Data Mining applicato ai sistemi informativi, una panoramica dei principali algoritmi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Data Mining applicato ai sistemi informativi, una panoramica dei principali algoritmi"

Transcript

1 Università degli Studi di Milano Polo Didattico e di Ricerca di Crema Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Sistemi Informativi Data Mining applicato ai sistemi informativi, una panoramica dei principali algoritmi Studenti: Massimo Manara Andrea Gobbi Docente del corso: Enrico Spoletini Anno Accademico 2005/2006

2 ..

3 Indice 3 Indice 1 Introduzione 4 2 Cosa è il Data Mining Un pò di storia Interdisciplinare Il processo Alcune tecniche Mining association rules Alberi di decisione GA - Algoritmi genetici Software CRM - Customers Oriented 14 5 Quali standard 15 6 E la Privacy? 16 A Articolo 17 A.1 Il data mining non serve per sconfiggere il terrorismo, ma si diffonde in Usa Bibliografia 20

4 4 1 Introduzione 1 Introduzione In ogni momento della nostra giornata siamo assaliti da moltissimi dati ed informazioni è importante tuttavia definire nel modo più chiaro possibile la distinzione tra dato ed informazione: Dato 1 : è qualcosa che possiamo vedere, ascoltare; per fare un esempio, un dato può essere un libro. Informazione 2 : l informazione, ci dà qualcosa in più sul dato; nell esempio fatto prima l informazione del dato libro potrebbe essere il titolo, l editore, il numero di pagine del libro [7]. Il data mining è un processo tramite il quale è possibile sapere sulla base di molti dati gli andamenti delle vendite, delle offerte; nel caso di un supermercato. Questa tecnica, può inoltre essere applicata a moltissimi campi; ed a sua volta fà uso di moltissime discipline: matematica, statistica, chimica, fisica, economia... Il data mining può essere visto come il naturale sviluppo dell IT, inoltre deve essere visto come risultato di un process. 1 Per dato nella legge italiana, si intende informazione codificata da un pc. 2 Per informazione nella legge italiana, si intende delle informazioni non contenute all interno del pc.

5 2 Cosa è il Data Mining 5 2 Cosa è il Data Mining Traducendo letteralmente il termine, si trova: miniera di dati; interpretando il termine nel contesto informatico, si può capire come questa sia la base di partenza di un processo che prende il nome di data mining. In altre parole, è un processo attraverso il quale è possibile grazie ad una quantità notevole di dati e attraverso particolari algoritmi, estrarre delle informazioni nascoste: estrarre la conoscenza; knowledge [1]. 2.1 Un pò di storia Figura 1: L evoluzione della tecnologia dei database 2.2 Interdisciplinare Le tecniche di data minig, possono essere applicate in moltissimi ambiti: ambito biomedico e DNA analysis, analisi finanziarie, telecomunicazioni... a

6 6 2 Cosa è il Data Mining sua volta la tecnica di DM, si basa molte altre discipline. Alcuni esempi: Data Mining Database technology Informatica Statistica Tecniche di visualizzazione dei dati Machine Learning (apprendimento automatico); infatti, l identificazione di pattern può paragonarsi all apprendimento, da parte del sistema data mining, di una relazione causale precedentemente ignota, cosa che trova applicazione in ambiti come quello degli algoritmi euristici e della intelligenza artificiale [4]. Altre 2.3 Il processo Il processo di data mining è formato da varie fasi: Data Cleaning In applicazioni reali, è difficile a volte riuscire a definire con precisione e con completezza le informazioni; consideriamo per esempio il caso di un database contenente dati identificativi di persone; non è detto che conosca tutti i dati di tutti i record. Come sopperire a questo problema: Tuple Ignorate Uso di attributi per completare quelli mancanti Usare il valore più probabile per completare quello mancante Correzione dei dati inconsistenti, riferimenti esterni. Data Integration Sempre più spesso, ed anche per motivi di prestazioni, i database sono distribuiti; progettati su piattaforme uguali, in questo caso non ci sono problemi o su piattaforme diversificate ed in questo caso possono sorgere problemi di integrazione appunto. Per risolvere questo problema, vanno considerati anche aspetti come la ridondanza 3 delle informazioni al fine di ridurre al minimo sprechi 3 Si intende un dato che può essere ricavato da altre tabelle

