sia fornita esclusivamente dalla tendenza al mescolamento spontaneo di due soluzioni a diversa concentrazione. Se costruiamo una pila simile a quelle viste finora, ma in cui i due semielementi siano basati sulla stessa semireazione, però con concentrazioni diverse, avremo una pila in cui E = 0 ( E ox = - E red ) e E è data solo dal termine -0,059/2 log Q. La riduzione avverrà là dove [ ] è maggiore, e quindi tende a diminuire, mentre l'ossidazione avverrà là dove [ ] è minore, e deve quindi aumentare. La reazione si ferma (= arriva all equilibrio) quando la concentrazione è uguale nei due semielementi. elettroni ANODO [ ] = 10-4 M Zn Zn CATODO [ ] = 1 M E = (- 0,76 0,76) - 0,059/2 log (10-4 / 1) = 0,059/2 4 = 0,118 V All argomento del logaritmo c è al numeratore la concentrazione minore, e al denominatore la maggiore: solo così l argomento del log può essere < 1, e il log quindi < 0: data la presenza del segno (-) questo corrisponde ad un valore positivo di E. Come si vede, generalmente pile di questo tipo hanno un E piccolo rispetto alla maggior parte delle pile chimiche: le pile di concentrazione si usano infatti soprattutto a scopo di misura di concentrazioni, e non per erogare corrente. Le pile di concentrazione basate sulla concentrazione degli ioni H sono dette phmetri, perché sono appunto utilizzabili per misurare il ph. Pile a combustibile. Trasformare l energia chimica dei combustibili in energia elettrica passando attraverso la trasformazione in energia termica (centrali termoelettriche) comporta rese energetiche dell ordine del 35%. Una resa più alta si può ottenere con la trasformazione diretta di

11 energia chimica in energia elettrica, possibile attraverso la costruzione di una pila, dato che la combustione è una reazione di ossidoriduzione (O 2 si riduce, mentre il combustibile si ossida). Le reazioni sono: (Red) O 2 2 H 2 O 4 e - = 4 OH - 5 O 2 20 H 20 e - = 10 H 2 O (Ox) 2 H 2 4 OH - = 4 H 2 O 4 e - C 3 H 8 6 H 2 O = 3 CO 2 20 H 20 e - (Redox) O 2 2 H 2 = 2 H 2 O C 3 H 8 5 O 2 = 3 CO 2 4 H 2 O rispettivamente per la combustione dell idrogeno e del propano. L efficienza di queste pile può arrivare al 70%. Inoltre, viene molto ridotto il problema dell inquinamento. Naturalmente, mentre il propano è un combustibile fossile, cioè si trova in natura già in questa forma e bisogna solo estrarlo (è quindi una fonte di energia), l idrogeno non si trova facilmente e in grandi quantità in natura allo stato elementare. Anche l aria ne contiene molto meno dell 1%. Per questo motivo H 2 si può produrre, ad esempio, scindendo l acqua in un processo di elettrolisi (vedi), ma questo richiede parecchia energia, che si può al massimo ricuperare nel processo di scarica della pila. Quindi l idrogeno NON E una fonte di energia ma solo un vettore energetico: se ho una forte disponibilità di energia elettrica, specie se proveniente da una fonte rinnovabile come l energia solare, eolica ecc. in un luogo dove non c è consumo di energia elettrica (es. una grande stazione di pannelli solari nel deserto) posso immagazzinare questa energia sotto forma di H 2 gas e trasportarlo dove lo si può usare per alimentare una pila e rigenerare elettricità. L idrogeno fornisce energia non inquinante solo nel caso in cui l elettricità usata per produrlo venga a sua volta prodotta con metodi non inquinanti: se è prodotta da una fonte fossile il problema rimane. Nel caso dell idrogeno per autotrazione, l inquinamento viene però spostato dalle strade cittadine alla zona dove si trova la centrale elettrica.

... corso di chimica elettrochimica 1

... corso di chimica elettrochimica 1 ... corso di chimica elettrochimica 1 CONTENUTI reazioni elettrochimiche pile e celle elettrolitiche potenziale d elettrodo e forza elettromotrice equazione di Nernst elettrolisi leggi di Faraday batterie

Dettagli

Tipi di reazioni. Reazioni chimiche. Di dissociazione. Di sintesi. Di semplice scambio. Di doppio scambio. Reazioni complesse

Tipi di reazioni. Reazioni chimiche. Di dissociazione. Di sintesi. Di semplice scambio. Di doppio scambio. Reazioni complesse Tipi di reazioni Le reazioni chimiche vengono tradizionalmente classificate a seconda del tipo di trasformazione subita dai reagenti: Reazioni chimiche possono essere Di dissociazione Una sostanza subisce

Dettagli

ELETTROCHIMICA. Uso di reazioni chimiche per produrre corrente elettrica (Pile)

ELETTROCHIMICA. Uso di reazioni chimiche per produrre corrente elettrica (Pile) ELETTROCHIMICA Uso di reazioni chimiche per produrre corrente elettrica (Pile) Uso di forza elettromotrice (fem) esterna per forzare reazioni chimiche non spontanee (Elettrolisi) Coppia redox: Ossidazione

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA Poiché è impossibile contare o pesare gli atomi o le molecole che formano una qualsiasi sostanza chimica, si ricorre alla grandezza detta quantità

Dettagli

MPT Capitolo 12 Redox. Le ossidoriduzioni. Obiettivo. Definizioni di ossidazione e di riduzione

MPT Capitolo 12 Redox. Le ossidoriduzioni. Obiettivo. Definizioni di ossidazione e di riduzione 1 Le ossidoriduzioni Obiettivo In questo capitolo svilupperemo i concetti fondamentali delle reazioni di ossido-riduzione. Si tratta di conoscenze fondamentali sia per la vita comune, sia, per molti di

Dettagli

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Solvente (componente presente in maggior quantità) SOLUZIONE Soluti

Dettagli

Ke = ] = Kw = 10 = 10-7 moli/litro, ed in base a quanto avevamo affermato in precedenza: [H + ] = [OH - ] = 10-7 moli/litro.

Ke = ] = Kw = 10 = 10-7 moli/litro, ed in base a quanto avevamo affermato in precedenza: [H + ] = [OH - ] = 10-7 moli/litro. Prodotto ionico dell acqua e ph Prodotto ionico dell acqua L acqua è un elettrolita debolissimo e si dissocia secondo la reazione: H 2 O H + + OH - La costante di equilibrio dell acqua è molto piccola

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Trasformazioni materia

Trasformazioni materia REAZIONI CHIMICHE Trasformazioni materia Trasformazioni fisiche (reversibili) Trasformazioni chimiche (irreversibili) È una trasformazione che non produce nuove sostanze È una trasformazione che produce

Dettagli

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica)

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica) Acidi e basi Per capire che cosa sono un acido e una base dal punto di vista chimico, bisogna riferirsi ad alcune proprietà chimiche dell'acqua. L'acqua, sia solida (ghiaccio), liquida o gassosa (vapore

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti Energia nelle reazioni chimiche Lezioni d'autore di Giorgio Benedetti VIDEO Introduzione (I) L energia chimica è dovuta al particolare arrangiamento degli atomi nei composti chimici e le varie forme di

Dettagli

È importante quindi conoscere le proprietà chimiche dell acqua. Le reazioni acido base sono particolari esempi di equilibrio chimico in fase acquosa

È importante quindi conoscere le proprietà chimiche dell acqua. Le reazioni acido base sono particolari esempi di equilibrio chimico in fase acquosa Premessa Le nozioni di acido e di base non sono concetti assoluti ma sono relativi al mezzo in cui tale sostanze sono sciolte. L acqua è il solvente per eccellenza, scelto per studiare le caratteristiche

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione REAZIONI ORGANICHE Variazioni di energia e velocità di reazione Abbiamo visto che i composti organici e le loro reazioni possono essere suddivisi in categorie omogenee. Per ottenere la massima razionalizzazione

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

Cosa misura il ph: la concentrazione di ioni H +, che si scrive [H + ]. La definizione di ph è: ph = -log 10 [H + ]

Cosa misura il ph: la concentrazione di ioni H +, che si scrive [H + ]. La definizione di ph è: ph = -log 10 [H + ] La molecola d acqua è un dipolo perché l atomo di ossigeno è molto elettronegativo ed attira più vicini a sé gli elettroni di legame. Questo, unito alla forma della molecola, produce un accumulo di carica

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

La serie elettrochimica dei potenziali standard di riduzione (25 C)

La serie elettrochimica dei potenziali standard di riduzione (25 C) MIGLIORI RIDUCENTI MIGLIORI OSSIDANTI La serie elettrochimica dei potenziali standard di riduzione (25 C) ELETTROLISI Una cella elettrolitica è una cella nella quale una corrente fa avvenire una reazione

Dettagli

ELETTROCHIMICA. Celle Galvaniche o Pile

ELETTROCHIMICA. Celle Galvaniche o Pile ELETTROCHIMICA Le reazioni di ossido-riduzione (redox) ci tengono in vita. Esse, ad esempio, si svolgono nei processi estremamente importanti che catturano l energia solare tramite la fotosintesi o in

Dettagli

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle STRUTTURA ATOMO Com è fatto l atomo ATOMO UNA VOLTA si pensava che l atomo fosse indivisibile OGGI si pensa che l atomo è costituito da tre particelle PROTONI particelle con carica elettrica positiva e

Dettagli

Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola.

Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola. Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola. La formula empirica e una formula in cui il rappporto tra gli atomi e il piu semplice possibil Acqua Ammoniaca

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

Capitolo 7. Le soluzioni

Capitolo 7. Le soluzioni Capitolo 7 Le soluzioni Come visto prima, mescolando tra loro sostanze pure esse danno origine a miscele di sostanze o semplicemente miscele. Una miscela può essere omogenea ( detta anche soluzione) o

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

RICHIAMI DI TERMOCHIMICA

RICHIAMI DI TERMOCHIMICA CAPITOLO 5 RICHIAMI DI TERMOCHIMICA ARIA TEORICA DI COMBUSTIONE Una reazione di combustione risulta completa se il combustibile ha ossigeno sufficiente per ossidarsi completamente. Si ha combustione completa

Dettagli

Le reazioni di ossidoriduzione (redox)

Le reazioni di ossidoriduzione (redox) Le reazioni di ossidoriduzione (redox) Reazioni nelle quali si ha variazione del numero di ossidazione ( n. o. ) di ioni o atomi. La specie chimica che si ossida(funge da riducente) cede elettroni ed aumenta

Dettagli

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV.

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV. Problemi Una mole di molecole di gas ideale a 292 K e 3 atm si espandono da 8 a 20 L e a una pressione finale di 1,20 atm seguendo 2 percorsi differenti. Il percorso A è un espansione isotermica e reversibile;

Dettagli

Biosensori Sensori Chimici. nicola.carbonaro@centropiaggio.unipi.it

Biosensori Sensori Chimici. nicola.carbonaro@centropiaggio.unipi.it Biosensori Sensori Chimici nicola.carbonaro@centropiaggio.unipi.it Principali applicazioni dei Sensori chimici Ruolo fondamentale degli ioni nella maggior parte dei processi biologici Sensori elettrochimici

Dettagli

DEFINIZIONE ACIDO/BASE SECONDO BRONSTED-LOWRY

DEFINIZIONE ACIDO/BASE SECONDO BRONSTED-LOWRY DEFINIZIONE ACIDO/BASE SECONDO BRONSTED-LOWRY Una reazione acido/base coinvolge un trasferimento di protone: l'acido è il donatore di protone e la base è l'accettore del protone. Questa definizione spiega

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

EQUILIBRI - GENERALITA. Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è

EQUILIBRI - GENERALITA. Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è EQUILIBRI - GENERALIA Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è G < 0 Quando vale questo criterio, i reagenti si trasformano in prodotti.

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

SCALA DEI PESI ATOMICI RELATIVI E MEDI

SCALA DEI PESI ATOMICI RELATIVI E MEDI SCALA DEI PESI ATOMICI RELATIVI E MEDI La massa dei singoli atomi ha un ordine di grandezza compreso tra 10-22 e 10-24 g. Per evitare di utilizzare numeri così piccoli, essa è espressa relativamente a

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

a 25 C da cui si ricava che:

a 25 C da cui si ricava che: Equilibrio di autoionizzazione dell acqua Come già osservato l acqua presenta caratteristiche anfotere, potendosi comportare tanto da acido (con una sostanza meno acida che si comporta da base) quanto

Dettagli

IMMAGAZZINARE ENERGIA: GLI ACCUMULATORI ELETTROCHIMICI Prof. Nerino Penazzi

IMMAGAZZINARE ENERGIA: GLI ACCUMULATORI ELETTROCHIMICI Prof. Nerino Penazzi IMMAGAZZINARE ENERGIA: GLI ACCUMULATORI ELETTROCHIMICI Prof. Nerino Penazzi Di cosa parleremo questa sera: Cos è un accumulatore di energia elettrica Pile e altro Comportamento di un buon accumulatore

Dettagli

Gas perfetti e sue variabili

Gas perfetti e sue variabili Gas perfetti e sue variabili Un gas è detto perfetto quando: 1. è lontano dal punto di condensazione, e quindi è molto rarefatto 2. su di esso non agiscono forze esterne 3. gli urti tra le molecole del

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Elettrochimica. 1. Celle elettrolitiche. 2. Celle galvaniche o pile

Elettrochimica. 1. Celle elettrolitiche. 2. Celle galvaniche o pile Elettrochimica L elettrochimica studia l impiego di energia elettrica per promuovere reazioni non spontanee e l impiego di reazioni spontanee per produrre energia elettrica, entrambi i processi coinvolgono

Dettagli

Celle a combustibile Fuel cells (FC)

Celle a combustibile Fuel cells (FC) Celle a combustibile Fuel cells (FC) Celle a combustibile Sono dispositivi di conversione elettrochimica ad alto rendimento energetico. Esse trasformano in potenza elettrica l energia chimica contenuta

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

I CIRCUITI ELETTRICI. Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi.

I CIRCUITI ELETTRICI. Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi. I CIRCUITI ELETTRICI Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi. Definiamo ramo un tratto di circuito senza diramazioni (tratto evidenziato in rosso nella

Dettagli

Laura Beata Classe 4 B Concorso Sperimento Anch io Silvia Valesano Classe 4 B

Laura Beata Classe 4 B Concorso Sperimento Anch io Silvia Valesano Classe 4 B Laura Beata Classe 4 B Concorso Sperimento Anch io Silvia Valesano Classe 4 B RELAZINI DI LABRATRI (Italiano) Titolo: : Cosa mangiamo veramente? Scopo: 1. Scoprire in quali alimenti ci sono o non ci sono

Dettagli

352&(662',&20%867,21(

352&(662',&20%867,21( 352&(662',&20%867,21( Il calore utilizzato come fonte energetica convertibile in lavoro nella maggior parte dei casi, è prodotto dalla combustione di sostanze (es. carbone, metano, gasolio) chiamate combustibili.

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Corrente elettrica. La disputa Galvani - Volta

Corrente elettrica. La disputa Galvani - Volta Corrente elettrica La disputa Galvani - Volta Galvani scopre che due bastoncini di metalli diversi, in una rana, ne fanno contrarre i muscoli Lo interpreta come energia vitale Volta attribuisce il fenomeno

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Chimica. Ingegneria Meccanica, Elettrica e Civile Simulazione d'esame

Chimica. Ingegneria Meccanica, Elettrica e Civile Simulazione d'esame Viene qui riportata la prova scritta di simulazione dell'esame di Chimica (per meccanici, elettrici e civili) proposta agli studenti alla fine di ogni tutoraggio di Chimica. Si allega inoltre un estratto

Dettagli

Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D)

Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D) 1 Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D) 2 circuito realizzato dall alunno Gianmarco Bertonati grazie al quali ha potuto spiegare

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Quando un composto ionico viene immesso in acqua si dissocia formando uno ione negativo ed uno positivo.

