Programma di Matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Programma di Matematica"

Transcript

1 Programma di Matematica Modulo 1. Topologia in R 2. Funzioni in R 3. Limite e continuità di una funzione Unità didattiche Struttura algebrica di R Insiemi reali limitati e illimitati Intorno di un punto Intervalli chiusi e aperti Estremi di un insieme reale Massimi e minimi di un insieme reale Punto di accumulazione Funzioni reali Funzioni algebriche e trascendenti Funzioni periodiche Funzioni pari e dispari Determinazione del dominio di una funzione Limite di una funzione in un punto infinito Limite di una funzione all infinito Limite destro e limite sinistro Teoremi sui limiti Forme indeterminate Limiti notevoli Funzioni continue Funzioni discontinue

2 Modulo 4. Derivata 5. Studio di una funzione 6. Integrale Unità didattiche Rapporto incrementale Definizione di derivata Significato geometrico della derivata Continuità e derivabilità Derivata di alcune funzioni elementari Operazioni con le derivate Derivate di funzioni composte e inverse Derivate successive Differenziale di una funzione Teoremi fondamentali sulle derivate, derivabilità e continuità Teorema di De L Hospital Massimi e minimi di una funzione e loro determinazione Concavità e convessità Flessi orizzontali e obliqui Asintoti di una funzione Rappresentazione grafica della curva di equazione y=f(x) Concetto di integrale indefinito Integrazione per scomposizione Integrazione per sostituzione Integrazione per parti Integrazione delle funzioni razionali fazionarie Problema delle aree e integrale definito Funzione integrale Teorema fondamentale per il calcolo integrale (teorema di Torricelli e teorema di Torricelli-Barrow) Applicazioni

3 MATEMATICA V LICEO LINGUISTICO Modulo 1: Topologia in R INTRODUZIONE ALLO STUDIO DELL ANALISI Attualmente l'analisi è una branca molto sviluppata della matematica, ed è fondamentale per lo studio delle funzioni Prima di tutto definiamo intuitivamente una funzione: consideriamo due insiemi, diciamo funzione una relazione che associ a ogni elemento del primo insieme uno e un solo elemento del secondo insieme, il primo insieme è detto dominio della funzione, il secondo codominio o insieme immagine; lo studio di funzione serve solitamente per disegnare il grafico di una funzione, vediamo a grandi linee come si svolge questo processo. Per prima cosa è necessario individuare il dominio della funzione, questo può coincidere con l'insieme dei numeri reali oppure no, come nel caso della radice quadrata, che nei reali è definita solo per numeri positivi. Spesso è utile, ma talvolta molto difficile, individuare anche il codominio della funzione, se riesce a fare ciò, si trova nel piano cartesiano una regione, magari infinita, nella quale è contenuto tutto il grafico della funzione, questo è ovviamente utile per disegnarne il grafico. In seguito si studia l'andamento della funzione ai limiti del campo del dominio, cioè nelle vicinanze degli estremi degli intervalli in cui la funzione non è definita, per esempio la radice quadrata è definita solo per i positivi, quindi si studierà il comportamento nelle vicinanze del punto 0, trovando che la radice quadrata di 0 vale 0, ma le cose non sono sempre così semplici, la funzione y = 1/x non è definita quando x = 0, nelle vicinanze di questo punto la funzione cresce quanto si vuole, basta fare avvicinare sempre di più x a 0, quindi in il grafico crescerà all'infinito, nelle vicinanze del punto x = 0, senza tuttavia toccare mai la retta di equazione x = 0,

4 anche se ci si avvicina sempre di più, una retta di questo tipo è detta asintoto, notiamo che questa sarà sempre verticale, se è nelle vicinanze di un punto dove la funzione non è definita. Dopo si va a studiare l'andamento della funzione quando x cresce all'infinito, in questo caso la y può crescere anch'essa all'infinito, oppure può avvicinarsi sempre di più a un valore, senza tuttavia mai raggiungerlo, troviamo quindi un altro asintoto, ma questa volta orizzontale. Si individua poi i punti nei quali la funzione assume valore massimo e valore minimo, questi valori possono essere il massimo o il minimo della funzione considerata su tutto il suo dominio, e allora sono detti rispettivamente massimo e minimo assoluti, oppure se, per esempio, un punto ha l'ascissa maggiore di tutti i punti vicini a questo (sia a destra che a sinistra), senza essere tuttavia il punto di massimo della funzione (magari la funzione è illimitata, cioè cresce all'infinito, il suo codominio coincide con l'insieme dei numeri reali), questo è detto massimo relativo della funzione, considerazioni analoghe per il minimo relativo. Si cerca anche in quali tratti la funzione è crescente e in quali è decrescente, dove cioè per x maggiori si ottengono y maggiori e viceversa, per x maggiori si ottengono y minori. Si determina anche dove la funzione è concava, dove cioè presi due punti qualsiasi della curva essa sta sotto la retta che li congiunge, e dove è convessa, dove sta sopra la retta. Esistono, per alcune curve, dei punti detti flessi, nei quali la curva passa da concava a convessa, o ovviamente viceversa, in questi punti la tangente alla curva la attraversa, per disegnare correttamente il grafico si una funzione è necessario trovare anche questi punti. Si procede poi alla ricerca, se esistono, di asintoti obliqui, cioè non paralleli agli assi, anche questo è chiaramente indispensabile per la corretta rappresentazione del grafico di una curva. In teoria tutto ciò basta per disegnare correttamente il grafico di una curva, ma quasi sempre è utile anche determinare dei punti, per facilitare il disegno, solitamente si

5 scelgono le intersezioni con gli assi cartesiani, se ci sono, comunque tutti i punti sono utili, e più se ne determinano, più semplice sarà disegnare correttamente la curva. Esistono poi molti metodi per semplificare il lavoro, per esempio è molto usato il metodo di osservare se la curva presenta delle simmetrie, per esempio se la curva è simmetrica rispetto all'origine sarà sufficiente disegnare la curva in un solo quadrante per poi riprodurla identica, ribaltata, negli altri quadranti, oppure trovare simmetrie assiali eccetera. Se poi la curva è periodica, cioè si ripete sempre uguale a sé stessa dopo un certo periodo sarà sufficiente studiare un periodo solo. Inoltre se si può semplificare molto l'equazione della curva mediante una trasformazione che lasci invariata la sua forma, ma magari la sposti o la ruoti (questi tipi di trasformazioni sono dette similitudini), si studia la curva più semplice e poi la si sposta. Spessissimo si tratta proprio di una rotazione, perché complica molto l'equazione della curva, quindi la si disegna riferita agli assi, e poi la si ruota. A volte si usano anche altri tipi di trasformazioni, che deformano anche la curva, ma in modo di poterla poi disegnare giusta facilmente, ma è molto difficile individuare la trasformazione più comoda, con il rischio di complicare la situazione invece di semplificarla. In analisi sono molto studiati anche i così detti integrali, essi permettono di calcolare aree sottese a curve, volumi di solidi di rotazione ottenuti da curve, superfici eccetera. Anche la così detta derivata assume un aspetto molto importante in analisi, questo calcolo ci permette di trovare la retta tangente a una curva in un suo punto mediante un processo che ci fa evitare numerosi calcoli.

6 CONCETTO DI INFINITO Il concetto di infinito è sicuramente uno dei concetti più affascinanti di tutta la matematica, infatti la nostra normale intuizione non è in grado di studiare correttamente l'infinito, anche la matematica lo fa entro certi limiti, vediamo come. Quando la nostra mente pensa all'infinito quasi sempre pensa all'infinità di numeri, in effetti i diversi insiemi di numeri sono i soli insiemi infiniti che si incontrano continuamente. L'insieme più semplice di numeri che possiamo immaginare è quello dei numeri naturali, esso è chiaramente infinito, tuttavia noi diciamo che anche l'insieme dei numeri pari o quello dei numeri dispari è infinito, questo ci pone davanti alla questione di valutare se sono di più i numeri pari o quelli dispari, oppure i naturali e i pari. Alla prima questione viene naturale rispondere che ci sono tanti pari quanti dispari, perché quando contiamo troviamo un pari e un dispari, alternati; la seconda domanda pone maggiori difficoltà, infatti ci verrebbe da rispondere che ci sono più naturali che pari, dato l'insieme dei numeri pari è contenuto in quello dei numeri naturali, ma allora in che senso sono entrambi infiniti? Qualcuno potrebbe rispondere che sono domande senza senso, ma in realtà la matematica può rispondere in maniera rigorosa a queste domande. Vediamo prima un po' di teoria degli insiemi finiti, per poi passare a quelli infiniti, se un insieme contiene k elementi si dice che la cardinalità di quell'insieme è k; inoltre se presi due insiemi essi possono essere messi in corrispondenza biunivoca, a ogni elemento del primo insieme corrisponde uno e un solo elemento del secondo insieme e viceversa, allora i due insiemi hanno la stessa cardinalità, oppure si dice anche che sono equipotenti.

7 Se un insieme, finito, è contenuto in un altro insieme, senza che i due insiemi coincidano, allora il primo insieme può essere messo in corrispondenza biunivoca con un sotto insieme del secondo, e il secondo insieme avrà più elementi del primo, e la cardinalità del primo sarà minore della cardinalità del secondo. In questo modo possiamo dare una nuova definizione di numero, indipendente dall'assiomatizzazione di Peano, un numero è ciò che hanno in comune tutti gli insiemi che sono in corrispondenza biunivoca con un certo insieme A. Questa definizione è molto più intuitiva di quella di Peano, dove il numero non viene definito, ma preso come ente primitivo, ma in questo modo abbiamo preso come enti primitivi il concetto di insieme e quello di corrispondenza, cioè abbiamo solo aggirato, non risolto, il problema. Passiamo ora agli insiemi infiniti. Il grande matematico G. Cantor intuì che proprio attraverso una corrispondenza biunivoca si può stabilire una gerarchia tra gli insiemi infiniti. Utilizzando questa strada chiamiamo numerabile ogni insieme, infinito ovviamente, che possa essere messo in corrispondenza biunivoca con l'insieme dei numeri naturali, per il quale cioè si possa fornire un procedimento che consenta di contare i suoi elementi, o meglio, di ordinarli in una successione. Tutto ciò però pone il grave problema di definire un insieme infinito e uno finito, una volta definito uno, per esempio l'insieme finito, si potrà definire l'altro come il contrario del primo, un insieme infinito sarebbe dunque uno non finito. Il problema è cioè definire uno di questi due tipi di insieme. Paradossalmente è più facile definire un insieme infinito: un insieme infinito è un insieme che può essere messo in corrispondenza biunivoca con un suo sottoinsieme proprio (cioè diverso dall'insieme di partenza). Secondo questa definizione l'insieme dei numeri naturali, che è infinito, può essere messo in corrispondenza biunivoca con, per esempio, l'insieme dei numeri pari. Possiamo, a questo punto, parlare di cardinalità o potenza di un insieme infinito, in particolare l'insieme dei numeri naturali si dice che ha cardinalità, o potenza, del numerabile. Si può dimostrare che ogni sottoinsieme dei numeri naturali, a patto che

8 ovviamente sia infinito, è numerabile, così sono insiemi numerabili quello dei numeri pari, dei dispari, dei numeri primi, dei quadrati perfetti... in pratica esistono tanti numeri pari quanti numeri naturali, per quanto possa sembrare strano. Viene ora da chiederci se esistono insiemi con cardinalità maggiore di quello dei numeri naturali, in effetti si può dimostrare che sia l'insieme dei numeri relativi che quello dei numeri razionali hanno la cardinalità del numerabile, mentre quello dei numeri reali ha cardinalità maggiore. In parole povere esistono tanti numeri razionali quanti sono i naturali, ma i reali sono di più, solo tra 0 e 1 vi sono più reali che naturali. Inoltre si dimostra che l'insieme dei numeri algebrici (quei numeri, cioè, che sono soluzione di una qualche equazione algebrica) hanno la cardinalità del numerabile, e poiché l'unione di due insiemi che ha la cardinalità del numerabile ha ancora la cardinalità del numerabile si deduce che l'insieme dei numeri trascendenti (quelli che non sono soluzione di nessuna equazione algebrica) ha la cardinalità di tutti i numeri reali, si dice che ha la cardinalità del continuo.

9 MATEMATICA V LICEO LINGUISTICO MODULO 2: Funzioni in R 1) Definizione di funzione reale di una variabile reale: Siano A e B due sottoinsiemi non vuoti in R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere, ad ogni elemento di x A, uno e un solo elemento y B. In simboli si ha: y = f(x) Dove: x indica un elemento che può essere scelto arbitrariamente in A e rappresenta la variabile indipendente. y indica un elemento di B che la funzione associa all elemento x di A e rappresenta la variabile dipendente. A è il dominio o campo di esistenza della funzione f. B è il codominio di f. 2) Per lo studio delle funzioni è necessario conoscere i vari tipi di intervalli, e cioè: Intervallo aperto (a, b) l insieme di tutti i numeri reali x tali che a < x < b Intervallo chiuso [a, b] l insieme di tutti i numeri reali x tali che a x b Intervallo aperto a destra [a, b) l insieme di tutti i numeri reali x tali che a x < b

10 Intervallo aperto a sinistra (a, b] l insieme di tutti i numeri reali x tali che a < x b Inoltre, in un intervallo, si dicono: Estremi Estremo inferiore o sinistro Estremo superiore o destro Misura o Ampiezza i numeri a e b il numero a il numero b il numero b a L intervallo (a, + ) è un intervallo illimitato superiormente L intervallo (-, a) è un intervallo illimitato inferiormente 3) E anche necessario conoscere i vari tipi di intorno di un numero reale c, e cioè: Intorno completo Intorno destro Intorno sinistro un qualsiasi intervallo aperto che contenga c un qualsiasi intervallo aperto a destra che abbia come estremo sinistro c un qualsiasi intervallo aperto a sinistra che abbia come estremo destro c 4) CLASSIFICAZIONE DELLE FUNZIONI: Sia data la funzione f: A B, con y = f(x) Funzioni suriettive: si dice che la funzione f è suriettiva quando ogni elemento di B è immagine di almeno un elemento di A.

11 Funzioni iniettive: si dice che la funzione f è iniettiva se fa corrispondere ad elementi distinti di A elementi distinti di B. Funzioni biiettive: si dice che la funzione f è biiettiva se è, allo stesso tempo, iniettiva e suriettiva. Definizione di corrispondenza biunivoca: Si dice che due insiemi A e B, non vuoti, sono in corrispondenza biunivoca, quando esiste una legge che associa, ad ogni elemento di A, uno ed un solo elemento di B e, viceversa, ogni elemento di B è associato ad uno ed un solo elemento di A.

12 5) Le funzioni analitiche si possono classificare nel seguente modo: Algebriche Trascendenti Razionali Irrazionali Esponenziali Lgaritmiche Goniometriche Intere Fratte Intere Fratte Una funzione si dice Razionale Algebrica se le operazioni che si devono eseguire sulla variabile indipendente x sono quelle di addizione, sottrazione, moltiplicazione, divisione ed elevamento a potenza ad esponente intero. In particolare, si dice Razionale intera se la x non figura a denominatore o a numeratore con esponente negativo, in caso contrario si dice Razionale fratta. Una funzione si dice Irrazionale Algebrica se si deve eseguire sulla variabile indipendente x, oltre all addizione, sottrazione, moltiplicazione, divisione ed elevamento a potenza ad esponente intero, anche l estrazione di radice o l elevamento a potenza con esponente non intero. Una funzione si dice Trascendente quando non è algebrica. 6) PROPRIETA SPECIFICHE DI ALCUNE FUNZIONI Funzioni pari o dispari: a) Una funzione y = f(x) si dice pari se risulta f(-x) = f(x) x A Ad esempio la funzione f(x) = x 2 è pari perché risulta f(-x) = (-x 2 ) = x 2 = f(x)

13 b)una funzione y = f(x) si dice dispari se risulta f(-x) = -f(x) x A Ad esempio la funzione f(x)=sen x è dispari perché risulta f(-x)=sen(-x)=-senx = -f(x) Proprietà: Il prodotto di due funzioni pari è una funzione pari. Il prodotto di due funzioni dispari è una funzione pari. Il prodotto di una funzione pari e una funzione dispari, è una funzione dispari. Funzioni monotone: Sia f(x) una funzione reale della variabile reale x, definita nell insieme A, e A contenga almeno due punti. Quando, per ogni coppia di punti x 1 e x 2 di A, risulta: x 1 < x 2 f(x 1 ) < f(x 2 ), la f(x) si dice crescente in A x 1 < x 2 f(x 1 ) > f(x 2 ), la f(x) si dice decrescente in A x 1 < x 2 f(x 1 ) f(x 2 ), la f(x) si dice non decrescente in A x 1 < x 2 f(x 1 ) f(x 2 ), la f(x) si dice non crescente in A Una funzione si dice monotona in A quando è crescente o decrescente, non decrescente o non crescente. Ad esempio la funzione f(x) = 2x 1 è crescente perché: x 1 < x 2 2x 1 1 < 2x 2 1 f(x 1 ) < f(x 2 ) Funzioni periodiche: Una funzione y = f(x) si dice periodica, di periodo T 0, se:

14 x A e (x + T) A si ha f(x+t) = f(x) Le funzioni goniometriche sono tra le più importanti funzioni periodiche. Ad esempio la funzione sen x è periodica con T = 2π, infatti sen x = sen (x+2π) La funzione sen (ax+b) è periodica con T = 2π/a Funzioni limitate Una funzione f(x) definita in un insieme A si dice: Limitata superiormente in A, se esiste un numero k>0 tale che, per ogni x di A, risulti f(x) k Limitata inferiormente in A, se esiste un numero k>0 tale che, per ogni x di A, risulti f(x) k Limitata in A, se è limitata sia superiormente che inferiormente. Illimitata in A, negli altri casi. Definizione di estremo superiore, inferiore ed oscillazione Si chiama estremo superiore della funzione f(x), di dominio A e condominio B, l estremo superiore del condominio B e si indica con sup f(x) Si chiama estremo inferiore della funzione f(x), di dominio A e condominio B, l estremo inferiore del condominio B e si indica con inf f(x) Si chiama oscillazione della funzione f(x), di dominio A e condominio B, la differenza ω = sup f(x) inf f(x) Definizione di Massimo Si dice che x 0 è un punto di massimo assoluto di f(x) in A e che f(x) assume in x 0 il massimo assoluto quando: F(x) è definita in x 0 x A risulta f(x) f(x 0 )

15 Si dice che x 0 è un punto di minimo assoluto di f(x) in A e che f(x) assume in x 0 il minimo assoluto quando: F(x) è definita in x 0 x A risulta f(x) f(x 0 ) Funzioni composte Date le funzioni y = f(z) e z = g(x), si chiama funzione composta la funzione y=f(g(x)) Ad esempio la funzione y = sen (x 2 +1) è una funzione composta dove z = x 2 + 1

16 MATEMATICA V LILINGUISTICO Modulo 3: Limiti e continuità di una funzione Introduzione al concetto di limite Il concetto di limite intuitivamente non è molto difficile, anche se la sua formalizzazione ha presentato non pochi problemi ai matematici. Immaginiamo una normale funzione, y = f(x), se noi vogliamo calcolare il valore che assume la y quando la x diventa grandissima cosa possiamo fare? Intuitivamente possiamo immaginare che la x diventa infinitamente grande, ma infinito non è certo un numero che possiamo raggiungere operativamente; in questo caso possiamo usare l'operazione matematica chiamata appunto limite, che ci dice come si comporta la y quando la x tende a infinito, cioè diventa grandissima, senza ovviamente diventare effettivamente infinito. Per capire bene questo fatto possiamo dire che se noi troviamo un valore assunto dalla y quando la x in valore assoluto supera qualsiasi numero positivo arbitrariamente scelto da noi allora diciamo che quello è il limite di y per x che tende a infinito. Spesso accade che quando x tende a infinito anche la y tende a infinito, cioè anche la y diventa più grande di qualsiasi numero scelto. Si noti che si dice sempre che la x tende a un certo valore, cioè noi non sappiamo cosa succede quando la x diventa effettivamente infinitamente grande (e non c'è modo di saperlo), ma solo quando ci si avvicina quanto si vuole; la stessa cosa vale per la y, che non assume mai il valore che coincide con il limite, ma ci si avvicina solamente. In questo modo possiamo dire che x tende a infinito, a + infinito (cioè è arbitrariamente grande ma positivo) o a - infinito (cioè è arbitrariamente grande ma negativo). Tuttavia è anche possibile stabilire cosa succede quando x tende a un certo valore ben definito, e osservare a che valore tende allora la y. Per esempio consideriamo la retta di equazione y = x, per x che tende a infinito anche y tende a infinito, ma per x che tende a 2 che cosa succede? In questo caso si può dimostrare che facendo diventare la

17 x arbitrariamente vicina a 2 anche la y diventa arbitrariamente vicina a 2, cioè il limite coincide con il valore della funzione. Questo però non è vero per tutte le funzioni, esistono funzioni per cui non è vero solo in alcuno punto, altre per cui non è vero in infiniti punti. Vediamo un esempio del primo caso: consideriamo la funzione y = 1/x, per x = 0 la funzione non è definita, mentre per x che tende a 0 y tende a infinito, perché si dimostra che facendo avvicinare x arbitrariamente a 0 y diventa arbitrariamente grande, vediamo che i due valori sono differenti, in questo punto la funzione ha una discontinuità, se la funzione non presenta queste discontinuità si dice che essa è continua. Si può pensare che le discontinuità si presentino solo dove la funzione non è definita, invece esistono anche delle discontinuità diverse da queste, per esempio dove la funzione fa dei "salti bruschi". Esistono dei punti in certe funzioni in cui non è possibile calcolare il limite, principalmente perché in questi punti si comporta molto "stranamente", vediamo come può non esistere il limite in questo modo: se immaginiamo di avvicinarci al punto arbitrariamente, ma da sinistra nel grafico otteniamo il limite sinistro della funzione in quel punto, similmente otteniamo il limite destro, se essi coincidono allora quello è il limite della funzione in quel punto, se invece non coincidono allora non vi è limite in quel punto, ma solo limite destro e sinistro. Riportiamo adesso le varie tipologie di limite, a secondo che il limite è finito o infinito e calcolato in un punto o per x tendente all infinito. 1) Definizione di limite finito di una funzione in un punto: Si dice che la funzione f(x), per x tendente a c, ha per limite il numero l e si scrive: lim f(x) = l x c quando, in corrispondenza ad un numero positivo arbitrario, si può sempre determinare un intorno completo H del punto c tale che, per tutti i valori della x che

18 appartengono ad [a,b] e cadono in H, escluso eventualmente c, risulti soddisfatta la disequazione: f(x) l < cioè le disequazioni: l < f(x) < l + 2) Definizione di limite infinito di una funzione in un punto: Si dice che la funzione f(x), per x tendente a c, ha per limite l infinito e si scrive: lim f(x) = x c quando, in corrispondenza ad un numero positivo M arbitrario, si può sempre determinare un intorno completo H del punto c tale che, per tutti i valori della x che appartengono ad [a,b] e cadono in H, escluso c, risulti soddisfatta la disequazione: f(x) > M In particolare: se f(x) > M allora lim f(x) = + x c se f(x) < M allora lim f(x) = - x c

19 3) Definizione di limite finito di una funzione all infinito: Si dice che la funzione f(x), per x tendente all infinito, ha per limite il numero l e si scrive: lim f(x) = l quando, in corrispondenza ad un numero positivo arbitrario, si può sempre determinare un numero N > 0 tale che, per tutti i valori della x > N, risulti soddisfatta la disequazione: f(x) l < In particolare: se x > N allora lim f(x) = l x + se x < -N allora lim f(x) = l x - 4) Definizione di limite infinito di una funzione all infinito: x Si dice che la funzione f(x), per x tendente all infinito, ha per limite l infinito e si scrive: lim f(x) = quando, in corrispondenza ad un numero positivo M arbitrario, si può sempre determinare un numero N > 0 tale che, per tutti i valori della x > N, risulti soddisfatta la disequazione: f(x) > M In particolare: se f(x) > M allora lim f(x) = + se f(x) < -M allora lim f(x) = - x x

20 x Limite destro e limite sinistro di una funzione in un punto: Poiché x puo tendere al punto c sia da destra che da sinistra, nel caso in cui il limite della funzione, per x che tende a c, assume un valore diverso se mi avvicino al punto c da destra o da sinistra, allora è necessario definire il limite destro e il limite sinistro, e si scrive: lim f(x) = l x c + Quando facciamo tendere x a c da destra lim f(x) = l Quando facciamo tendere x a c da sinistra x c - TEOREMI FONDAMENTALI SUI LIMITI Teorema dell unicità del limite: Se esiste il limite della funzione f(x), per x tendente a c, tale limite è unico. Teorema della permanenza del segno: se lim f(x) = l 0, esiste un opportuno intorno del punto del c, in corrispondenza del x c quale la funzione f(x) ha lo stesso segno di l.

21 Teorema del confronto: SE f(x), h(x) e g(x) sono tre funzioni definite nello stesso intervallo,eccettuato al più un punto c di questo, tali che f(x) h(x) g(x) per ogni x c dell intervallo, lim f(x) = lim g(x) = l x c x c allora risulta anche lim g(x) = l x c

22 MATEMATICA V LICEO LINGUISTICO Modulo 4: Derivate 1) Derivata d una funzione in un punto 2) Derivabilità a destra e a sinistra 3) Derivazione e continuità 4) Regole di derivazione 5) Derivazione di funzioni composta e inversa 6) Derivate successive

23

24

25

26

27

28

29 Modulo 5: Studio di una funzione MATEMATICA V LICEO LINGUISTICO Per studiare una funzione allo scopo di tracciarne un grafico indicativo, che ne evidenzi le principali caratteristiche, si può procedere nel seguente modo: 1) Determinare l insieme di esistenza della funzione f(x), le eventuali simmetrie rispetto all asse y o all origine delle coordinate e la eventuale periodicità; 2) Determinare il segno di f(x) e gli eventuali punti di discontinuità della curva con gli assi coordinati; 3) Studiare il comportamento della funzione quando la variabile tende agli estremi degli intervalli che compongono l insieme di esistenza; 4) Determinare gli eventuali asintoti della curva; 5) Determinare gli intervalli in cui la funzione è crescente o decrescente e i suoi massimi e minimi; 6) Determinare la concavità, la convessità ed eventuali punti di flesso;

30 7) Disegnare il grafico della funzione. Per renderlo più fedele al reale andamento della funzione, sarà opportuno, in generale, calcolare le coordinate di qualche altro punto della curva, servendosi dell equazione y = f(x).

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

Studio di una funzione ad una variabile

Studio di una funzione ad una variabile Studio di una funzione ad una variabile Lo studio di una funzione ad una variabile ha come scopo ultimo quello di pervenire a un grafico della funzione assegnata. Questo grafico non dovrà essere preciso

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato

Dettagli

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA Liceo scientifico Albert Einstein Anno scolastico 2009-2010 Classe V H Lavoro svolto dalla prof.ssa Irene Galbiati Materia: MATEMATICA PROGRAMMA DI MATEMATICA CLASSE V H Contenuti Ripasso dei prerequisiti

Dettagli

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

G6. Studio di funzione

G6. Studio di funzione G6 Studio di funzione G6 Come tracciare il grafico di una funzione data Nei capitoli precedenti si sono svolti tutti gli argomenti necessari per tracciare il grafico di una funzione In questo capitolo

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PROGRAMMA CONSUNTIVO a.s. 2014/2015 MATERIA MATEMATICA CLASSE DOCENTE 5^ SEZIONE D DI LEO CLELIA Liceo Scientifico delle Scienze Applicate ORE DI LEZIONE 4 **************** OBIETTIVI saper definire e classificare

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

1 Principali funzioni e loro domini

1 Principali funzioni e loro domini Principali funzioni e loro domini Tipo di funzione Rappresentazione Dominio Polinomio intero p() = a n + + a n R p() Polinomio fratto q() 6= q() 2n Radici pari p f() f() 2n+ Radici dispari p f() R Moduli

Dettagli

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè:

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè: 1 Limiti Roberto Petroni, 2011 Possiamo introdurre intuitivamente il concetto di limite dicendo che quanto più la x si avvicina ad un dato valore x 0 tanto più la f(x) si avvicina ad un valore l detto

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Limiti e continuità delle funzioni reali a variabile reale

Limiti e continuità delle funzioni reali a variabile reale Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti

Dettagli

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali. 1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero

Dettagli

Disciplina: MATEMATICA e COMPLEMENTI di MATEMATICA - ore settimanali 3 Docente prof. Domenico QUARANTA. Quadro sintetico dei Moduli

Disciplina: MATEMATICA e COMPLEMENTI di MATEMATICA - ore settimanali 3 Docente prof. Domenico QUARANTA. Quadro sintetico dei Moduli Classe 5S Sede di Alberobello A.S. 2015/2016 Indirizzo di studio Art. Produzione e Trasformazione Disciplina: MATEMATICA e COMPLEMENTI di MATEMATICA - ore settimanali 3 Docente prof. Domenico QUARANTA

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

7 - Esercitazione sulle derivate

7 - Esercitazione sulle derivate 7 - Esercitazione sulle derivate Luigi Starace gennaio 0 Indice Dimostrare il teorema 5.5.3.a................................................b............................................... Dimostrazioni.a

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 8

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 8 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 8 Insegnante MARINO CRISTINA Classe 5AT Materia matematica preventivo consuntivo 99 0 titolo modulo 51 RIPASSO 52 FUNZIONI REALI DI VARIABILE 53 CALCOLO INFINITESIMALE

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Studio grafico analitico delle funzioni reali a variabile reale y = f(x)

Studio grafico analitico delle funzioni reali a variabile reale y = f(x) Studio grafico analitico delle funzioni reali a variabile reale y = f() 1 Ecco i passi utili allo studio di una funzione reale: Determinare il dominio della funzione Ricercare l eventuale intersezione

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

Indirizzo odontotecnico a.s. 2015/2016

Indirizzo odontotecnico a.s. 2015/2016 I.P.S.I.A E. DE AMICIS - ROMA PROGRAMMAZIONE DIDATTICA DI MATEMATICA Classe 5C Indirizzo odontotecnico a.s. 2015/2016 Prof. Rossano Rossi La programmazione è stata sviluppata seguendo le linee guida ministeriali

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1 LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO CLASSE 1^ CONOSCENZE Insiemi numerici N, Z, Q, R; rappresentazioni, operazioni, ordinamento Espressioni algebriche; principali operazioni Equazioni

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Funzioni. Funzioni /2

Funzioni. Funzioni /2 Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Anno 3. Classificazione delle funzioni

Anno 3. Classificazione delle funzioni nno 3 Classificazione delle funzioni 1 Introduzione In questa lezione affronteremo lo studio delle principali proprietà delle funzioni, imparando a classificarle e a compiere alcune operazioni su esse.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli