UD 3.4b: Trattabilità e Intrattabilità. Dispense, cap. 4.2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UD 3.4b: Trattabilità e Intrattabilità. Dispense, cap. 4.2"

Transcript

1 UD 3.4b: Trattabilità e Intrattabilità Dispense, cap. 4.2

2 Problemi Intrattabili Esistono problemi che, pur avendo un algoritmo di soluzione, non forniranno mai una soluzione in tempi ragionevoli nemmeno se utilizzassero il calcolatore più grande pensabile, magari grande quanto l Universo stesso. Tali problemi sono stati classificati come risolvibili ma praticamente intrattabili. E la cosa sorprendente e che questi problemi non sono nemmeno molto complessi

3 Problemi Intrattabili Problemi praticamente intrattabili sembrano sorgere spesso, ad esempio, nel gioco degli scacchi, in quanto il diagramma delle possibili posizioni delle pedine è costituito da un numero talmente alto di punti che il più veloce calcolatore esistente impiegherebbe anni per esaminarle tutte. Per molti dei problemi praticamente intrattabili sono stati dati algoritmi di approssimazione, che forniscono una soluzione sub-ottimale che approssima il risultato ottimo a meno di una percentuale, conosciuta a priori

4 Trattabilità Computazionale Individuare con chiarezza le classi dei problemi risolubili in tempi ragionevoli mediante un elaboratore vale a dire con tempi di esecuzione che crescano in modo ragionevole al crescere della dimensione del problema stesso.

5 Trattabilità Computazionale Tali problemi sono stati definiti trattabili ed il concetto di trattabilità ha cominciato così a rappresentare un secondo livello di costruttività nella soluzione di un problema: da un punto di vista pratico, non solo si richiede che un problema sia algoritmicamente risolubile ma anche che la sua soluzione sia ottenibile in modo ragionevole, cioè, ad esempio con tempi dell'ordine dei secondi, minuto o al massimo ore di elaboratore, non certo giorni, mesi, anni.

6 Cosa si intende per Tempi Ragionevoli? Nella tabella seguente viene indicato il tempo impiegato da un calcolatore capace di eseguire di istruzioni al secondo per la soluzione di un problema di dimensione n, cioè con n valori dati in input (ad esempio n numeri, n schede ecc. - n=10, 20, 30, 40 e 50), con un algoritmo che effettua un numero di passi computazionali proporzionali a n, n 2, n 3, n 5, 2 n, 3 n n 0,00001 sec 0,00002 sec 0,00003 sec 0,00004 sec 0,00005 sec n 2 0,0001 sec 0,0004 sec 0,0009 sec 0,0016 sec 0,0025 sec n 3 0,001 sec 0,008 sec 0,027 sec 0,064 sec 0,125 sec n 5 0,1 sec 3,2 sec 24,3 sec 1,7 minuti 5,2 minuti 2 n 0,001 sec 1,0 sec 17,9 minuti 12,7 giorni 35,7 anni 3 n 0,059 sec 58 minuti 6,5 anni secoli secoli

7 Problemi polinomiali e problemi esponenziali Esaminando questa tabella emerge con chiarezza la differenza che esiste tra problemi risolubili in tempi polinomiali (n, n 2, n 3, n 5 ) problemi che richiedono tempo esponenziale (2 n, 3 n ). Questi ultimi, infatti, possono essere risolti solo quando la dimensione dell'istanza è sufficientemente piccola (n=10, 20);

8 Massima istanza Dato un computer generico e 6 algoritmi di complessità diversa (ma, per semplicità, possiamo supporre che risolvano lo stesso problema) (n, n 2, n 3, n 5, 2 n e 3 n ) consideriamo quanti dati questo computer può elaborare in 1 ora, per ognuno degli algoritmi. Poi supponiamo di avere un computer 100 o 1000 volte più veloce Calcoliamo quanti dati in più il computer più veloce può elaborare nello stesso tempo, per ognuno degli algoritmi

9 Il Fattore Tecnologico f(n) computer di riferimento computer 100 volte + veloce computer 1000 volte + veloce n N N N 1 n 2 N 2 10 N N 2 n 3 N N 3 10 N 3 n 5 N N N 4 2 n N 5 N N n N 6 N N