Quando un composto ionico viene immesso in acqua si dissocia formando uno ione negativo ed uno positivo. I composti chimici Il legame chimico Un atomo raggiunge la stabilità quando i suoi livelli energetici sono completi. Solamente i gas nobili hanno questa caratteristica mentre gli altri atomi no, per cui

Dettagli

Il bilanciamento delle reazioni chimiche

Il bilanciamento delle reazioni chimiche 1 Il bilanciamento delle reazioni chimiche Avete visto che gli atomi hanno diversi modi di unirsi l uno all altro. Si può anche iniziare a capire che una reazione chimica non è nient altro che un cambiamento

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

Dissociazione elettrolitica

Dissociazione elettrolitica Dissociazione elettrolitica Le sostanze ioniche si solubilizzano liberando ioni in soluzione. La dissociazione elettrolitica è il processo con cui un solvente separa ioni di carica opposta e si lega ad

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,

Dettagli

DIPARTIMENTO DI SCIENZE INTEGRATE CHIMICA FISICA SCIENZE DELLA TERRA - BIOLOGIA

DIPARTIMENTO DI SCIENZE INTEGRATE CHIMICA FISICA SCIENZE DELLA TERRA - BIOLOGIA IISS A. De Pace Lecce A.S. 2012-2013 DIPARTIMENTO DI SCIENZE INTEGRATE FISICA SCIENZE DELLA TERRA - BIOLOGIA PIANI DI STUDIO DELLE DISCIPLINE SECONDO ANNO Piano di studi della disciplina DESCRIZIONE Lo

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

Cu 2+ ) + Zn(s) potere ossidante. potere ossidante. Cu 2+ Cu. Zn 2+ Consideriamo le due reazioni di ossido-riduzione:

Cu 2+ ) + Zn(s) potere ossidante. potere ossidante. Cu 2+ Cu. Zn 2+ Consideriamo le due reazioni di ossido-riduzione: Elettrochimica Consideriamo le due reazioni di ossido-riduzione: Cu(s) ) + Zn 2+ 2+ (aq aq) Cu Cu 2+ 2+ (aq) + ) + Zn(s) Cu 2+ 2+ (aq) + ) + Zn(s) Cu(s) ) + Zn 2+ 2+ (aq) Cu Zn Zn 2+ Cu 2+ Cu potere ossidante

Dettagli

DENSITA La densità è una grandezza fisica che indica la massa, di una sostanza o di un corpo, contenuta nell unità di volume; è data dal rapporto:

DENSITA La densità è una grandezza fisica che indica la massa, di una sostanza o di un corpo, contenuta nell unità di volume; è data dal rapporto: Richiami di Chimica DENSITA La densità è una grandezza fisica che indica la massa, di una sostanza o di un corpo, contenuta nell unità di volume; è data dal rapporto: d = massa / volume unità di misura

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Storia dei generatori di tensione e della corrente elettrica

Storia dei generatori di tensione e della corrente elettrica Storia dei generatori di tensione e della corrente elettrica Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia 1778 Alessandro Volta, in analogia al potenziale gravitazionale definito

Dettagli

La Vita è una Reazione Chimica

La Vita è una Reazione Chimica La Vita è una Reazione Chimica Acqua Oro Zucchero Il numero atomico, il numero di massa e gli isotopi numero atomico (Z) = numero di protoni nel nucleo numero di massa (A) = numero di protoni + numero

Dettagli

materia atomi miscugli omogenei e eterogenei sostanze elementari composti

materia atomi miscugli omogenei e eterogenei sostanze elementari composti Elementi e Composti materia miscugli omogenei e eterogenei sostanze elementari composti atomi Gli atomi sono, per convenzione, le unità costituenti le sostanze Le sostanze possono essere costituite da

Dettagli

funzionamento degli accumulatori al piombo/acido.

funzionamento degli accumulatori al piombo/acido. Il triangolo dell Incendio Possibili cause d incendio: I carrelli elevatori Particolare attenzione nella individuazione delle cause di un incendio va posta ai carrelli elevatori, normalmente presenti nelle

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. Energia potenziale elettrica e potenziale 0. Premessa In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. 1. La forza elettrostatica è conservativa Una o più cariche ferme

Dettagli

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro Cos è il calore? Per rispondere si osservino le seguenti immagini Temperatura e calore Il calore del termosifone fa girare una girandola Il calore del termosifone fa scoppiare un palloncino Il calore del

Dettagli

Selezione test GIOCHI DELLA CHIMICA

Selezione test GIOCHI DELLA CHIMICA Selezione test GIOCHI DELLA CHIMICA CLASSE A Velocità - Equilibrio - Energia Regionali 2010 36. Se il valore della costante di equilibrio di una reazione chimica diminuisce al crescere della temperatura,

Dettagli

Capitolo II. La forma del valore. 7. La duplice forma in cui si presenta la merce: naturale e di valore.

Capitolo II. La forma del valore. 7. La duplice forma in cui si presenta la merce: naturale e di valore. Capitolo II La forma del valore 7. La duplice forma in cui si presenta la merce: naturale e di valore. I beni nascono come valori d uso: nel loro divenire merci acquisiscono anche un valore (di scambio).

Dettagli

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata? Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

Corso di Laboratorio di Chimica Generale Esperienza 6: ph, sua misura e applicazioni

Corso di Laboratorio di Chimica Generale Esperienza 6: ph, sua misura e applicazioni Corso di Laboratorio di Chimica Generale Esperienza 6: ph, sua misura e applicazioni Una delle più importanti proprietà di una soluzione acquosa è la sua concentrazione di ioni idrogeno. Lo ione H + o

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

1. Un elemento Ä formato da particelle indivisibili chiamate atomi. 2. Gli atomi di uno specifico elemento hanno proprietå identiche. 3.

1. Un elemento Ä formato da particelle indivisibili chiamate atomi. 2. Gli atomi di uno specifico elemento hanno proprietå identiche. 3. Atomi e molecole Ipotesi di Dalton (primi dell 800) 1. Un elemento Ä formato da particelle indivisibili chiamate atomi. 2. Gli atomi di uno specifico elemento hanno proprietå identiche. 3. Gli atomi dei

Dettagli

TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI

TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI MATERIA: CHIMICA CLASSI: PRIME I II QUADRIMESTRE Competenze Abilità/Capacità Conoscenze* Attività didattica Strumenti Tipologia verifiche Osservare, descrivere

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Regole della mano destra.

Regole della mano destra. Regole della mano destra. Macchina in continua con una spira e collettore. Macchina in continua con due spire e collettore. Macchina in continua: schematizzazione di indotto. Macchina in continua. Schematizzazione

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo

Dettagli

IL TRASFORMATORE Prof. S. Giannitto Il trasformatore è una macchina in grado di operare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo legati ai flussi variabili. Il trasformatore

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

di questi il SECONDO PRINCIPIO ΔU sistema isolato= 0

di questi il SECONDO PRINCIPIO ΔU sistema isolato= 0 L entropia e il secondo principio della termodinamica La maggior parte delle reazioni esotermiche risulta spontanea ma esistono numerose eccezioni. In laboratorio, ad esempio, si osserva come la dissoluzione

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Calcolo del Valore Attuale Netto (VAN)

Calcolo del Valore Attuale Netto (VAN) Calcolo del Valore Attuale Netto (VAN) Il calcolo del valore attuale netto (VAN) serve per determinare la redditività di un investimento. Si tratta di utilizzare un procedimento che può consentirci di

Dettagli

NUMERI DI OSSIDAZIONE

NUMERI DI OSSIDAZIONE NUMERI DI OSSIDAZIONE Numeri in caratteri romani dotati di segno Tengono conto di uno squilibrio di cariche nelle specie poliatomiche Si ottengono, formalmente, attribuendo tutti gli elettroni di valenza

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Componenti elettronici. Condensatori

Componenti elettronici. Condensatori Componenti elettronici Condensatori Condensatori DIELETTRICO La proprietà fondamentale del condensatore, di accogliere e di conservare cariche elettriche, prende il nome di capacità. d S C = Q V Q è la

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli