Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 11

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11"

Transcript

1 Algoritmi e Strutture Dati II: Parte B Anno Accademico Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo il primo esempio SCHEDULING DI JOB Input: m macchine M 1,..., M m una sequenza σ di job σ J 1,..., J n, di durata p(j 1 ),..., p(j n ), rispettivamente. Output: un assegnazione di job a macchine in modo tale che sia minimizzato il tempo entro il quale tutti i job vengono eseguiti. Più precisamente, assumiamo che i job costituenti la sequenza σ si presentino in input all algoritmo A in successione. In corrispondenza ad ogni job J s, s 1,..., n, l algoritmo dovrà immediatamente decidere a quale delle macchine M k, k 1,..., m, assegnarlo. Sia Sk i l insieme dei job assegnati dall algoritmo A alla macchina M k, in corrispondenza alla sottosequenza J 1,..., J i dei job. Il carico della generica macchina M k dopo che l algoritmo A ha processato la sottosequenza J 1,..., J i dei job sarà quindi ed il makespan dell algoritmo A sarà L i k(a) L(A) J S i k p(j), max k1,...,m Ln k(a). Cerchiamo un algoritmo on-line A che abbia L(A) minimo. La tecnica greedy ci suggerisce immediatamente il seguente algoritmo: Assegna il job J s, s 1,..., n, alla macchina M k per cui L s 1 k min{l s 1 1,..., L s 1 m }, ovvero alla macchina correntemente con il minor carico. 1

2 Vogliamo provare che σ costo greedy (σ) 2costo OP T (σ), (1) dove costo greedy (σ) è il makespan dell algoritmo greedy in corrispondenza di σ, e costo OP T (σ) è il corrispondente costo dell algoritmo ottimo off-line. e Osserviamo inannzitutto le seguenti due limitazioni inferiori a costo OP T (σ). Vale σ costo OP T (σ) max s1,...,n p(j s), (2) σ costo OP T (σ) 1 n p(j s ). (3) m s1 La (2) è ovvia. La (3) la si ottiene una volta che si osservi che (1/m) n s1 p(j s ) rappresenta il tempo necessario per eseguire tutti i job. Visto che abbiamo a disposizione m macchine, almeno una di esse dovrà lavorare per un tempo pari a (1/m) n s1 p(j s ). Supponiamo ora che l algoritmo greedy abbia effettuato una certa assegnazione di job alle macchine, risultante in un dato carico L n 1,..., Ln m. Sia M h la macchina con il carico massimo, e sia J t l ultimo job ad essa assegnato dall algoritmo greedy. In altri termini, stiamo assumendo che costo greedy (σ) L n h. Sosteniamo che per il valore L n h vale che i L n i L n h p(j t ). (4) Infatti, al momento in cui viene assegnato il job J t alla macchina M h, essa risulta essere la meno carica (per come opera l algoritmo greedy), da cui la (4). Dalla (4) otteniamo da cui Osserviamo ora che pertanto m m W L n i (L n h p(j t )) m(l n h p(j t )) (5) i1 i1 L n h p(j t) W m. (6) n m p(j i ) L n k, i1 k1 costo greedy (σ) L n h W m + p(j t) 1 n p(j s ) + p(j t ) m s1 costo OP T (σ) + costo OP T (σ) (dalla (2) e (3)) 2

3 il che completa la dimostrazione di (1). Esaminiamo ora il seguente problema, risolvibile anch esso attraverso la tecnica greedy. BIN PACKING ON-LINE Input: una sequenza σ σ(1)... σ(m), dove ogni σ(i) rappresenta un oggetto di taglia a i, con 0 < a i 1; un insieme di contenitori B 1,..., B b, b m, ciascuno di capacità pari a 1. Output: un assegnazione di tutti gli oggetti in σ a contenitori, con la condizione che la somma delle taglie degli oggetti assegnati a ciascun contenitore non superi 1, e che minimizzi il numero totale di contenitori usati. Un possibile algoritmo on-line per questo problema può essere il seguente: ALGORITMO NEXT-FIT j 1 for i 1,..., m do aggiungi l oggetto σ(i) in B j, se ci và, else poni j j + 1 e inserisci σ(i) in B j. Sia costo NEXT-FIT (σ) il numero di contenitori usati dall algoritmo greedy NEXT-FIT per impacchettare tutti gli oggetti in σ, e sia costo OP T (σ) il corrispondente numero di contenitori usato dall algoritmo ottimo off-line che conosce tutta la sequenza di richieste fin dall inizio. Vogliamo provare che costo NEXT-FIT (σ) 2costo OP T (σ) + 1. Osserviamo innazitutto che m costo OP T (σ) a i, i1 in quanto occorre sicuramente usare un numero di contenitori superiore alla somma totale delle dimensioni degli oggetti in σ. Consideriamo la soluzione prodotta dall algoritmo greedy, e supponiamo che esso abbia usato i contenitori B 1,..., B s, e quindi costo NEXT-FIT (σ) s. L osservazione chiave è che j σ(a i ) B j a i + σ(a i ) B j+1 a i 1, j 1,... s 1. (7) 3

4 Infatti, se ciò non fosse, non avremmo usato il nuovo contenitore B j+1 ma avremmo messo tutti gli oggetti in B j. Conseguenza della (7) è che Da cui m a k a i + a i a i k1 σ(a i ) B 1 σ(a i ) B 2 σ(a i ) B s } {{ } (raggruppando le somme a due a due consecutivamente) (s 1)/2volte s 1 2. costo NEXT-FIT (σ) s 2 n a k + 1 2costo OP T (σ) + 1. k1 L approccio suggerito dall analisi degli algoritmi on-line può essere utile anche in altri contesti. Uno di questi riguarda classici problemi della Teoria delle Decisioni. Ci limitiamo, in questa lezione, a presentare ed analizzare due semplici esempi. Esempio 1: Affitto sci. Il problema può essere descritto come segue. Sia N > 1 un intero. Una persona deve usare un equipaggiamento (sci) per un qualche numero T di giorni, 1 T N. Assumiamo che il valore N sia noto alla persona, ma che T non lo sia (esso può infatti dipendere da ovvi fattori non dipendenti dalla volontà della persona). All inizio di ogni giorno, è noto alla persona in questione se gli occorrono o meno gli sci per la giornata. Pertanto, la persona deve effetuare una scelta tra le seguenti due opzioni: 1. Affittare gli sci per la giornata, ad un costo assumiamo pari ad 1; 2. Comprare gli sci, ad un costo pari ad un certo valore B 1. Ovviamente, una volta che la persona abbia acquistato gli sci, non incorrerà in ulteriori spese nei giorni successivi in cui deciderà ancora di sciare. Potrebbe, però, decidere di non voler più sciare (tutto dipende dal valore incognito di T ). Il costo totale in cui la persona incorre è ovviamante pari all eventuale numero di giorni in cui ha affitato gli sci, più il costo dell acquisto degli stessi. Si pone, pertanto, il problema di stabilire una strategia che minimizzi il costo, senza però conoscere il futuro (ovvero, il valore T dei giorni in cui effettivamente si scierà ). In questo caso, l algoritmica on-line può essere di aiuto. Consideriamo un generico algoritmo A i che effettua la seguente decisione: stabilisce un intero i 0, affitta gli sci per i giorni e, se ha ancora voglia di sciare dopo tale periodo, li acquista. Abbiamo ovviamente costo Ai { T se T i; se T > i. (8) La strategia ottima che conosce il futuro, ovvero T, deciderà ovviamente di comprare gli sci se il periodo effettivo T in cui si scierà è > B, deciderà di affittarli giorno per giorno, in caso contrario. Pertanto costo OP T min{b, T }. (9) 4

5 Voggliamo provare che il miglior algoritmo consiste nello scegliere i B 1. In tal caso abbiamo costo AB 1 { T se T B 1; 2B 1 se T > B 1. (10) Inoltre costo OP T { T se T B 1; B se T > B 1. Abbiamo pertanto che qualunque sia il valore incognito di T, vale che costo AB 1 2B 1 ( B costo OP T 2 1 ) costo OP T. (12) B Proviamo ora che nessun altra scelta del valore di i può portare a coefficienti di competitività migliori di quello appena trovato. Distinguiamo due casi. Caso 1: i B 1. Nell ipotesi che T i + 1, abbiamo costo Ai costo OP T min{t, B} min{i + 1, B} i B 1 i B 1 B 2 1 B. Quindi il coefficiente di competitività non è migliorato. Caso 2: i > B 1. Nell ipotesi che T i + 1, abbiamo costo Ai costo OP T min{t, B} min{i + 1, B} B 1 + i B 2. Anche in questo caso il coefficiente di competitività non è migliorato. (11) 5

6 Deduciamo quindi che la scelta ottima consiste nello scegliere i B 1. Esempio 2: Compravendita di azioni. Supponiamo di avere un azione, il cui prezzo è noto poter variare tra due valori m e M, con 0 < m < M entrambi noti a priori. All inizio di ogni giornata i-esima i 1, 2,..., veniamo a conoscenza del valore v i [m, M] giornaliero dell azione, e dobbiamo decidere se vendere l azione, e quindi realizzare un profitto v i, oppure mantenere il possesso dell azione. Qual è la strategia migliore, ovvero quella che ci massimizza il profitto? Anche in questo caso ci troviamo di fronte ad un probleam suscettibile di analisi mediante l algoritmica on-line. Una generica strategia potrebbe essere la seguente: si stabilisca a priori un valore p [m, M], si venda l azione il primo giorno in cui v i p, altrimenti si mantenga l azione. Come scegliere il valore p in modo da massimizzare il nostro profitto? Sia p max il valore massimo assunto da v i durante tutto il periodo in considerazione. Ovviamente, noi non conosciamo tale valore p max. Possono capitare due casi, a seconda della relazione sussistente tra il valore p che abbiamo noi scelto ed il valore incognito p max. Caso 1: p p max. In tal caso, ci sarà un giorno in cui v i p, e pertanto realizzeremo un profitto p. Potrebbe accadere, però, che il valore dell azione continui a crescere ed arrivi al valore massimo M. L algoritmo ottimo off-line venderà l azione esattamente quando essa varrà M. Quindi, il rapporto tra il profitto dell algoritmo on-line e dell algoritmo ottimo off-line è p/m. Caso 1: p > p max. In tal caso, non ci sarà mai un giorno in cui v i p, quindi non venderemmo mai per tutta la durata del periodo in questione. Potrebbe accadere, pertanto, che alla fine del periodo l azione valga m, quindi questo è il profitto che realizzeremo. L algoritmo ottimo off-line, invece, venderà appena l azione vale p max, realizzando un profitto appunto pari a p max. Il rapporto tra il profitto dell algoritmo on-line e dell algoritmo ottimo off-line è in questo caso m/p max, che può ovviamente essere arbitrariamente prossimo a m/p. Il miglior algoritmo on-line è sicuramente quello che sceglierà p in modo tale che vi sia bilanciamento tra le due possibili situazioni, ovvero per cui valga ovvero sceglierà il valore p pari a p M m p, p mm. Detto in altri termini, l algoritmo on-line ottimo è quello che decide, giorno per giorno, di vendere l azione se il suo valore v i è mm, e che decide di mantenere il possesso dell azione in caso contrario. Il fattore di competitività di un tale algoritmo è pari a M/m. 6

Algoritmi e strutture di dati 2

Algoritmi e strutture di dati 2 Algoritmi e strutture di dati 2 Paola Vocca Lezione 7: Algoritmi on-line e analisi competitiva Algoritmo on-line Algoritmi on-line: le richieste vengono eseguite basandosi solo sulla conoscenza delle richieste

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

APPLICAZIONI DELLA RICERCA OPERATIVA

APPLICAZIONI DELLA RICERCA OPERATIVA Università degli Studi della Calabria Laurea in Informatica A.A. 2004/2005 Appunti di supporto didattico al corso di APPLICAZIONI DELLA RICERCA OPERATIVA Indice 1 Introduzione alla teoria dello Scheduling

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

Introduzione al Corso di Algoritmi

Introduzione al Corso di Algoritmi Università di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Accademico 2014/15 p. 1/36 Introduzione al Corso di Algoritmi Di cosa parliamo oggi: Una discussione generale su cosa studieremo, perchè

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA Ing. Simone SCARDAPANE Circuiti e Algoritmi per l Elaborazione dei Segnali Anno Accademico 2012/2013 Indice della Lezione 1. Analisi delle Componenti Principali 2. Auto-Associatori 3. Analisi delle Componenti

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera Come è stato già osservato in precedenza, quando tutte le variabili di un problema di Programmazione Lineare sono vincolate ad assumere valori interi, si parla

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

CAPITOLO 10 I SINDACATI

CAPITOLO 10 I SINDACATI CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Schedulazione di attività in presenza di attività interrompibili

Schedulazione di attività in presenza di attività interrompibili Schedulazione di attività in presenza di attività interrompibili Maria Silvia Pini Resp. accademico: Prof.ssa Francesca Rossi Università di Padova Attività FSE DGR 1102/2010 La gestione dell informazione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

SPERIMENTAZIONE CON LINDO SU UN PROBLEMA DI SCHEDULING

SPERIMENTAZIONE CON LINDO SU UN PROBLEMA DI SCHEDULING UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE TESI DI LAUREA SPERIMENTAZIONE CON LINDO SU UN PROBLEMA DI SCHEDULING Relatore: Ch.mo

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

TECNICHE DI COMPRESSIONE DATI

TECNICHE DI COMPRESSIONE DATI TECNICHE DI COMPRESSIONE DATI COMPRESSIONE DATI La compressione produce una rappresentazione più compatta delle informazioni è come se si usassero meno parole per dire la stessa cosa in modo diverso. Esistono

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

Modelli di scheduling su macchina singola. relazione alle macchine che devono eseguire le varie operazioni, allora ogni singola macchina nello shop è

Modelli di scheduling su macchina singola. relazione alle macchine che devono eseguire le varie operazioni, allora ogni singola macchina nello shop è . Modello base Consideriamo il caso in cui ogni job consiste di una sola operazione. Poiché un insieme di job è partizionato in relazione alle macchine che devono eseguire le varie operazioni, allora ogni

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Articolo 1: 5 luglio 2010. Sponsored Search Equilibrium for Conservative Bidders

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Articolo 1: 5 luglio 2010. Sponsored Search Equilibrium for Conservative Bidders Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/0 Articolo : 5 luglio 200 Sponsored Search Equilibrium for Conservative Bidders Docente Vincenzo Auletta Note redatte da: Filomena Carnevale

Dettagli

Problemi di localizzazione impianti

Problemi di localizzazione impianti Problemi di localizzazione impianti Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

Esercizi di Gestione della Produzione Industriale. Tabella 1: tempi di lavorazione di un set di job.

Esercizi di Gestione della Produzione Industriale. Tabella 1: tempi di lavorazione di un set di job. Esercizio 1: schedulazione con il modello di Johnson...2 Soluzione dell esercizio 1 (schedulazione con il modello di Johnson)...2 Esercizio 2: schedulazione con il modello di Hodgson...3 Soluzione dell

Dettagli

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base:

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base: LA STRUTTURA DI RIPETIZIONE La ripetizione POST-condizionale La ripetizione PRE-condizionale INTRODUZIONE (1/3) Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto

Dettagli

Algoritmi di scheduling - Parte 2

Algoritmi di scheduling - Parte 2 Algoritmi di scheduling - Parte 2 Automazione I 12/11/2013 Vincenzo Suraci STRUTTURA DEL NUCLEO TEMATICO ALGORITMO DEADLINE MONOTONIC PRIORITY ORDERING (DMPO) ALGORITMO TIMELINE SCHEDULING (TS) SCHEDULING

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

Modelli di Programmazione Lineare

Modelli di Programmazione Lineare Capitolo 2 Modelli di Programmazione Lineare 2.1 Modelli di allocazione ottima di risorse Esercizio 2.1.1 Un industria manifatturiera può fabbricare 5 tipi di prodotti che indichiamo genericamente con

Dettagli

Corso Sistemi Informativi Aziendali, Tecnologie dell Informazione applicate ai processi aziendali. Sistemi informativi aziendali

Corso Sistemi Informativi Aziendali, Tecnologie dell Informazione applicate ai processi aziendali. Sistemi informativi aziendali Corso Sistemi Informativi Aziendali,. Sistemi informativi aziendali di Simone Cavalli (simone.cavalli@unibg.it) Bergamo, Febbraio - Marzo 2009 Produzione (cenni) Pagina 2 Produzione La produzione, in termini

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

Sistemi Operativi. ugoerr+so@dia.unisa.it 5 LEZIONE SCHEDULING DELLA CPU CORSO DI LAUREA TRIENNALE IN INFORMATICA. Sistemi Operativi 2007/08

Sistemi Operativi. ugoerr+so@dia.unisa.it 5 LEZIONE SCHEDULING DELLA CPU CORSO DI LAUREA TRIENNALE IN INFORMATICA. Sistemi Operativi 2007/08 Sistemi Operativi Docente: Ugo Erra ugoerr+so@dia.unisa.it 5 LEZIONE SCHEDULING DELLA CPU CORSO DI LAUREA TRIENNALE IN INFORMATICA UNIVERSITA DEGLI STUDI DELLA BASILICATA Sommario della lezione Introduzione

Dettagli

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 10 Costi COSTI Per poter realizzare la produzione l impresa sostiene dei costi Si tratta di scegliere la combinazione ottimale dei fattori produttivi per l impresa È bene ricordare che la categoria

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

La selezione binaria

La selezione binaria Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Capitolo 1 - Numerazione binaria

Capitolo 1 - Numerazione binaria Appunti di Elettronica Digitale Capitolo - Numerazione binaria Numerazione binaria... Addizione binaria... Sottrazione binaria... Moltiplicazione binaria... Divisione binaria... Complementazione... Numeri

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Introduzione alla teoria dello scheduling

Introduzione alla teoria dello scheduling 1. Generalità I problemi di scheduling riguardano l allocazione di risorse limitate ad attività nel tempo. In generale il processo di decisione associato richiede la determinazione dell ordine in cui l

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Economia Pubblica Giochi con informazione incompleta e Selezione Avversa

Economia Pubblica Giochi con informazione incompleta e Selezione Avversa Economia Pubblica Giochi con informazione incompleta e Selezione Avversa Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2014-15 Outline Un semplice mercato

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia.

ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia. ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia. La prova scritta consta di dodici domande, formulate come test a risposta multipla. Una sola delle cinque risposte fornite

Dettagli

Esercizi Capitolo 14 - Algoritmi Greedy

Esercizi Capitolo 14 - Algoritmi Greedy Esercizi Capitolo 14 - Algoritmi Greedy Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: V. Lonati Progetto Compagnie aeree valido per la prova in itinere di gennaio 2013 1 Il problema Numerose compagnie aeree si spartiscono il traffico aereo

Dettagli

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Dipartimento di Ingegneria della Informazione Via Diotisalvi, 2 56122 PISA ALGORITMI GENETICI (GA) Sono usati per risolvere problemi di ricerca

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

Capitolo XIV. La gestione della produzione

Capitolo XIV. La gestione della produzione Capitolo XIV La gestione della produzione La funzione di produzione Approvvigionamenti La funzione di produzione riguarda il processo di trasformazione dei beni, ossia l insieme l di operazioni mediante

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

L impresa che non fa il prezzo

L impresa che non fa il prezzo L offerta nei mercati dei prodotti L impresa che non fa il prezzo L impresa che non fa il prezzo (KR 10 + NS 6) Dipartimento di Economia Politica Università di Milano Bicocca Outline L offerta nei mercati

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

D R (S) = ϱ 1 D R (S), e ovviamente per quella passiva

D R (S) = ϱ 1 D R (S), e ovviamente per quella passiva CAPITOLO 1 Introduzione Nella fisica moderna i metodi algebrici e in particolare la teoria dei gruppi hanno acquistato un interesse sconosciuto alla fisica del secolo scorso. Si può vedere la cosa in una

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 20/202 Lezione 6-8 Rappresentazione di funzioni non lineari: - Costi fissi - Funzioni lineari a tratti Funzioni obiettivo non lineari:

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Organizzazione della produzione

Organizzazione della produzione Scheduling Organizzazione della produzione PROOTTO che cosa chi ORGNIZZZIONE PROCESSO come FLUSSO I PROUZIONE COORINMENTO PINIFICZIONE SCHEULING quando Pianificazione della produzione: schedulazione di

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

INTRODUZIONE A EXCEL ESERCITAZIONE I

INTRODUZIONE A EXCEL ESERCITAZIONE I 1 INTRODUZIONE A EXCEL ESERCITAZIONE I Corso di Idrologia e Infrastrutture Idrauliche Prof. Roberto Guercio Cos è Excel 2 Foglio di calcolo o foglio elettronico è formato da: righe e colonne visualizzate

Dettagli

CAPITOLO 6 La programmazione operativa (operations scheduling)

CAPITOLO 6 La programmazione operativa (operations scheduling) CAPITOLO 6 La programmazione operativa (operations scheduling) Contenuti Le funzioni della PO Gli obiettivi della PO Il job loading Il metodo dell assegnazione Il job sequencing Regole e tecniche di priorità

Dettagli

SCHEDULING SCHEDULING

SCHEDULING SCHEDULING Corso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO 1 INDICE Esempio Introduttivo Generalità sui problemi di scheduling SINGLE MACHINE SPT (shortest processing

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

Capacità di canale in molte salse

Capacità di canale in molte salse Capacità di canale in molte salse. Bernardini 6 maggio 008 Indice 1 Introduzione 1 Modelli di canale 1.1 Matrice di transizione........................................ 1. Funzione aleatoria..........................................

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Sistemi Operativi SCHEDULING DELLA CPU

Sistemi Operativi SCHEDULING DELLA CPU Sistemi Operativi SCHEDULING DELLA CPU Scheduling della CPU Concetti di Base Criteri di Scheduling Algoritmi di Scheduling FCFS, SJF, Round-Robin, A code multiple Scheduling in Multi-Processori Scheduling

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Lo scheduling. Tipici schedulatori

Lo scheduling. Tipici schedulatori Lo scheduling Un processo durante la sua evoluzione è o running o in attesa di un evento. Nel secondo caso trattasi della disponibilità di una risorsa (CPU, I/O, struttura dati, ecc.) di cui il processo

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2 3.1 Ottimizzazione lungo direzioni coniugate. Risolvere il seguente problema: minimize f(x 1,x 2 ) = 12x 2 + 4x 2 1 + 4x 2 2 4x 1 x 2 manualmente, utilizzando il metodo delle direzioni coniugate: determinare

Dettagli

SCAMBIO EFFICIENTE. Cos è la Scatola di Edgeworth?

SCAMBIO EFFICIENTE. Cos è la Scatola di Edgeworth? SCAMBIO EFFICIENTE Per determinare se l equilibrio competitivo soddisfa la condizione di scambio efficiente, dovremo sviluppare uno strumento grafico chiamato la Scatola di Edgeworth e utilizzato per descrivere

Dettagli