10 Algoritmi Lineari Se l algoritmo impiega un tempo proporzionale ad n, è evidente che il miglioramento delle prestazioni del computer incide allo stesso modo sul numero di operazioni che possono essere eseguite nell unità di tempo considerata L algoritmo con complessità n sul computer lento riesce ad analizzare dati, sul computer volte più veloce ne analizza

11 Algoritmi Polinomiali Un algoritmo che ha una complessità di tempo proporzionale ad n 3 riesce, nello stesso tempo e su un computer volte più veloce, a trattare solo 10 volte i dati che riesce a trattare sul computer più lento. L algoritmo con complessità n 3 sul computer lento riesce ad analizzare dati, sul computer volte più veloce ne analizza

12 Algoritmi Esponenziali Un algoritmo che ha una complessità di tempo proporzionale a 2 n riesce, nello stesso tempo e su un computer volte più veloce, a trattare solo 10 dati in più rispetto al computer più lento. L algoritmo con complessità 2 n sul computer lento riesce ad analizzare dati, sul computer volte più veloce ne analizza Le cose vanno ancora peggio per algoritmi con complessità proporzionale a 3 n

13 Considerazioni Non bastano i miglioramenti tecnologici Occorrono buoni algoritmi Gli algoritmi polinomiali sono ovviamente molto più apprezzabili di quelli esponenziali

14 6 dic 2011 Problemi Praticamente Intrattabili Alcune proprietà intrinseche dell'universo limiteranno sempre le dimensioni e la velocità dei calcolatori. Il più potente calcolatore che si possa immaginare di costruire non potrà essere più grande dell'universo conosciuto, né potrà essere costituito da componenti più piccole di un protone, né infine potrà trasmettere informazioni ad una velocità superiore a quella della luce. Date queste limitazioni tale calcolatore non potrebbe avere più di componenti.

15 Problemi Praticamente Intrattabili Due ricercatori dell'm.i.t. hanno dimostrato che questo calcolatore impiegherebbe almeno 20 Miliardi di anni per risolvere alcuni problemi di cui è nota la risolubilità in linea di principio. Poiché presumibilmente l'universo non ha un'età superiore a 20 Miliardi di anni, ciò sembra sufficiente per affermare che questi problemi costituiscono l'espressione più esasperata dei problemi intrattabili.

16 Problemi Praticamente Intrattabili Un algoritmo, il cui tempo di esecuzione cresce come c n è definito praticamente intrattabile. Se c è di poco superiore ad 1, l'algoritmo può essere adoperato per dati di ingresso molto piccoli: ma se i dati in ingresso sono grandi, esplode la crescita esponenziale Esiste, inoltre, il pericolo che il problema non ammetta intrinsecamente soluzioni più veloci di quella esponenziale, Si parla, in questo caso, di Problemi intrinsecamente intrattabili.

Le parole dell informatica: modello di calcolo, complessità e trattabilità

Le parole dell informatica: modello di calcolo, complessità e trattabilità Le parole dell informatica: modello di calcolo, complessità e trattabilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario

Dettagli

Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione

Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Università Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Sistemi dinamici - Attività 3 I sistemi preda-predatore e le equazioni di Volterra

Sistemi dinamici - Attività 3 I sistemi preda-predatore e le equazioni di Volterra Sistemi dinamici - Attività 3 I sistemi preda-predatore e le equazioni di Volterra Paolo Lazzarini - p.lazzarini@tin.it E il momento di occuparci di un modello matematico discreto più realistico (quindi

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014

Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Indice 1 Esponenziali 1 1.1 Funzioni esponenziali con dominio Z.......................

Dettagli

Complessità computazionale degli algoritmi

Complessità computazionale degli algoritmi Complessità computazionale degli algoritmi Lezione n. 3.bis I precursori dei calcolatore Calcolatore di Rodi o di Andikithira 65 a.c. Blaise Pascale pascalina XVII secolo Gottfried Leibniz Joseph Jacquard

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati Strumenti della Teoria dei Giochi per l Informatica AA 2009/10 Lecture 22: 1 Giugno 2010 Meccanismi Randomizzati Docente Vincenzo Auletta Note redatte da: Davide Armidoro Abstract In questa lezione descriveremo

Dettagli

Scienze della Comunicazione Università di Salerno. UD 3.2a: Introduzione alla Programmazione

Scienze della Comunicazione Università di Salerno. UD 3.2a: Introduzione alla Programmazione UD 3.2a: Introduzione alla Programmazione Bibliografia Curtin, (vecchie edizioni) 12.1 Curtin (IV edizione): 11.1 Questi lucidi Il concetto di programma memorizzato Gli elettrodomestici di uso quotidiano

Dettagli

INFORMATICA GENERALE. Prof Alberto Postiglione Dipartim. Scienze della Comunicazione Univ. Salerno. Università degli Studi di Salerno

INFORMATICA GENERALE. Prof Alberto Postiglione Dipartim. Scienze della Comunicazione Univ. Salerno. Università degli Studi di Salerno INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno : Introduzione alla Programmazione Bibliografia 14 apr 2010 Dia 2 Curtin, (vecchie

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

Introduzione. Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD... 6

Introduzione. Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD... 6 Appunti di Calcolatori Elettronici Esecuzione di istruzioni in parallelo Introduzione... 1 Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD...

Dettagli

Opportunità e rischi derivanti dall'impiego massivo dell'informatica in statistica. Francesco Maria Sanna Roma, 3 maggio 2012

Opportunità e rischi derivanti dall'impiego massivo dell'informatica in statistica. Francesco Maria Sanna Roma, 3 maggio 2012 Opportunità e rischi derivanti dall'impiego massivo dell'informatica in statistica Francesco Maria Sanna Roma, 3 maggio 2012 Procedere alla misura, al rilevamento e al trattamento dei dati è sempre stato

Dettagli

Quadratic assignment Problem: The Hospital Layout

Quadratic assignment Problem: The Hospital Layout Università degli Studi di Modena e Reggio Emilia Corso di Laurea Magistrale in Ingegneria Gestionale Metodi di ottimizzazione per la logistica e la produzione Quadratic assignment Problem: The Hospital

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Metodi e Modelli Matematici di Probabilità per la Gestione

Metodi e Modelli Matematici di Probabilità per la Gestione Metodi e Modelli Matematici di Probabilità per la Gestione Prova scritta del 30/1/06 Esercizio 1 Una banca ha N correntisti. Indichiamo con N n il numero di correntisti esistenti il giorno n-esimo. Descriviamo

Dettagli

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno UD 3.1b: Costrutti di un Algoritmo Dispense 1.2 I Costrutti di base 13 apr 2010

Dettagli

TECNOLOGIE INFORMATICHE DELLA COMUNICAZIONE ORE SETTIMANALI 2 TIPO DI PROVA PER GIUDIZIO SOSPESO PROVA DI LABORATORIO

TECNOLOGIE INFORMATICHE DELLA COMUNICAZIONE ORE SETTIMANALI 2 TIPO DI PROVA PER GIUDIZIO SOSPESO PROVA DI LABORATORIO CLASSE DISCIPLINA MODULO Conoscenze Abilità e competenze Argomento 1 Concetti di base Argomento 2 Sistema di elaborazione Significato dei termini informazione, elaborazione, comunicazione, interfaccia,

Dettagli

Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi.

Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi. PROGETTO SeT Il ciclo dell informazione Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi. Scuola media Istituto comprensivo di Fagagna (Udine) Insegnanti referenti: Guerra Annalja, Gianquinto

Dettagli

Analisi e Verifica di Programmi Laboratorio di AVP

Analisi e Verifica di Programmi Laboratorio di AVP Analisi e Verifica di Programmi Laboratorio di AVP Corso di Laurea in Informatica AA 2004-05 Tino Cortesi Analisi e Verifica Cosa Individuare proprietà interessanti dei nostri programmi: Valori prodotti,

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria

Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria Introduzione all Informatica 1 Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria Programma del corso Programma di

Dettagli

Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente.

Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente. Algoritmo Formalmente, per algoritmo si intende una successione finita di passi o istruzioni che definiscono le operazioni da eseguire su dei dati (=istanza del problema): in generale un algoritmo è definito

Dettagli

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Nicola Febbrari Università degli Studi di Verona Facoltà MM.FF.NN. nicola.febbrari@studenti.univr.it 22 gennaio 2013 1 Introduzione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi.

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. E. Calabrese: Fondamenti di Informatica Problemi-1 Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. L'informatica

Dettagli

Definizione 8.1. Si dice successione una qualsiasi funzione a: N R. Spesso per indicare una successione si usa la sequenza delle immagini:

Definizione 8.1. Si dice successione una qualsiasi funzione a: N R. Spesso per indicare una successione si usa la sequenza delle immagini: Appendice 1 Le successioni Definizione 8.1. Si dice successione una qualsiasi funzione a: N R. Spesso per indicare una successione si usa la sequenza delle immagini: a 0 = a(0), a 1 = a(1),..., a n = a(n),....

Dettagli

PROPULSORE A FORZA CENTRIFUGA

PROPULSORE A FORZA CENTRIFUGA PROPULSORE A FORZA CENTRIFUGA Teoria Il propulsore a forza centrifuga, è costituito essenzialmente da masse rotanti e rivoluenti attorno ad un centro comune che col loro movimento circolare generano una

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

Introduzione ai problemi NP-completi

Introduzione ai problemi NP-completi Corso di Algoritmi e Strutture Dati Introduzione ai problemi NP-completi Nuova versione del capitolo 13 delle dispense (basata sui modelli non deterministici) Anno accademico 2007/2008 Corso di laurea

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

Equilibrio bayesiano perfetto. Giochi di segnalazione

Equilibrio bayesiano perfetto. Giochi di segnalazione Equilibrio bayesiano perfetto. Giochi di segnalazione Appunti a cura di Stefano Moretti, Silvia VILLA e Fioravante PATRONE versione del 26 maggio 2006 Indice 1 Equilibrio bayesiano perfetto 2 2 Giochi

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Permutazione degli elementi di una lista

Permutazione degli elementi di una lista Permutazione degli elementi di una lista Luca Padovani padovani@sti.uniurb.it Sommario Prendiamo spunto da un esercizio non banale per fare alcune riflessioni su un approccio strutturato alla risoluzione

Dettagli

Costruire un trading system profittevole: i trucchi da seguire ma soprattutto gli errori da evitare. Daniele Bernardi DIAMAN Sicav

Costruire un trading system profittevole: i trucchi da seguire ma soprattutto gli errori da evitare. Daniele Bernardi DIAMAN Sicav Costruire un trading system profittevole: i trucchi da seguire ma soprattutto gli errori da evitare Daniele Bernardi DIAMAN Sicav Milano, 10/03/2011 Giusto per iniziare 2 La matematica non è un opinione,

Dettagli

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati Informatica 3 Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Lezione 10 - Modulo 1 Perchè

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Informatica per le discipline umanistiche 2 lezione 14

Informatica per le discipline umanistiche 2 lezione 14 Informatica per le discipline umanistiche 2 lezione 14 Torniamo ai concetti base dellʼinformatica. Abbiamo sinora affrontato diversi problemi: avere unʼidentità online, cercare pagine Web, commentare il

Dettagli

Cultura umanistica e cultura scientifico-tecnologica nell era della comunicazione globale

Cultura umanistica e cultura scientifico-tecnologica nell era della comunicazione globale Cultura umanistica e cultura scientifico-tecnologica nell era della comunicazione globale Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo tematico di conferenze

Dettagli

CELLULARE, CHE PASSIONE!

CELLULARE, CHE PASSIONE! CELLULARE, CHE PASSIONE! COSTRUIRE MODELLI PER IL PRIMO GRADO ( E NON SOLO...) Un esempio che mostra come un modello matematico possa essere utile nella vita quotidiana Liberamente tratto dall attività

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Problemi computazionali

Problemi computazionali Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità

Dettagli

Algoritmo per il rilevamento di targhe

Algoritmo per il rilevamento di targhe Algoritmo per il rilevamento di targhe 19 maggio 2008 Nell affrontare il problema del riconoscimento delle targhe sono stati sviluppati due algoritmi che basano la loro ricerca su criteri differenti. Lo

Dettagli

Esercitazione N7:Gioco dei 21 fiammiferi (impariamo java giocando)

Esercitazione N7:Gioco dei 21 fiammiferi (impariamo java giocando) Esercitazione N7:Gioco dei 21 fiammiferi (impariamo java giocando) Le basi della programmazione ad oggetti: per costruire in modo adeguato una applicazione basata sulla programmazione ad oggetti occorre

Dettagli

Complessità computazionale

Complessità computazionale 1 Introduzione alla complessità computazionale Un problema spesso può essere risolto utilizzando algoritmi diversi Come scegliere il migliore? La bontà o efficienza di un algoritmo si misura in base alla

Dettagli

Calcolatori Elettronici A a.a. 2008/2009

Calcolatori Elettronici A a.a. 2008/2009 Calcolatori Elettronici A a.a. 2008/2009 PRESTAZIONI DEL CALCOLATORE Massimiliano Giacomin Due dimensioni Tempo di risposta (o tempo di esecuzione): il tempo totale impiegato per eseguire un task (include

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

AC-MT 11-14 Test di Valutazione delle Abilità di Calcolo e Problem Solving dagli 11 ai 14 anni

AC-MT 11-14 Test di Valutazione delle Abilità di Calcolo e Problem Solving dagli 11 ai 14 anni AC-MT 11-14 Test di Valutazione delle Abilità di Calcolo e Problem Solving dagli 11 ai 14 anni Cornoldi & Cazzola, 2003 AC-MT Prova di primo livello: Finalizzata ad un primo screening capace di individuare

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

23/02/2014. Dalla scorsa lezione. La Macchina di Von Neumann. Uomo come esecutore di algoritmi

23/02/2014. Dalla scorsa lezione. La Macchina di Von Neumann. Uomo come esecutore di algoritmi Dalla scorsa lezione LABORATORIO DI PROGRAMMAZIONE Corso di laurea in matematica LA MACCHINA DI VON NEUMANN Marco Lapegna Dipartimento di Matematica e Applicazioni Universita degli Studi di Napoli Federico

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali

La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali Luca Facchini e-mail: luca.facchini@unifi.it Introduzione Quali strumenti vengono utilizzati? Le grandezze di interesse nelle

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Complessità Computazionale

Complessità Computazionale Complessità Computazionale Analisi Algoritmi e pseudocodice Cosa significa analizzare un algoritmo Modello di calcolo Analisi del caso peggiore e del caso medio Esempio di algoritmo in pseudocodice INSERTION

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Ricerca informata. Scelta dell euristica

Ricerca informata. Scelta dell euristica Ricerca informata Scelta dell euristica SMA* (Simplified Memory-Bounded A*) SMA* espande sempre la foglia migliore finché la memoria è piena A questo punto deve cancellare un nodo in memoria SMA* cancella

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Speedup. Si definisce anche lo Speedup relativo in cui, invece di usare T 1 si usa T p (1).

Speedup. Si definisce anche lo Speedup relativo in cui, invece di usare T 1 si usa T p (1). Speedup Vediamo come e' possibile caratterizzare e studiare le performance di un algoritmo parallelo: S n = T 1 T p n Dove T 1 e' il tempo impegato dal miglior algoritmo seriale conosciuto, mentre T p

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo

Dettagli

Prestazioni CPU Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella.

Prestazioni CPU Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella. Prestazioni CPU Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella.net Prestazioni Si valutano in maniera diversa a seconda dell

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

L interesse nella macchina di Turing

L interesse nella macchina di Turing Aniello Murano Macchina di Turing universale e problema della fermata 6 Lezione n. Parole chiave: Universal Turing machine Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009

Dettagli

Codifiche a lunghezza variabile

Codifiche a lunghezza variabile Sistemi Multimediali Codifiche a lunghezza variabile Marco Gribaudo marcog@di.unito.it, gribaudo@elet.polimi.it Assegnazione del codice Come visto in precedenza, per poter memorizzare o trasmettere un

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

Come creare il test di Conconi tramite l applicazione Training Center

Come creare il test di Conconi tramite l applicazione Training Center Come creare il test di Conconi tramite l applicazione Training Center Nella seguente nota tecnica, è spiegato passo passo come creare un allenamento avanzato, nello specifico, il Test di Conconi. Un test

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

La Macchina RAM Shepherdson e Sturgis (1963)

La Macchina RAM Shepherdson e Sturgis (1963) La Macchina RAM Shepherdson e Sturgis (963) Nastro di ingresso.......... PROGRAM COUNTER Nastro di uscita PROGRAMMA ACCUMULATORE UNITA' ARITMETICA............... 2 3 4 M E M O R I A Formato delle Istruzioni

Dettagli

Linguaggi e Paradigmi di Programmazione

Linguaggi e Paradigmi di Programmazione Linguaggi e Paradigmi di Programmazione Cos è un linguaggio Definizione 1 Un linguaggio è un insieme di parole e di metodi di combinazione delle parole usati e compresi da una comunità di persone. È una

Dettagli

Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015

Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015 Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015 Chi deve recuperare il progetto del modulo 1 ha 1 ora e 30 minuti per svolgere gli esercizi 1, 2, 3 Chi deve recuperare

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

Corso di Architettura degli Elaboratori

Corso di Architettura degli Elaboratori Corso di Architettura degli Elaboratori Valutazione delle prestazioni DOCENTE Luigi Palopoli AA. 2011/2012 Valutare le Prestazioni La complessita di un moderno calcolatore rende la valutazione delle prestazioni

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Complessità e Approssimazione

Complessità e Approssimazione 1 Complessità e Approssimazione Corso di Laurea in Scienze dell'informazione Corso di Laurea Specialistica in Matematica Docente: Mauro Leoncini 2 Aspetti organizzativi Sito web: http://algo.ing.unimo.it/people/mauro

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile)

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D1. COSA SONO LE ALTRE ATTIVITÀ FORMATIVE? D2. COME SI OTTENGONO

Dettagli

Sistemi Web! per il turismo! - lezione 3 -

Sistemi Web! per il turismo! - lezione 3 - Sistemi Web per il turismo - lezione 3 - I computer sono in grado di eseguire molte operazioni, e di risolvere un gran numero di problemi. E arrivato il momento di delineare esplicitamente il campo di

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

Corso Programmazione 2011-2012

Corso Programmazione 2011-2012 Corso Programmazione 2011-2012 (docente) Fabio Aiolli E-mail: aiolli@math.unipd.it Web: www.math.unipd.it/~aiolli (docenti laboratorio) E. Caniato, A. Ceccato Dipartimento di Matematica Pura ed Applicata

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Fondamenti di Informatica. Definizione di Algoritmo. Algoritmo Euclideo. Prof.V.L.Plantamura Informatica e Comunicazione Digitale a.a.

Fondamenti di Informatica. Definizione di Algoritmo. Algoritmo Euclideo. Prof.V.L.Plantamura Informatica e Comunicazione Digitale a.a. Fondamenti di Informatica Prof.V.L.Plantamura Informatica e Comunicazione Digitale a.a. 006-007 Definizione di Algoritmo Def.: Per Algoritmo si intende un elenco di istruzioni che specificano una serie

Dettagli

NP-Completezza. Andrea S. Gozzi Valerio Romeo. Andrea Samuele 1

NP-Completezza. Andrea S. Gozzi Valerio Romeo. Andrea Samuele 1 NP-Completezza di Andrea S. Gozzi Valerio Romeo Andrea Samuele 1 Argomenti trattati Out of intense complexities, intense simplicities emerge. Winston Churchill Concetti base & formalismi Introduzione alla

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE INTRODUZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Introduzione alla simulazione Una simulazione è l imitazione

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006)

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006) Claudio Arbib Universitàdi L Aquila Ricerca Operativa Problemi combinatorici (Gennaio 2006) Sommario Problemi combinatorici Ottimizzazione combinatoria L algoritmo universale Il metodo greedy Problemi

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli