Dai dati al modello teorico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dai dati al modello teorico"

Transcript

1 Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere informazioni. insieme Campione casuale: (prototipi) sottoinsieme della popolazione scelta in modo casuale. Unità statistica o campionaria: (un prototipo) un elemento del campione casuale Taglia del campione: (numero di prototipi realizzati) numero di unità statistiche Statistica descrittiva Descrizione per via grafica Descrizione per via numerica Carattere (tempo di rottura del dispositivo) ogni aspetto elementare oggetto di rilevazione nelle unità statistiche della popolazione (e quindi del campione) Modalità o classe di modalità: i diversi modi con cui il carattere si presenta nelle unità statistiche della popolazione (e quindi del campione) 2 1

2 Se si ha un campione casuale di tempi di vita, come si perviene ad un modello teorico? Esempio: si misura il tempo di vita di 20 lampadine, che è stato riportato di seguito Stimare la funzione guasto, la funzione di affidabilità, la densità di guasto, il tempo medio di vita. Determinare quale modello teorico potrebbe descrivere il tempo di vita. 10,45 2,30 19,71 49,81 46,89 69,08 0,32 11,36 43,20 3,24 6,10 1,01 0,71 3,89 5,38 0,37 7,29 9,12 17,52 9,60 dati<-c(10.45,2.30,19.71,49.81,46.89,69.08,0.32,11.36,43.20,3.24,6.10,1.01,0.71,3.89, ,0.37,7.29,9.12,17.52,9.60) hist(dati, col= blue,labels=t, freq=f,ylim=range(0,0.08)) - Labels: Consente di etichettare le barre Sui parametri di input - freq: Consente di scegliere se rappresentare la freq. assoluta oppure la densità E possibile manipolare i valori calcolati dalla funzione hist() 3 Per lavorare con i vettori generati, usare la sintassi Nell esempio: NOMEHISTOGRAMMA$NOMEVETTORE fornisce le frequenze relative. Notare che le frequenze relative sono diverse dai dati forniti nel vettore density, che invece sono calcolati dividendo le frequenze relative per l ampiezza delle classi. 4 2

3 La funzione density() delinea l andamento della distribuzione dei dati una volta suddivisi in classi. Il comando rug(dati) aggiunge il grafico dot-plotall istogramma. Nei grafici la scelta delle classi è stata automatica. Potrebbe essere necessario scegliere un numero di classi diverso. 5 hist(dati,prob=true, col='blue',labels=t,ylim=range(0,0.08), breaks=4) Parametro di input: -Breaks Se intero, specifica Il numero delle classi Non sempre la scelta del numero delle classi produce un effetto sul grafico. Questo dipende dall algoritmo implementato. A volte si rende necessario immettere direttamente gli estremi delle classi. E possibile che il numero delle classi prodotto sia diverso da quello richiesto. 6 3

4 hist(dati,prob=true, col='blue',labels=t,ylim=range(0,0.08), + breaks=c(0,15,30,45,60,75)) Parametro di input: -Breaks Se contiene un vettore, specifica gli estremi delle classi Ad esempio con questa scelta delle classi, il carattere bimodale della stima si attenua. 7 Stimare il tempo medio. Per calcolare il tempo medio di vita, è possibile usare l indice di sintesi media campionaria x 1 n xi n i = 1 = Alternativamente: La media rappresenta un indice di posizione del campione. Rappresenta il suo baricentro, immaginando di assegnare ad ogni elemento del campione casuale peso 1/n. 8 4

5 Altri indici Deviazione standard campionaria. Indice di variabilità dei dati. Campo di variazione Indice di variabilità dei dati. Quartili In particolare la mediana è un indice di posizione più robusto della media. La differenza tra il terzo ed il primo quartile è nota come IQR (interquartile range): ed è un altro indice di variabilità dei dati. Esso rappresenta un indice più robusto rispetto alla deviazione standard. Robustezza di un indice= stabilità rispetto alla presenza di outliers. OUTLIERS? 9 Alla Ricerca degli Outliers. Il BOX - PLOT +/ IQR/sqrt(n) OUTLIERS 10 5

6 Specie in presenza di outliers, può essere utile conoscerne il loro valore e la loro collocazione all interno del campione casuale. Con la seguente sintassi, si ottengono le seguenti informazioni: outliers<-boxplot(dati) outliers $stats [,1] [1,] [2,] [3,] [4,] [5,] Gli estremi necessari alla costruzione del box-plot $n [1] 20 Gli outliers $out [1] Per gestire gli outliers: outliers$out [1] Per conoscere la loro posizione nel campione casuale: dati %in% outliers$out [1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 11 Indici di Asimmetria Il confronto tra media e mediana non garantisce la caratterizzazione dell asimmetria. Quello che segue è un controesempio. Supponiamo di costruire i seguenti sets di dati: primo<-c(1,rep(2,2),rep(3,3),rep(4,4),rep(5,5),rep(6,6),rep(7,7)) primo [1] secondo<-c(rep(1,7),rep(2,6),rep(3,5),rep(4,4),rep(5,3),rep(6,2),rep(7,1)) secondo [1]

7 summary(primo) Min. 1st Qu. Median Mean3rd Qu. Max summary(secondo) Min. 1st Qu. Median Mean3rd Qu. Max Le due distribuzioni stesso segno di media mediana=0 Eppure guardando i due istogrammi si vede che le code delle due distribuzioni sono diverse Usando la function skewnessdella libreria e1071 si ha: skewness(primo) [1] skewness(secondo) [1] Indice di curtosi E un indice che misura la variabilità della distribuzione del campione rispetto alla gaussiana standard. 0 distribuzione appuntita =0 distribuzione come quella gaussiana <0 distribuzione piatta kurtosis(dati) [1] Tale indice ha significato soprattutto per quelle distribuzioni con indice di simmetria prossimo allo zero. 14 7

8 Coefficiente di variazione Una proprietà desiderabile per un indice di variabilità è che non dipenda dalla unità di misura in cui è espresso il carattere. Es: altezza di 5 studenti: 172, 175, 176, 178, 180 La media risulta essere cm e la devstandard risulta essere Se esprimiamo gli indici in metri, la media diviene e la dev.standard Esempio: Un processo industriale produce bustine di camomilla del peso medio di 2 grammi. La dev. standard è Un secondo processo industriale produce confezioni di pasta alimentare del peso di 500 grammi. La dev. standard è 2.7. Quale tra i due processi è più preciso? Questa comparazione può essere effettuata in modo appropriato esprimendo la deviazione standard di ciascun processo come percentuale della rispettiva media = = CV = s x sd(dati)/mean(dati) [1] = 1 la media non è un indice corretto = 0 la media è un indice perfetto 0.5 la media non è un indice corretto 0.5 la media è un indice corretto In che senso la media non è un indice corretto? ERRORE STANDARD e= s n Misura la dispersione della media campionaria ossia è una misura della sua imprecisione sd(dati)/sqrt(20) [1]

9 Stima DISTRIBUZIONE EMPIRICA CUMULATIVA Per stimare la funzione di guasto, è possibile usare la functionecdf() che stima la funzione di distribuzione empirica cumulativa Per conoscere i valori dei gradini: Teoricamente In R: ) F x ( ) num. dati x = N cf<-ecdf(dati) cf(sort(dati)) [1] [16] sort(dati) [1] [13] Per stimare la funzione di affidabilità: Stima FUNZIONE DI AFFIDABILITA plot(sort(dati),1-cf(sort(dati)),type='s') title('funzione di affidabilità') points(sort(dati),1-cf(sort(dati)),pch=20) 18 9

10 Se i dati sono in Tabella. Età in mesi Frequenza dei guasti TOTALE 262 Le formule relative a media e varianza vanno corrette con i centri delle classi: k k fi 2 2 fi x = ci e s = ( ci x) n n i= 1 i= 1 Per il loro calcolo conviene usare un ciclo forin R 19 Per calcolare la media classi<-c(0,26.99,54.99,82.99,110.99,138.99,166.99,194.99,222.99,250.99) freq<-c(127,70,27,15,11,7,3,1,1) sum<-0 for(i in 1:9){ + centro<-(classi[i]+classi[i+1])/2 + sum<-sum+centro*freq[i]/262 + } sum [1] Per calcolare la VARIANZA sum1<-0 for(i in 1:9){ + centro<-(classi[i]+classi[i+1])/2 + sum1<-sum1+(centro-sum)^2*freq[i]/262 + } sum1 [1]

11 Per calcolare la Mediana e i QUARTILI Età in mesi Frequenza dei guasti TOTALE 262 Frequenza cumulata 0,48 0,75 0,85 0,91 0,95 0,98 0,992 0, freqcumulate<-cumsum(freq)/262 cumsum(freq)/262 [1] [8] Va prima determinata la classe mediana (ossia quella contenente la frequenza cumulata 0.5, oppure 0.25/0.75 per i quartili) e poi va intersecata la retta y=0.5 con quella ottenuta Interpolando linearmente i valori della frequenza cumulata nella classe così determinata. Per la mediana, la classe di riferimento è (26.99;54.99) 21 Pertanto y = ( x 26.99) y= 0.50 x=29.96 Più in generale risulta 0.50 F( c ) M = c + ( c c ) i i i+ 1 i F( ci+ 1) F( ci) 0.25 F( c ) Q = c + ( c c ) i 1 i i+ 1 i F( ci+ 1) F( ci) 0.75 F( c ) Q = c + ( c c ) i 3 i i+ 1 i F( ci+ 1) F( ci) Qui ( c, c i i+ 1 ] denota la classe contenente rispettivamente M, Q, Q 1 3 Nella tabella, i valori della funzione di ripartizione empirica vengono assegnati all estremo destro dell intervallo. Si assume F( c ) = 0 1 Età in mesi Frequenza dei guasti , , , , , , , , TOTALE

12 Per costruire il Box Plot con questi valori Senza ricorrere a specifici pacchetti software Costruire un vettore dove inserire il min, il maxdei dati e i quartili. Fornire quel vettore come input alla function boxplot() dati<-c(0, 14.1,29.96,54.99,250.99) boxplot(dati) In questo caso, il maxviene segnalato come outliernel grafico 23 Come ripartire i dati in tabella Specialmente in presenza di database estesi, può essere utile costruire una tabella delle frequenze come quella che abbiamo appena visto. Questa tabella si riferisce a un dataset disponibile in rete che riguarda tempi di attesa ad un centralino telefonico. Come procedere 1) Copiare ed incollare il contenuto del file tempi.txt in un file 2) Salvare il file con estensione tempi.txt sul desktop e aggiungere il nome del vettore alla colonna (ad esempio tempi) 3) Spostarsi sulla cartella setwd( C:/Users/ /Desktop ) tempi<-read.table('c:/users/ /Desktop/tempi.txt,header=TRUE) 4) E stato creato un vettore tempicontenente i dati attach(tempi) 5) Stabilire gli estremi delle classi al seguente modo: 24 12

13 Passo 1: Stabilire il numero delle classi Una regola empirica consiste nel determinare quel valore di ktale che 2^k n In tal caso k=9 poiché length(tempi) [1] 262 Passo 2: Determinare l ampiezza delle classi max min h k e 2^8=256, 2^9=512 diff(range(tempi))/9 [1] Il valore viene arrotondato a 28. Passo 3: Determinare gli estremi delle classi Arrotondando l ampiezza della classe, l unione delle classi copre un intervallo di ampiezza maggiore del campo di variazione Unione classi= 252 Campo di variazione= 249 Siccome 28 9= , la quantità = va equamente ripartita a sinistra del minimo e a destra del massimo. 25 Ossia min( tempi) = estremo sinistro I classe Quindi la prima classe è ( , = ) La seconda classe è ( , =.) Per costruire il vettore degli estremi in R, bisogna prima inizializzare un vettore numerico: clas<-numeric(10) Poi calcolare gli estremi delle classi e memorizzarli in clas: clas[1]< for(i in 2:10) { + clas[i]=clas[i-1]+28 + } clas [1] [10] clas[1]<

14 Infine, ripartire i dati nelle classi con la function cut() tempi.cut=cut(tempi,clas,right=true) Calcolare le frequenze di occorrenza nelle classi con la function table() tempi.freq=table(tempi.cut) tempi.freq tempi.cut (0,27] (27,55] (55,83] (83,111] (111,139] (139,167] (167,195] (195,223] (223,251] 1 1 xx<-cbind(tempi.freq) Istruzione per assegnare al vettore XX le frequenze assolute 27 Ad esempio per La funzione di ripartizione plot(clas[2:10],cumsum(xx),type='s',col='red',lwd=4, + main='frequenze cumulate',xlab='tempi',ylab='freq. ass cum') 28 14

Laboratorio di ST1 Lezione 2

Laboratorio di ST1 Lezione 2 Laboratorio di ST1 Lezione 2 Claudia Abundo Dipartimento di Matematica Università degli Studi Roma Tre Frequenze in R ESEMPIO Fiori preferiti da n=6 ragazze In R: fiori=c("rosa", "orchidea", "violetta",

Dettagli

Esercitazione di riepilogo 23 Aprile 2013

Esercitazione di riepilogo 23 Aprile 2013 Esercitazione di riepilogo 23 Aprile 2013 Grafici Grafico a barre Servono principalmente per rappresentare variabili (caratteri) qualitative, quantitative e discrete. Grafico a settori circolari (torta)

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di indicatori sintetici che individuano, con un singolo valore, proprieta` statistiche di un campione/popolazione rispetto

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio2_dati.xls.

Dettagli

IN MATLAB distribuzione di frequenza. >> x(1)=7.5; >> for i=2:7 x(i)=x(i-1)+5; end. IN MATLAB distribuzione di frequenza

IN MATLAB distribuzione di frequenza. >> x(1)=7.5; >> for i=2:7 x(i)=x(i-1)+5; end. IN MATLAB distribuzione di frequenza IN MATLAB distribuzione di frequenza 2-1 4. Usare la function histc(dati,x) 2-2 1. Riportare i dati in un file (ad esempio dati.mat); 2. load ascii dati: viene creata una variabile dati contenente il campione;

Dettagli

R - Esercitazione 1. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. 30 Settembre 2013. Università Roma Tre

R - Esercitazione 1. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. 30 Settembre 2013. Università Roma Tre R - Esercitazione 1 Lorenzo Di Biagio dibiagio@mat.uniroma3.it Università Roma Tre 30 Settembre 2013 Introduzione a R R è un software open-source, per Linux, Mac OS X, Windows, distribuito secondo la licenza

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile

Dettagli

Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V

Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows.

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL TEMPO

CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL TEMPO CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL EMPO ing Emanuele Zappa SEGNALI: grandezze di base nel dominio del tempo: Ampiezza picco-picco (pk.pk) Ampiezza massima positiva empo Ampiezza massima

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 ESERCIZIO N 4 Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 PUNTO a CALCOLO MODA E QUARTILI La moda rappresenta quell'elemento del campione

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Esercizio 1. Nella Tabella A sono riportati i tempi di percorrenza, in minuti, di un tratto autostradale da parte di 40 autoveicoli.

Esercizio 1. Nella Tabella A sono riportati i tempi di percorrenza, in minuti, di un tratto autostradale da parte di 40 autoveicoli. Esercizio 1 Nella Tabella A sono riportati i tempi di percorrenza, in minuti, di un tratto autostradale da parte di 40 autoveicoli. Tabella A 138 150 144 149 164 132 125 157 161 135 150 145 145 142 156

Dettagli

Traccia delle lezioni svolte in laboratorio Excel 2003. Excel 2003 Excel 2010

Traccia delle lezioni svolte in laboratorio Excel 2003. Excel 2003 Excel 2010 Traccia delle lezioni svolte in laboratorio Excel 2003 Excel 2003 Excel 2010 INTRODUZIONE A EXCEL EXCEL è un programma di Microsoft Office che permette di analizzare grandi quantità di dati (database)

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Analisi dei dati. Statistica descrittiva

Analisi dei dati. Statistica descrittiva Analisi dei dati DATI GREZZI SINTESI DELLE OSSERVAZIONI ELABORAZIONE DATI Statistica descrittiva Si occupa dell analisi di un certo fenomeno relativo a un certo gruppo di soggetti (popolazione) sulla base

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste per la maggior parte nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data

Dettagli

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y.

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y. Lezione n. 5 5.1 Grafici e distribuzioni Esempio 5.1 Legame tra Weibull ed esponenziale; TLC per v.a. esponenziali Supponiamo che X Weibull(α, β). (i) Si consideri la distribuzione di Y = X β. (ii) Fissato

Dettagli

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) LABORATORIO EXCEL

Dettagli

INTR T O R D O UZ U IO I N O E N A 1

INTR T O R D O UZ U IO I N O E N A 1 INTRODUZIONE A 1 Cos è R R può essere definito come un sistema per l analisi statistica. È contemporaneamente un linguaggio ed un software. Lo stesso R Development Core Team[1], parlando di R, preferisce

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Laboratorio di Statistica con R

Laboratorio di Statistica con R Laboratorio di Statistica con R R è un vero e proprio linguaggio di programmazione. Il suo nome, è dovuto probabilmente al nome dei suoi sviluppatori:robert Gentleman e Ross Ihaka Le principali funzioni

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Introduzione alla statistica descrittiva

Introduzione alla statistica descrittiva Dipartimento di Statistica Regione Toscana Comune di Firenze Progetto di diffusione della cultura Statistica Introduzione alla statistica descrittiva Carla Rampichini Dipartimento di Statistica G. Parenti

Dettagli

EPG Metodologia della ricerca e Tecniche Multivariate dei dati. Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it. www.psicometria.unich.

EPG Metodologia della ricerca e Tecniche Multivariate dei dati. Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it. www.psicometria.unich. EPG Metodologia della ricerca e Tecniche Multivariate dei dati Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it www.psicometria.unich.it GIORNI E ORARI LEZIONI Sabato 01-03-2014 h 08:00-12:00 Sabato

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione2: 04-03-2005

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione2: 04-03-2005 esercitazione 2 p. 1/12 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione2: 04-03-2005 Luca Monno Università degli studi di Pavia luca.monno@unipv.it http://www.lucamonno.it

Dettagli

Scheda n.1: il software R

Scheda n.1: il software R Scheda n.1: il software R September 30, 2008 1 Introduzione Il software denominato R si può scaricare gratuitamente da rete, all indirizzo http://www.r-project.org/, seguendo le istruzioni di download.

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

1 La Matrice dei dati

1 La Matrice dei dati Dispense sull uso di Excel Daniela Marella 1 La Matrice dei dati Un questionario è costituito da un insieme di domande raccolte su un determinato supporto (cartaceo o elettronico) e somministrate alla

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Ricerca di outlier. Ricerca di Anomalie/Outlier

Ricerca di outlier. Ricerca di Anomalie/Outlier Ricerca di outlier Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna Ricerca di Anomalie/Outlier Cosa sono gli outlier? L insieme di dati che sono considerevolmente differenti dalla

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 7 marzo 20 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana

Dettagli

ELEMENTI DI STATISTICA DESCRITTIVA

ELEMENTI DI STATISTICA DESCRITTIVA Metodi Statistici e Probabilistici per l Ingegneria ELEMENTI DI STATISTICA DESCRITTIVA Corso di Laurea in Ingegneria Civile Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain E-mail:

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unina.it

Statistica. Alfonso Iodice D Enza iodicede@unina.it Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

Statistica 4038 (ver. 1.2)

Statistica 4038 (ver. 1.2) Statistica 4038 (ver. 1.2) Software didattico per l insegnamento della Statistica SERGIO VENTURINI, MAURIZIO POLI i Il presente software è utilizzato come supporto alla didattica nel corso di Statistica

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria E2-Riepilogo finale vers. 1.2 Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia) ElemPsico 2010-2011

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio1_dati.xls.

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

STATISTICA DESCRITTIVA (variabili quantitative)

STATISTICA DESCRITTIVA (variabili quantitative) STATISTICA DESCRITTIVA (variabili quantitative) PRIMO ESEMPIO: Concentrazione di un elemento chimico in una roccia. File di lavoro di STATVIEW Cliccando sul tasto del pane control si ottiene il cosiddetto

Dettagli

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie Università del Piemonte Orientale Corso di dottorato in medicina molecolare aa 2002 2003 Corso di Statistica Medica Inferenza sulle medie Statistica U Test z Test t campioni indipendenti con uguale varianza

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

ESERCITAZIONE 4 SOCIALE. Corso di Laurea Comunicazione e A.A. 2012/2013

ESERCITAZIONE 4 SOCIALE. Corso di Laurea Comunicazione e A.A. 2012/2013 ESERCITAZIONE 4 STATISTICA PER LA RICERCA SOCIALE Corso di Laurea Comunicazione e Psicologia A.A. 2012/2013 \\lib\psico\corsi\esercitazioni_cp1 Il programma SPSS 1) Aprire spss 2) Immettere dati / aprire

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

USO DI EXCEL CLASSE PRIMAI

USO DI EXCEL CLASSE PRIMAI USO DI EXCEL CLASSE PRIMAI In queste lezioni impareremo ad usare i fogli di calcolo EXCEL per l elaborazione statistica dei dati, per esempio, di un esperienza di laboratorio. Verrà nel seguito spiegato:

Dettagli

LAB LEZ. 1 STATISTICA DESCRITTIVA CON R

LAB LEZ. 1 STATISTICA DESCRITTIVA CON R LAB LEZ. 1 STATISTICA DESCRITTIVA CON R 1 2 L AMBIENTE DI SVILUPPO DI RStudio 1 3 4 2 1 FINESTRA PER GLI SCRIPT E PER VISUALIZZARE I DATI 2 CONSOLE DEI COMANDI 3 VARIABILI PRESENTI NELLA MEMORIA DEL PROGRAMMA

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard DISTRIBUZIONE DI FREQUENZE PER CARATTERI QUALITATIVI Questa nota consiste per la maggior parte nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000,

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati Lezione 2: Analisi descrittiva dei dati E-mail: orietta.nicolis@unibg.it 1 marzo 2011 Prograa 1 Analisi grafica dei dati 2 Indici di posizione Indici di dispersione Il boxplot 3 4 Prograa Analisi grafica

Dettagli

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0 Statistica per l azienda Esame del 19.06.12 COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

Statistica corso base Canale N Z prof. Francesco Maria Sanna. Prove scritte di esame a.a. 2012-13

Statistica corso base Canale N Z prof. Francesco Maria Sanna. Prove scritte di esame a.a. 2012-13 Statistica corso base Canale N Z prof. Francesco Maria Sanna Prova scritta del 8/1/2013 Prove scritte di esame a.a. 2012-13 Esercizio 1 (5 punti). Nella seguente tabella è riportata la distribuzione delle

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Dipartimento di Scienze politiche, della comunicazione e delle relazioni internazionali - a.a. 2013-2014

Dipartimento di Scienze politiche, della comunicazione e delle relazioni internazionali - a.a. 2013-2014 Dipartimento di Scienze politiche, della comunicazione e delle relazioni internazionali - a.a. 2013-2014 Il boxplot o diagramma a scatola e baffi, è un grafico, utilizzato per la rappresentazione di variabili

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Indice Statistiche Univariate Statistiche Bivariate

Indice Statistiche Univariate Statistiche Bivariate Indice 1 Statistiche Univariate 1 1.1 Importazione di un file.data.............................. 1 1.2 Medie e variabilità................................... 6 1.3 Distribuzioni di frequenze...............................

Dettagli

ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI

ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI (sintesi da Prof.ssa Di Nardo, Università della Basilicata, http://www.unibas.it/utenti/dinardo/home.html) ISTOGRAMMA/DIAGRAMMA

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Analisi della performance temporale della rete

Analisi della performance temporale della rete Analisi della performance temporale della rete In questo documento viene analizzato l andamento nel tempo della performance della rete di promotori. Alcune indicazioni per la lettura di questo documento:

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Anno Accademico 2014-2015. Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA

Anno Accademico 2014-2015. Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA Statistica, CLEA p. 1/68 Anno Accademico 2014-2015 Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA Monia Lupparelli monia.lupparelli@unibo.it http://www2.stat.unibo.it/lupparelli

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

MODULO 4: FOGLIO ELETTRONICO (EXCEL)

MODULO 4: FOGLIO ELETTRONICO (EXCEL) MODULO 4: FOGLIO ELETTRONICO (EXCEL) 1. Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei Personal computer. Essi

Dettagli

Strumenti informatici 2.3 - Le statistiche descrittive con Excel e SPSS

Strumenti informatici 2.3 - Le statistiche descrittive con Excel e SPSS Strumenti informatici 2.3 - Le statistiche descrittive con Excel e SPSS Per ottenere le statistiche descrittive di una o più variabili in Excel occorre utilizzare le funzioni, che sono operatori matematici,

Dettagli

Criteri di Valutazione della scheda - Solo a carattere indicativo -

Criteri di Valutazione della scheda - Solo a carattere indicativo - Criteri di Valutazione della scheda - Solo a carattere indicativo - Previsioni Sono state fatte le previsioni e discussi i valori attesi con il ragionamento con cui sono stati calcolati E stata usata la

Dettagli