Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 11

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11"

Transcript

1 Algoritmi e Strutture Dati II: Parte B Anno Accademico Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo il primo esempio SCHEDULING DI JOB Input: m macchine M 1,..., M m una sequenza σ di job σ J 1,..., J n, di durata p(j 1 ),..., p(j n ), rispettivamente. Output: un assegnazione di job a macchine in modo tale che sia minimizzato il tempo entro il quale tutti i job vengono eseguiti. Più precisamente, assumiamo che i job costituenti la sequenza σ si presentino in input all algoritmo A in successione. In corrispondenza ad ogni job J s, s 1,..., n, l algoritmo dovrà immediatamente decidere a quale delle macchine M k, k 1,..., m, assegnarlo. Sia Sk i l insieme dei job assegnati dall algoritmo A alla macchina M k, in corrispondenza alla sottosequenza J 1,..., J i dei job. Il carico della generica macchina M k dopo che l algoritmo A ha processato la sottosequenza J 1,..., J i dei job sarà quindi ed il makespan dell algoritmo A sarà L i k(a) L(A) J S i k p(j), max k1,...,m Ln k(a). Cerchiamo un algoritmo on-line A che abbia L(A) minimo. La tecnica greedy ci suggerisce immediatamente il seguente algoritmo: Assegna il job J s, s 1,..., n, alla macchina M k per cui L s 1 k min{l s 1 1,..., L s 1 m }, ovvero alla macchina correntemente con il minor carico. 1

2 Vogliamo provare che σ costo greedy (σ) 2costo OP T (σ), (1) dove costo greedy (σ) è il makespan dell algoritmo greedy in corrispondenza di σ, e costo OP T (σ) è il corrispondente costo dell algoritmo ottimo off-line. e Osserviamo inannzitutto le seguenti due limitazioni inferiori a costo OP T (σ). Vale σ costo OP T (σ) max s1,...,n p(j s), (2) σ costo OP T (σ) 1 n p(j s ). (3) m s1 La (2) è ovvia. La (3) la si ottiene una volta che si osservi che (1/m) n s1 p(j s ) rappresenta il tempo necessario per eseguire tutti i job. Visto che abbiamo a disposizione m macchine, almeno una di esse dovrà lavorare per un tempo pari a (1/m) n s1 p(j s ). Supponiamo ora che l algoritmo greedy abbia effettuato una certa assegnazione di job alle macchine, risultante in un dato carico L n 1,..., Ln m. Sia M h la macchina con il carico massimo, e sia J t l ultimo job ad essa assegnato dall algoritmo greedy. In altri termini, stiamo assumendo che costo greedy (σ) L n h. Sosteniamo che per il valore L n h vale che i L n i L n h p(j t ). (4) Infatti, al momento in cui viene assegnato il job J t alla macchina M h, essa risulta essere la meno carica (per come opera l algoritmo greedy), da cui la (4). Dalla (4) otteniamo da cui Osserviamo ora che pertanto m m W L n i (L n h p(j t )) m(l n h p(j t )) (5) i1 i1 L n h p(j t) W m. (6) n m p(j i ) L n k, i1 k1 costo greedy (σ) L n h W m + p(j t) 1 n p(j s ) + p(j t ) m s1 costo OP T (σ) + costo OP T (σ) (dalla (2) e (3)) 2

3 il che completa la dimostrazione di (1). Esaminiamo ora il seguente problema, risolvibile anch esso attraverso la tecnica greedy. BIN PACKING ON-LINE Input: una sequenza σ σ(1)... σ(m), dove ogni σ(i) rappresenta un oggetto di taglia a i, con 0 < a i 1; un insieme di contenitori B 1,..., B b, b m, ciascuno di capacità pari a 1. Output: un assegnazione di tutti gli oggetti in σ a contenitori, con la condizione che la somma delle taglie degli oggetti assegnati a ciascun contenitore non superi 1, e che minimizzi il numero totale di contenitori usati. Un possibile algoritmo on-line per questo problema può essere il seguente: ALGORITMO NEXT-FIT j 1 for i 1,..., m do aggiungi l oggetto σ(i) in B j, se ci và, else poni j j + 1 e inserisci σ(i) in B j. Sia costo NEXT-FIT (σ) il numero di contenitori usati dall algoritmo greedy NEXT-FIT per impacchettare tutti gli oggetti in σ, e sia costo OP T (σ) il corrispondente numero di contenitori usato dall algoritmo ottimo off-line che conosce tutta la sequenza di richieste fin dall inizio. Vogliamo provare che costo NEXT-FIT (σ) 2costo OP T (σ) + 1. Osserviamo innazitutto che m costo OP T (σ) a i, i1 in quanto occorre sicuramente usare un numero di contenitori superiore alla somma totale delle dimensioni degli oggetti in σ. Consideriamo la soluzione prodotta dall algoritmo greedy, e supponiamo che esso abbia usato i contenitori B 1,..., B s, e quindi costo NEXT-FIT (σ) s. L osservazione chiave è che j σ(a i ) B j a i + σ(a i ) B j+1 a i 1, j 1,... s 1. (7) 3

4 Infatti, se ciò non fosse, non avremmo usato il nuovo contenitore B j+1 ma avremmo messo tutti gli oggetti in B j. Conseguenza della (7) è che Da cui m a k a i + a i a i k1 σ(a i ) B 1 σ(a i ) B 2 σ(a i ) B s } {{ } (raggruppando le somme a due a due consecutivamente) (s 1)/2volte s 1 2. costo NEXT-FIT (σ) s 2 n a k + 1 2costo OP T (σ) + 1. k1 L approccio suggerito dall analisi degli algoritmi on-line può essere utile anche in altri contesti. Uno di questi riguarda classici problemi della Teoria delle Decisioni. Ci limitiamo, in questa lezione, a presentare ed analizzare due semplici esempi. Esempio 1: Affitto sci. Il problema può essere descritto come segue. Sia N > 1 un intero. Una persona deve usare un equipaggiamento (sci) per un qualche numero T di giorni, 1 T N. Assumiamo che il valore N sia noto alla persona, ma che T non lo sia (esso può infatti dipendere da ovvi fattori non dipendenti dalla volontà della persona). All inizio di ogni giorno, è noto alla persona in questione se gli occorrono o meno gli sci per la giornata. Pertanto, la persona deve effetuare una scelta tra le seguenti due opzioni: 1. Affittare gli sci per la giornata, ad un costo assumiamo pari ad 1; 2. Comprare gli sci, ad un costo pari ad un certo valore B 1. Ovviamente, una volta che la persona abbia acquistato gli sci, non incorrerà in ulteriori spese nei giorni successivi in cui deciderà ancora di sciare. Potrebbe, però, decidere di non voler più sciare (tutto dipende dal valore incognito di T ). Il costo totale in cui la persona incorre è ovviamante pari all eventuale numero di giorni in cui ha affitato gli sci, più il costo dell acquisto degli stessi. Si pone, pertanto, il problema di stabilire una strategia che minimizzi il costo, senza però conoscere il futuro (ovvero, il valore T dei giorni in cui effettivamente si scierà ). In questo caso, l algoritmica on-line può essere di aiuto. Consideriamo un generico algoritmo A i che effettua la seguente decisione: stabilisce un intero i 0, affitta gli sci per i giorni e, se ha ancora voglia di sciare dopo tale periodo, li acquista. Abbiamo ovviamente costo Ai { T se T i; se T > i. (8) La strategia ottima che conosce il futuro, ovvero T, deciderà ovviamente di comprare gli sci se il periodo effettivo T in cui si scierà è > B, deciderà di affittarli giorno per giorno, in caso contrario. Pertanto costo OP T min{b, T }. (9) 4

5 Voggliamo provare che il miglior algoritmo consiste nello scegliere i B 1. In tal caso abbiamo costo AB 1 { T se T B 1; 2B 1 se T > B 1. (10) Inoltre costo OP T { T se T B 1; B se T > B 1. Abbiamo pertanto che qualunque sia il valore incognito di T, vale che costo AB 1 2B 1 ( B costo OP T 2 1 ) costo OP T. (12) B Proviamo ora che nessun altra scelta del valore di i può portare a coefficienti di competitività migliori di quello appena trovato. Distinguiamo due casi. Caso 1: i B 1. Nell ipotesi che T i + 1, abbiamo costo Ai costo OP T min{t, B} min{i + 1, B} i B 1 i B 1 B 2 1 B. Quindi il coefficiente di competitività non è migliorato. Caso 2: i > B 1. Nell ipotesi che T i + 1, abbiamo costo Ai costo OP T min{t, B} min{i + 1, B} B 1 + i B 2. Anche in questo caso il coefficiente di competitività non è migliorato. (11) 5

6 Deduciamo quindi che la scelta ottima consiste nello scegliere i B 1. Esempio 2: Compravendita di azioni. Supponiamo di avere un azione, il cui prezzo è noto poter variare tra due valori m e M, con 0 < m < M entrambi noti a priori. All inizio di ogni giornata i-esima i 1, 2,..., veniamo a conoscenza del valore v i [m, M] giornaliero dell azione, e dobbiamo decidere se vendere l azione, e quindi realizzare un profitto v i, oppure mantenere il possesso dell azione. Qual è la strategia migliore, ovvero quella che ci massimizza il profitto? Anche in questo caso ci troviamo di fronte ad un probleam suscettibile di analisi mediante l algoritmica on-line. Una generica strategia potrebbe essere la seguente: si stabilisca a priori un valore p [m, M], si venda l azione il primo giorno in cui v i p, altrimenti si mantenga l azione. Come scegliere il valore p in modo da massimizzare il nostro profitto? Sia p max il valore massimo assunto da v i durante tutto il periodo in considerazione. Ovviamente, noi non conosciamo tale valore p max. Possono capitare due casi, a seconda della relazione sussistente tra il valore p che abbiamo noi scelto ed il valore incognito p max. Caso 1: p p max. In tal caso, ci sarà un giorno in cui v i p, e pertanto realizzeremo un profitto p. Potrebbe accadere, però, che il valore dell azione continui a crescere ed arrivi al valore massimo M. L algoritmo ottimo off-line venderà l azione esattamente quando essa varrà M. Quindi, il rapporto tra il profitto dell algoritmo on-line e dell algoritmo ottimo off-line è p/m. Caso 1: p > p max. In tal caso, non ci sarà mai un giorno in cui v i p, quindi non venderemmo mai per tutta la durata del periodo in questione. Potrebbe accadere, pertanto, che alla fine del periodo l azione valga m, quindi questo è il profitto che realizzeremo. L algoritmo ottimo off-line, invece, venderà appena l azione vale p max, realizzando un profitto appunto pari a p max. Il rapporto tra il profitto dell algoritmo on-line e dell algoritmo ottimo off-line è in questo caso m/p max, che può ovviamente essere arbitrariamente prossimo a m/p. Il miglior algoritmo on-line è sicuramente quello che sceglierà p in modo tale che vi sia bilanciamento tra le due possibili situazioni, ovvero per cui valga ovvero sceglierà il valore p pari a p M m p, p mm. Detto in altri termini, l algoritmo on-line ottimo è quello che decide, giorno per giorno, di vendere l azione se il suo valore v i è mm, e che decide di mantenere il possesso dell azione in caso contrario. Il fattore di competitività di un tale algoritmo è pari a M/m. 6

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

L impresa che non fa il prezzo

L impresa che non fa il prezzo L offerta nei mercati dei prodotti L impresa che non fa il prezzo L impresa che non fa il prezzo (KR 10 + NS 6) Dipartimento di Economia Politica Università di Milano Bicocca Outline L offerta nei mercati

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 10 Costi COSTI Per poter realizzare la produzione l impresa sostiene dei costi Si tratta di scegliere la combinazione ottimale dei fattori produttivi per l impresa È bene ricordare che la categoria

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

STRUTTURE (O COSTRUTTI) DI CONTROLLO

STRUTTURE (O COSTRUTTI) DI CONTROLLO Le strutture di controllo Le strutture di controllo STRUTTURE (O COSTRUTTI) DI CONTROLLO determinano l ordine con cui devono essere eseguite le istruzioni sono indipendenti dalla natura delle istruzioni

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Esercizi sull Association Analysis

Esercizi sull Association Analysis Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf.

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Ricapitoliamo. Ricapitoliamo

Ricapitoliamo. Ricapitoliamo Ricapitoliamo Finora ci siamo concentrati sui processi computazionali e sul ruolo che giocano le procedure nella progettazione dei programmi In particolare, abbiamo visto: Come usare dati primitivi (numeri)

Dettagli

1. Determinazione del valore di una resistenza mediante misura voltamperometrica

1. Determinazione del valore di una resistenza mediante misura voltamperometrica 1. Determinazione del valore di una resistenza mediante misura voltamperometrica in corrente continua Si hanno a disposizione : 1 alimentatore di potenza in corrente continua PS 2 multimetri digitali 1

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Semplici Algoritmi di Ordinamento

Semplici Algoritmi di Ordinamento Fondamenti di Informatica Semplici Algoritmi di Ordinamento Fondamenti di Informatica - D. Talia - UNICAL 1 Ordinamento di una sequenza di elementi Esistono molti algoritmi di ordinamento. Tutti ricevono

Dettagli

Introduzione Metodo POT

Introduzione Metodo POT Introduzione Metodo POT 1 Un recente metodo di analisi dei valori estremi è un metodo detto POT ( Peak over thresholds ), inizialmente sviluppato per l analisi dei dati idrogeologici a partire dalla seconda

Dettagli

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti Dai sistemi concorrenti ai sistemi distribuiti Problemi nei sistemi concorrenti e distribuiti I sistemi concorrenti e distribuiti hanno in comune l ovvio problema di coordinare le varie attività dei differenti

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

Appunti dalle lezioni di

Appunti dalle lezioni di Università di Roma La Sapienza Sede di Latina (Università Pontina) Corso di Laurea in Ingegneria Informatica Appunti dalle lezioni di Ricerca Operativa Anno Accademico 2003-2004 Indice Introduzione 5 Che

Dettagli

Inter-Process Communication

Inter-Process Communication Inter-Process Communication C. Baroglio a.a. 2002-2003 1 Introduzione In Unix i processi possono essere sincronizzati utilizzando strutture dati speciali, appartenti al pacchetto IPC (inter-process communication).

Dettagli

L apertura di una economia ha 3 dimensioni

L apertura di una economia ha 3 dimensioni Lezione 19 (BAG cap. 6.1 e 6.3 e 18.1-18.4) Il mercato dei beni in economia aperta: moltiplicatore politica fiscale e deprezzamento Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Economia

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Capitolo 7. F. Barigozzi Microeconomia CLEC 1

Capitolo 7. F. Barigozzi Microeconomia CLEC 1 Capitolo 7 Continuiamo ad acquisire gli strumenti che ci permetteranno di studiare la scelta ottimale dell impresa. In questo capitolo vengono trattati i costi dell impresa. Usando la funzione di produzione

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

Gli array. Gli array. Gli array. Classi di memorizzazione per array. Inizializzazione esplicita degli array. Array e puntatori

Gli array. Gli array. Gli array. Classi di memorizzazione per array. Inizializzazione esplicita degli array. Array e puntatori Gli array Array e puntatori Laboratorio di Informatica I un array è un insieme di elementi (valori) avente le seguenti caratteristiche: - un array è ordinato: agli elementi dell array è assegnato un ordine

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Le metodologie alternative al VAN

Le metodologie alternative al VAN Teoria della Finanza Aziendale Le metodologie alternative al VAN 6 1-2 Argomenti Il VAN e le possibili alternative Il Payback Period Il rendimento medio contabile Il TIR Valutazione in presenza di vincoli

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizione di uno schema Dato uno schema relazionale R={A1,A2, An} una sua decomposizione

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 1 - Greedy!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

TERMODINAMICA DI UNA REAZIONE DI CELLA

TERMODINAMICA DI UNA REAZIONE DI CELLA TERMODINAMICA DI UNA REAZIONE DI CELLA INTRODUZIONE Lo scopo dell esperienza è ricavare le grandezze termodinamiche per la reazione che avviene in una cella galvanica, attraverso misure di f.e.m. effettuate

Dettagli

Appunti di Sistemi Operativi. Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo

Appunti di Sistemi Operativi. Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo Appunti di Sistemi Operativi Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo Indice 1 Cenni su alcuni algoritmi del Kernel di Unix 1 1.1 Elementi di Unix Internals.................................

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Esercitazione 7. Procedure e Funzioni

Esercitazione 7. Procedure e Funzioni Esercitazione 7 Procedure e Funzioni Esercizio Scrivere un programma che memorizza in un array di elementi di tipo double le temperature relative al mese corrente e ne determina la temperatura massima,

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI Indice 1 La ricerca operativa 2 1.1 Introduzione......................................... 2 1.2 Le fasi della ricerca operativa...............................

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail. L offerta economicamente più vantaggiosa Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.com 1 Quadro Legislativo D.P.R. n.544/99 D.Lgs n.163/06 e s.m.i. D. Lgs

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

TEORIA DEL CONSUMATORE

TEORIA DEL CONSUMATORE TEORIA DEL CONSUMATORE Premessa: La moderna teoria economica del comportamento del consumatore è intimamente legata alla teoria marginalista neo-classica, essendo fra l'altro da essa storicamente derivata.

Dettagli

Informazioni generali

Informazioni generali Informazioni generali Esercitazioni del corso di Fondamenti di informatica Tutor: Ing. Rughetti Diego Esercitazione: Martedì 9.30-11.15 Tutoraggio: Martedì 11.30-13.00 Contatto: rughettidiego@tiscali.it

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE

DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE Il problema Un computer è usato per risolvere dei problemi Prenotazione di un viaggio Compilazione e stampa di un certificato in un ufficio comunale Preparazione

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof.

Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof. Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica Programmazione I - corso B a.a. 009-10 prof. Viviana Bono Blocco 9 Metodi statici: passaggio parametri, variabili locali, record

Dettagli

Corso ECM di formazione per gli operatori addetti alla gestione del Sistema Informativo sulle Malattie Professionali (Malprof )

Corso ECM di formazione per gli operatori addetti alla gestione del Sistema Informativo sulle Malattie Professionali (Malprof ) Centro nazionale per r la Prevenzione e il Controllo delle Malattie Conferenza dei Presidenti delle Regioni e delle Province Autonome Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro Dipartimento

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

Modelli di Sistemi di Produzione

Modelli di Sistemi di Produzione Modelli di Sistemi di Produzione 2 Indice 1 I sistemi di produzione 1 1.1 Generalità............................. 1 1.2 I principi dei sistemi manifatturieri............... 4 1.3 Descrizione dei principali

Dettagli

I costi nel breve periodo

I costi nel breve periodo I costi di produzione e la funzione di offerta Breve e lungo periodo Il breve periodo è quell orizzonte temporale nel quale l impresa può variare solo parzialmente l impiego degli input esempio: l impresa

Dettagli