7 2 Cosa è il Data Mining 7 e perdita di prestazioni. Questi dati ridondanti possono essere trovati grazie ad una analisi di correlazione: r A,B = (A Ā) (B B) (n 1)σ a σ B (1) dove con n, si indica il numero di tuple, con Ā e B il significato 4 e σ A, σ B, la deviazione standard 5. Se il risultato dell equazione (1) è maggiore di 0 allora A e B sono correlati; cioè se cresce il valore di A anche B cresce. Se il valore è zero allora A e B sono indipendenti; mentre se il risultato è minore di zero A e B sono correlati negativamente, cioè se A cresce, B diminuisce. Data Trasformation In questa fase si cerca di trasformare o consolidare i dati affinché la forma di questi sia la più adatta alla applicazione degli algoritmi. In genere si procede in vari passi: Caratteristiche comuni (Smoothing): cluster, cioè avere gruppi di dati con caratteristiche comuni vedi Figura 2 a Pagina 7 Figura 2: Cluster Analisi 4 Significato: A Ā = n. 5 Deviazione (A standard: Ā) 2 σ A = n 1

8 8 3 Alcune tecniche Aggregazione: raggruppare i dati per mese di vendita ad esempio, per anno per settimana (Usato nella Data-Cube analisys, raggruppare dati secondo delle direzioni rappresentate sul cubo). Generalizzazione: dividere i dati in livelli di importanza, es. città, via, numero civico... Costruzione di attributi: per favorire il processo di ricerca, aggiungere nuovi attributi se necessario Data Mining L algoritmo usato viene eseguito su i dati al fine di produrre i risultati. Pattern evaluation Al fine di valutare se il pattern è valido, si cerca di rispondere alle seguenti domande: capire se è di facile lettura per l uomo, se sono interessanti tutti i patterns oppure solo alcuni; nella maggior parte dei casi solo alcuni. La risposta a queste domande è definita con una probabilità rappresentata dai concetti di supporto e confidenza [5]. Definiti come: supporto(x Y ) = P (X Y ). confidenza(x Y ) = P (Y X). Il primo rappresenta la percentuale di transazioni dove sono contenute sia X che Y ; mentre il secondo rappresenta la probabilità che una transazione che contiene X, contenga Y. Un esempio si può ottenere sostituendo ad X e Y dei valori ad esempio X = birra, Y = pannolini. 3 Alcune tecniche Esistono parecchi modi di analizzare i dati al fine di giungere a delle conclusioni; molti algoritmi già esistenti e molti studi ancora sono in continuo sviluppo per cercarne di nuovi e migliorarne, ottimizzarne altri. Alcuni di questi sono: Mining Association rules Applicata soprattutto nella MBA: Market basket Analysis Classification and Prediction Fanno parte di questa categoria i metodi Bayesiani, i GA Genetic Algorithms, approcci Fuzzy Cluster Analysis

9 3 Alcune tecniche Mining association rules Come già accennato questa tecnica viene usata nella Market Basket Analysis, la quale cerca di dare una risposta alla domanda Quale oggetti sono acquistati insieme da un acquirente? Tabella 1: Base di dati per basket analysis Transazione Data Oggetto Qta Prezzo 1 17/12/98 pantaloni-sci e 1 17/12/98 scarponi e 2 18/12/98 maglietta 1 25 e 2 18/12/98 giacca e 2 18/12/98 stivali e 3 18/12/98 giacca e 4 19/12/98 giacca e 4 19/12/98 maglietta 3 25 e Questa tecnica si basa sull uso dei concetti di supporto e confidenza presentati nella Sezione 2.3 a Pagina 6. Tabella 2: Regole di associazione Testa Corpo Supporto Confidenza pantaloni-sci scarponi 0.25 a 1 scarponi pantaloni-sci giacche magliette b magliette,stivali giacche a Numero di transazioni dove c è sia il corpo che la testa diviso il numero di transazioni totale; vedi Tabella 1 a Pagina 9 b Numero di transazioni dove c è sia il corpo che la testa diviso il numero di transazioni dove è presente il corpo vedi Tabella 1 a Pagina 9

10 10 3 Alcune tecniche 3.2 Alberi di decisione Un albero di decisione è un diagramma simile ad una struttura ad albero (vedi Figura 3 a Pagina 10), dove ogni nodo ha al suo interno ha un test su un attributo ed ogni scelta, rappresenta un risultato del test; le foglie dell albero rappresentano la classe o le classi di distribuzione. Questo algoritmi si basa sulla tecnica greedy. Figura 3: Albero di decisione La Figura 3 mostra l albero delle decisioni del concetto di acquirenti di computer; indica se una persona in base all età compra o meno un pc. Il percorso nodo radice, foglia, risulta essere la classe di previsione. 3.3 GA - Algoritmi genetici Questo tipo di algoritmi, si basa sull idea dell evoluzione naturale. In generale l evoluzione comincia come: Popolazione iniziale Creata con delle regole generate in modo casuale; ogni regola può essere rappresentata da una stringa di bit. Consideriamo ad esempio, due attributi booleani A 1, A 2 e due classi, C 1, C 2. La regola: if {A 1 && (not A 2 )} then C 2

11 3 Alcune tecniche 11 possa essere rappresentata dalla stringa di bit 100 dove i primi due bit rappresentano A 1, A 2 mentre l ultimo bit rappresenta C 2. Un altro esempio: if {not A 1 && (not A 2 )} then C 1 può essere codificato con la stringa di bit 001. Se ho una variabile k dove k > 2, allora si useranno k bit per rappresentarla. Dalla nozione di sopravvivenza, una nuova popolazione è formata da tutta una serie di regole. In genere la forma di una regola è valutata sulla base di un insieme semplice. I figli, sono creati attraverso il crossover; vengono prese un paio di regole e modificate, scambiate (swapped) per formare un nuovo paio di regole. Mentre con la fase di mutazione, vengono scelti dei bit in una regola ed in modo aleatorio vengono invertiti. Questo processo di evoluzione continua affinché la popolazione non è diventata della misura voluta. In genere questi tipi di algoritmi applicati all ottimizzazione dei problemi. Mentre nella data mining possono venire applicati per valutare la forma di altri algoritmi. Figura 4: Evoluzione

12 12 3 Alcune tecniche 3.4 Software Figura 5: Progetto Weka Weka è una collezione di machine learning algorithms per il data mining. Questo programma è scritto in Java, e tramite questo linguaggio è possibile richiamare dei dataset su cui applicare gli algoritmi. Weka contiene degli strumenti per il pre-processing dei dati, per la classificazione, per il clustering e l associazione di regole. Figura 6: Screenshot Weka Questo software è stato sviluppato dall università di Waikato [6].

13 3 Alcune tecniche 13 Il secondo software che presentiamo è una suite commerciale di Microsoft: Microsoft Dynamics. È un software che permette di gestire una organizzazione nel suo insieme, fornendo anche un supporto per il data mining [9]. Figura 7: Microsoft Dynamics Altri vendors nel campo del data mining sono: SAS Oracle Integrazione del data mining nei database Angoss Una delle prime applicazioni per il data mining HNC Fornisce delle soluzioni mirate e specifiche Unica

14 14 4 CRM - Customers Oriented 4 CRM - Customers Oriented Le applicazioni di Customer Relationship Management (CRM) sono essenziali per acquisire e mantenere le relazioni con il Cliente. Includono aspetti di marketing automation, sales force automation. Questo tipo di applicazioni risultano fortemente strategiche per la sopravvivenza del business. L azienda ricorre alle soluzioni Customer Relationship Management per migliorare la qualità e l accessibilità delle informazioni attraverso una loro gestione ottimale, il tutto in un ottica customer-centric. Il concetto che sta alla base del Customer Relationship Management si riassume brevemente nella capacità di raccogliere e gestire in modo appropriato la conoscenza (da con confondere con informazione ) relativa ad un cliente o ad un gruppo di clienti che l azienda già possiede all interno della sua struttura ma che non usa in modo appropriato per incrementare la Customer Satisfaction come mezzo per raggiungere un elevata Customer Retention 6. In altre parole, le aziende tramite il data mining come supporto dei CRM, possono sapere molte informazioni, per esempio, le preferenze di acquisto dei loro clienti e quindi fornire un prodotto più mirato alle loro esigenze. 6 Tenere i clienti soddisfatti; in altre parole non perdere clienti.

15 5 Quali standard 15 5 Quali standard Predictive Model Markup Language 7 (PMML) Data Mining Group [10] basato su XML (DTD) Java Data Mining API(JSR ) 8 Oracle, Sun, IBM... Supporto per data mining APIs su piattaforme J2EE Costruzione, gestione, attività programmate [11] OLE 9 database a supporto del Data Mining Basati su tabelle Microsoft PMML In genere alcune applicazioni si basano su più standard per essere più produttive. 1 <? xml version =" 1.0 "?> <! DOCTYPE PMML [ 3 <! ELEMENT MapValuesPair EMPTY > <! ATTLIST MapValuesPair 5 column CDATA # REQUIRED in CDATA # REQUIRED 7 out CDATA # REQUIRED > 9 ]> <PMML version =" 2.0 "> 11 < Header copyright =" Copyright (c) 2001, Oracle Corporation. All rights reserved." > < Application name =" Oracle 9i Data Mining " version =" "/> 13 </ Header > 15 < Itemset id=" 1" support =" " numberofitems =" 1" > < ItemRef itemref ="2"/> 17 </ Itemset > < AssociationRule support =" " confidence =" " antecedent =" 5" consequent =" 170 "/> 19 < AssociationRule support =" " confidence =" " antecedent =" 170 " consequent ="5"/> </ AssociationModel > 21 </ PMML > Codice 1: Esempio PMML 7 Predictive Model Markup Language (PMML) è un linguaggio basato su XML che descrive modelli statistici e di data mining. 8 È uno standard Java che permette di comunicare con altri standard ad esempio PMML. 9 Object Linking and Embedding

16 16 6 E la Privacy? 6 E la Privacy? In Italia esiste la legge 31 dicembre 1996, n. 675: Tutela delle persone e di altri soggetti rispetto al trattamento dei dati personali, pubblicata nella Gazzetta Ufficiale n. 5 dell 8 gennaio Supplemento Ordinario n. 3; la quale regola il trattamento dei dati personali. È stata puoi riunita con il decreto legislativo n 196 del 30 giugno 2003 che ha fornito un Testo Unico per la privacy (L. 675/96, DPR 318/99). Ad esempio nel CAPO 3, Sezione 1, Art. 9: 1. I dati personali oggetto di trattamento devono essere: (a) trattati in modo lecito e secondo correttezza; (b) raccolti e registrati per scopi determinati, espliciti e legittimi, ed utilizzati in altre operazioni del trattamento in termini non incompatibili con tali scopi; (c) esatti e, se necessario, aggiornati; (d) pertinenti, completi e non eccedenti rispetto alle finalità per le quali sono raccolti o successivamente trattati; (e) conservati in una forma che consenta l identificazione dell interessato per un periodo di tempo non superiore a quello necessario agli scopi per i quali essi sono stati raccolti o successivamente trattati. Un altra importante parte è quella del consenso. Abbiamo aggiunto questa sezione sulla privacy in quanto è importante sapere che dati si stia trattando, a volte questo aspetto viene sottovalutato, a discapito delle persone e delle norme vigenti.

17 A Articolo 17 A Articolo A.1 Il data mining non serve per sconfiggere il terrorismo, ma si diffonde in Usa. Nel mondo post-11 settembre si presta molta attenzione a unire i punti. Molti credono che il data mining sia la sfera di cristallo che ci permetterà di svelare future trame terroristiche Nel mondo post-11 settembre si presta molta attenzione a unire i punti. Molti credono che il data mining sia la sfera di cristallo che ci permetterà di svelare future trame terroristiche. Ma anche nelle proiezioni più sfrenatamente ottimistiche, il data mining non è sostenibile per tale scopo. Non stiamo barattando la privacy per la sicurezza; stiamo rinunciando alla privacy senza ottenere in cambio alcuna sicurezza. Moltissime persone scoprirono per la prima volta in che cosa consiste il data mining nel novembre 2002, quando fece notizia un massiccio programma governativo di data mining chiamato Total Information Awareness. L idea di fondo era audace quanto ripugnante: raccogliere quanti più dati possibile su chiunque, passarli al vaglio grazie a potentissimi calcolatori, e investigare quei pattern, quelle ricorrenze che potrebbero indicare trame terroristiche. Gli americani di ogni credo politico denunciarono il programma, e nel settembre 2003 il Congresso ne eliminò i fondi e ne chiuse gli uffici. Ma Total Information Awareness non scomparve. Secondo The National Journal cambiò semplicemente nome e fu spostato all interno del Dipartimento della Difesa. Ciò non dovrebbe sorprendere. Nel maggio 2004, il General Accounting Office pubblicò un rapporto che elencava 122 diversi programmi di data mining varati dal governo federale che si servivano delle informazioni personali dei cittadini. Tale lista non comprendeva i programmi segreti, come le intercettazioni della NSA o programmi a livello statale come MATRIX 10. La promessa del data mining è avvincente, e molti ne sono affascinati. Ma tutto ciò è sbagliato. Non scopriremo trame terroristiche con sistemi 10 Informazioni reperibili all indirizzo: res html, (Multistate Anti-TeRrorism Information exchange) è un sistema di sorveglianza che combina informazioni su persone da database governativi ed altri database di multinazionali.

18 18 A Articolo come questo, e siamo in procinto di sprecare risorse preziose inseguendo falsi allarmi. Per capire perché, occorre osservare l economia del sistema. La sicurezza è sempre un compromesso, e perché un sistema sia valido, i vantaggi devono essere maggiori degli svantaggi. Un programma di data mining nazionale troverà una certa percentuale di attacchi reali, e una certa percentuale di falsi allarmi. Se i benefici derivanti dall individuare e dal fermare quegli attacchi superano i costi (in denaro, in libertà, ecc.) allora il sistema è buono. In caso contrario, sarebbe preferibile spendere quei costi in altro modo. Il data mining funziona al meglio quando si è alla ricerca di un ben determinato profilo, un numero ragionevole di attacchi ogni anno, e un costo contenuto per i falsi allarmi. La frode delle carte di credito è un caso di successo del data mining: tutte le compagnie di carte di credito esaminano i propri database delle transazioni in cerca di pattern di spesa che indichino la presenza di una carta di credito rubata. Molti ladri di carte di credito presentano un simile pattern: l acquisto di costosi beni di lusso, l acquisto di oggetti facilmente smerciabili tramite ricettazione, ecc.; e i sistemi di data mining in molti casi possono minimizzare le perdite bloccando la carta. In più, il costo dei falsi allarmi è rappresentato solo da una telefonata al titolare della carta, richiedendogli di verificare un paio di acquisti. E i titolari delle carte non sono nemmeno seccati da queste chiamate (purché avvengano di rado), per cui il costo si riduce semplicemente ad alcuni minuti di chiamata con un operatore. Le trame terroristiche sono differenti. Non esiste un profilo ben determinato, e gli attacchi sono molto rari. Presi insieme, questi fatti significano che i sistemi di data mining non rileveranno alcun complotto terroristico a meno che non siano molto accurati, e che anche i sistemi più accurati saranno talmente inondati da falsi allarmi da diventare inutili. [... ] Per ridurre entrambi quei numeri, è necessario un profilo ben definito. Ed è questo il problema quando si è alle prese con il terrorismo. Col senno di poi, era davvero semplice unire i punti dell 11 settembre e puntare ai vari segnali d allarme, ma è molto più difficile prima dell evento. Di sicuro esistono segnali d allarme comuni a molti complotti terroristici, ma ognuno è al tempo stesso unico. Più è possibile definire nei dettagli ciò che si sta cercando, migliori saranno i risultati. Il data mining alla caccia di trame terroristiche è destinato a essere approssimativo, e sarà difficile scoprire qualcosa di utile.

19 A Articolo 19 Il data mining è come cercare un ago in un pagliaio. Vi sono 900 milioni di carte di credito in circolazione negli Stati Uniti. Secondo lo FTC Identity Theft Survey Report del settembre 2003, ogni anno circa l 1% (10 milioni) delle carte di credito viene rubato e usato in modo fraudolento. Il terrorismo è diverso. Vi sono trilioni di connessioni fra persone ed eventi (cose che il sistema di data mining dovrà osservare) e pochissimi complotti. Questo livello di rarità rende inutili persino i sistemi di identificazione più accurati. [... ] Questo sistema irrealisticamente accurato genererà un miliardo di falsi allarmi per ogni complotto terroristico rilevato. Ogni giorno di ogni anno le forze dell ordine dovranno investigare 27 milioni di potenziali complotti per poter arrivare a scoprire l unico vero complotto terroristico ogni mese. Aumentiamo l accuratezza dei falsi positivi a un assurdo 99,9999% e si dovranno affrontare ancora falsi allarmi al giorno; ma questo farà aumentare inevitabilmente anche i falsi negativi, e sarà molto probabile mancare uno di quei dieci veri complotti terroristici. [... ] Il data mining può funzionare. Aiuta Visa a contenere i costi delle frodi, così come aiuta Amazon.com a mostrarmi libri che potrebbero interessarmi e che potrei comprare, e Google a mostrarmi annunci pubblicitari che potrebbero incuriosirmi. Ma queste sono tutte istanze in cui il costo dei falsi positivi è basso (una chiamata di un operatore Visa, un annuncio non interessante) e riguardano sistemi che hanno valore anche se il numero di falsi negativi è elevato. Scoprire complotti terroristici non è un problema che si presta a essere risolto dal data mining. È il tipico caso dell ago nel pagliaio, e aumentare la pila di paglia non facilita la risoluzione del problema. Sarebbe molto meglio incaricare persone all investigazione di potenziali trame terroristiche e permettere a queste persone di dirigere i computer, invece di assegnare l incarico ai computer e lasciar decidere a loro chi bisognerebbe indagare [2], [3]. di Bruce Schneier #comments

20 20 Riferimenti bibliografici Riferimenti bibliografici [1] Jiawei Han M. Kamber (2001), Data Mining Concepts and Tecniques Morgan Kuafmann Publishers [2] [3] [4] Data mining Data accesso [5] P. Atzeni, S. Ceri, S. Paraboshi, R. Torlone (1999), Basi di dati Seconda edizione McGraw-Hill [6] [7] M. J. A. Berry, G. Linoff (1997), Data mining techniques For Marketing, Sales, and Custumer Suport Wiley Computer Publishing [8] Paolo Giudici (2001), Data mining Metodi statistici per le applicazioni aziendali McGraw-Hill [9] 0/navision_40_release.mspx [10] [11]

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida Introduzione alle tecniche di Data Mining Prof. Giovanni Giuffrida Programma Contenuti Introduzione al Data Mining Mining pattern frequenti, regole associative Alberi decisionali Clustering Esempio di

Dettagli

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Cenni al Data Mining 1 Data Mining nasce prima del Data Warehouse collezione di tecniche derivanti da Intelligenza Artificiale,

Dettagli

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD Il processo di KDD Introduzione Crescita notevole degli strumenti e delle tecniche per generare e raccogliere dati (introduzione codici a barre, transazioni economiche tramite carta di credito, dati da

Dettagli

DATA MINING. Data mining. Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche

DATA MINING. Data mining. Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche DATA MINING datamining Data mining Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche Una materia interdisciplinare: - statistica, algoritmica, reti neurali

Dettagli

Mining Positive and Negative Association Rules:

Mining Positive and Negative Association Rules: Mining Positive and Negative Association Rules: An Approach for Confined Rules Alessandro Boca Alessandro Cislaghi Premesse Le regole di associazione positive considerano solo gli item coinvolti in una

Dettagli

-Possibilità di svolgere le attività commerciali per via elettronica, in particolare tramite Internet.

-Possibilità di svolgere le attività commerciali per via elettronica, in particolare tramite Internet. COMMERCIO ELETTRONICO -Possibilità di svolgere le attività commerciali per via elettronica, in particolare tramite Internet. -Un qualsiasi tipo di transazione tendente a vendere o acquistare un prodotto

Dettagli

Data mining e rischi aziendali

Data mining e rischi aziendali Data mining e rischi aziendali Antonella Ferrari La piramide delle componenti di un ambiente di Bi Decision maker La decisione migliore Decisioni Ottimizzazione Scelta tra alternative Modelli di apprendimento

Dettagli

Informatica (Basi di Dati)

Informatica (Basi di Dati) Corso di Laurea in Biotecnologie Informatica (Basi di Dati) Introduzione alle Basi di Dati Anno Accademico 2009/2010 Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati Lucidi del Corso di Basi di Dati

Dettagli

Basi di dati. (Sistemi Informativi) teoria e pratica con Microsoft Access. Basi di dati. Basi di dati. Basi di dati e DBMS DBMS DBMS

Basi di dati. (Sistemi Informativi) teoria e pratica con Microsoft Access. Basi di dati. Basi di dati. Basi di dati e DBMS DBMS DBMS Basi di Basi di (Sistemi Informativi) Sono una delle applicazioni informatiche che hanno avuto il maggiore utilizzo in uffici, aziende, servizi (e oggi anche sul web) Avete già interagito (magari inconsapevolmente)

Dettagli

Data Mining a.a. 2010-2011

Data Mining a.a. 2010-2011 Data Mining a.a. 2010-2011 Docente: mario.guarracino@cnr.it tel. 081 6139519 http://www.na.icar.cnr.it/~mariog Informazioni logistiche Orario delle lezioni A partire dall 19.10.2010, Martedì h: 09.50 16.00

Dettagli

Modelli matematici avanzati per l azienda a.a. 2010-2011

Modelli matematici avanzati per l azienda a.a. 2010-2011 Modelli matematici avanzati per l azienda a.a. 2010-2011 Docente: Pasquale L. De Angelis deangelis@uniparthenope.it tel. 081 5474557 http://www.economia.uniparthenope.it/siti_docenti P.L.DeAngelis Modelli

Dettagli

Data Mining: Applicazioni

Data Mining: Applicazioni Sistemi Informativi Universitá degli Studi di Milano Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Tecnologie dell Informazione 1 Giugno 2007 Data Mining Perché il Data Mining Il Data

Dettagli

Data mining. Data Mining. processo di Data Mining estrarre automaticamente informazioneda un insieme di dati

Data mining. Data Mining. processo di Data Mining estrarre automaticamente informazioneda un insieme di dati Data mining Il consente l informazione processo di Data Mining estrarre automaticamente informazioneda un insieme di dati telefoniche, ènascostaa a causa di fra quantitàdi loro, complessità: non... ci

Dettagli

KULDAT. La tecnologia che ha superato l uomo nell identificare i clienti ideali. EMEA :: Marco Visibelli:: CEO e Data Scientist, Kuldat Inc, Q3 2014

KULDAT. La tecnologia che ha superato l uomo nell identificare i clienti ideali. EMEA :: Marco Visibelli:: CEO e Data Scientist, Kuldat Inc, Q3 2014 KULDAT La tecnologia che ha superato l uomo nell identificare i clienti ideali EMEA :: Marco Visibelli:: CEO e Data Scientist, Kuldat Inc, Q3 2014 Mi presento Marco Visibelli (@marcovisibelli) Data scientist

Dettagli

Data Mining e Analisi dei Dati

Data Mining e Analisi dei Dati e Analisi dei Dati Rosaria Lombardo Dipartimento di Economia, Seconda Università di Napoli La scienza che estrae utili informazioni da grandi databases è conosciuta come E una disciplina nuova che interseca

Dettagli

Data mining for e- commerce sites

Data mining for e- commerce sites Data mining for e- commerce sites Commercio elettronico Possibilità di svolgerele attività commerciali per via elettronica, in particolare tramite Internet. Un qualsiasi tipo di transazione tendente a

Dettagli

1. Introduzione agli ERP e a SAP

1. Introduzione agli ERP e a SAP 1. Introduzione agli ERP e a SAP ERP (Enterprise Resource Planning) è un sistema informativo che integra tutti gli aspetti del business, inclusi la pianificazione, la realizzazione del prodotto (manufacturing),

Dettagli

La privacy è un diritto fondamentale oggi riconosciuto dall ordinamento giuridico di tutti i paesi europei e delle principali nazioni del mondo.

La privacy è un diritto fondamentale oggi riconosciuto dall ordinamento giuridico di tutti i paesi europei e delle principali nazioni del mondo. LUCERNA IURIS LEGAL EUROPEAN NETWORK STUDIO LEGALE MAGLIO E ASSOCIATI - Cosa è la privacy - Cosa sono i dati personali - I principi fondamentali da conoscere per proteggere i dati personali a. Cosa è la

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

Introduzione ad OLAP (On-Line Analytical Processing)

Introduzione ad OLAP (On-Line Analytical Processing) Introduzione ad OLAP (On-Line Analytical Processing) Metodi e Modelli per il Supporto alle Decisioni 2002 Dipartimento di Informatica Sistemistica e Telematica (Dist) Il termine OLAP e l acronimo di On-Line

Dettagli

Introduzione al Calcolo Scientifico

Introduzione al Calcolo Scientifico Introduzione al Calcolo Scientifico Corso di Calcolo Numerico, a.a. 2010/2011 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Introduzione al Calcolo Scientifico

Dettagli

Il tuo business si evolve. Fai evolvere il tuo gestionale. Costruiamo i motori di un pianeta più intelligente.

Il tuo business si evolve. Fai evolvere il tuo gestionale. Costruiamo i motori di un pianeta più intelligente. Il tuo business si evolve. Fai evolvere il tuo gestionale. Costruiamo i motori di un pianeta più intelligente. esperienza + innovazione affidabilità Da IBM, una soluzione completamente nuova: ACG Vision4,

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T2 B1 - Progettazione dei DB 1 Prerequisiti Ciclo di vita del software file system Metodologia di progettazione razionale del software 2 1 Introduzione Per la realizzazione

Dettagli

CORSO ACCESS PARTE II. Esistono diversi tipi di aiuto forniti con Access, generalmente accessibili tramite la barra dei menu (?)

CORSO ACCESS PARTE II. Esistono diversi tipi di aiuto forniti con Access, generalmente accessibili tramite la barra dei menu (?) Ambiente Access La Guida di Access Esistono diversi tipi di aiuto forniti con Access, generalmente accessibili tramite la barra dei menu (?) Guida in linea Guida rapida Assistente di Office indicazioni

Dettagli

Base Dati Introduzione

Base Dati Introduzione Università di Cassino Facoltà di Ingegneria Modulo di Alfabetizzazione Informatica Base Dati Introduzione Si ringrazia l ing. Francesco Colace dell Università di Salerno Gli archivi costituiscono una memoria

Dettagli

Introduzione al Calcolo Scientifico

Introduzione al Calcolo Scientifico Introduzione al Calcolo Scientifico Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Introduzione al Calcolo Scientifico

Dettagli

Informatica per le discipline umanistiche 2 lezione 12

Informatica per le discipline umanistiche 2 lezione 12 Informatica per le discipline umanistiche 2 lezione 12 Nella lezione precedente: In realtà non tutto il data mining è dettato dagli interessi economici (commercial) data mining Abbiamo visto risvolti commerciali

Dettagli

Data Mining. Gabriella Trucco gabriella.trucco@unimi.it

Data Mining. Gabriella Trucco gabriella.trucco@unimi.it Data Mining Gabriella Trucco gabriella.trucco@unimi.it Perché fare data mining La quantità dei dati memorizzata su supporti informatici è in continuo aumento Pagine Web, sistemi di e-commerce Dati relativi

Dettagli

Supply Intelligence. Informazioni rapide e approfondite sui fornitori potenziali

Supply Intelligence. Informazioni rapide e approfondite sui fornitori potenziali Supply Intelligence Informazioni rapide e approfondite sui fornitori potenziali Ancora in alto mare? Le forniture, specialmente se effettuate a livello globale, possono rivelarsi un vero e proprio viaggio

Dettagli

TEORIA sulle BASI DI DATI

TEORIA sulle BASI DI DATI TEORIA sulle BASI DI DATI A cura del Prof. Enea Ferri Cos è un DATA BASE E un insieme di archivi legati tra loro da relazioni. Vengono memorizzati su memorie di massa come un unico insieme, e possono essere

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Gestione della conoscenza

Gestione della conoscenza Università di Bergamo Facoltà di Ingegneria GESTIONE DEI SISTEMI ICT Paolo Salvaneschi A10_1 V1.1 Gestione della conoscenza Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Introduzione ai database I concetti fondamentali Database e DBMS Per comprendere appieno cos'è un Database e quali sono i vantaggi legati al suo impiego, soprattutto nel settore gestionale, è necessario

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistemi informazionali La crescente diffusione dei

Dettagli

Identificare come i vari elementi dei Microsoft Dynamics CRM possono essere utilizzati per le relazioni con i clienti

Identificare come i vari elementi dei Microsoft Dynamics CRM possono essere utilizzati per le relazioni con i clienti PERIODO : Dal 11 novembre 2015 AL 4 dicembre 2015 Sede del corso: Presso GI Formazione in Piazza IV novembre 5, Milano Orari dalle 9.00 alle 13.00 e dalle 14.00 alle 18.00 A CHI E RIVOLTO IL CORSO Questo

Dettagli

BARRA LATERALE AD APERTURA AUTOMATICA...

BARRA LATERALE AD APERTURA AUTOMATICA... INDICE 1) SOMMARIO... 1 2) PRIMO AVVIO... 1 3) BARRA LATERALE AD APERTURA AUTOMATICA... 2 4) DATI AZIENDALI... 3 5) CONFIGURAZIONE DEL PROGRAMMA... 4 6) ARCHIVIO CLIENTI E FORNITORI... 5 7) CREAZIONE PREVENTIVO...

Dettagli

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione 4 LEZIONE: Programmazione su Carta a Quadretti Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10 Minuti Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione SOMMARIO:

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Software. Definizione, tipologie, progettazione

Software. Definizione, tipologie, progettazione Software Definizione, tipologie, progettazione Definizione di software Dopo l hardware analizziamo l altra componente fondamentale di un sistema di elaborazione. La macchina come insieme di componenti

Dettagli

Sicuritalia e la soluzione di SAP per la Field Force.

Sicuritalia e la soluzione di SAP per la Field Force. Sicuritalia S.p.A. Utilizzata con concessione dell autore. SAP Customer Success Story Sicurezza e servizi fiduciari Sicuritalia S.p.A Sicuritalia e la soluzione di SAP per la Field Force. Partner Nome

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Linguaggi per il web oltre HTML: XML

Linguaggi per il web oltre HTML: XML Linguaggi per il web oltre HTML: XML Luca Console Con XML si arriva alla separazione completa tra il contenuto e gli aspetti concernenti la presentazione (visualizzazione). XML è in realtà un meta-formalismo

Dettagli

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale Esperienze di Apprendimento Automatico per il corso di lippi@dsi.unifi.it Dipartimento Sistemi e Informatica Università di Firenze Dipartimento Ingegneria dell Informazione Università di Siena Introduzione

Dettagli

Commercio in Rete. tra il reale e il virtuale di Giuseppe Castiglia. giuseppe.castiglia@serviceupgrade.it

Commercio in Rete. tra il reale e il virtuale di Giuseppe Castiglia. giuseppe.castiglia@serviceupgrade.it Commercio in Rete tra il reale e il virtuale di Giuseppe Castiglia 1 Giuseppe Castiglia Titolare della Upgrade Electronic Service (www.serviceupgrade.net ) (servizi e hardware in tutta Italia grazie all

Dettagli

Marketing relazionale

Marketing relazionale Marketing relazionale Introduzione Nel marketing intelligence assume particolare rilievo l applicazione di modelli predittivi rivolte a personalizzare e rafforzare il legame tra azienda e clienti. Un azienda

Dettagli

Organizzazione delle informazioni: Database

Organizzazione delle informazioni: Database Organizzazione delle informazioni: Database Laboratorio Informatico di base A.A. 2013/2014 Dipartimento di Scienze Aziendali e Giuridiche Università della Calabria Dott. Pierluigi Muoio (pierluigi.muoio@unical.it)

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

ACADEMY MICROSOFT DYNAMICS CRM ONLINE

ACADEMY MICROSOFT DYNAMICS CRM ONLINE SKILL4YOU ACADEMY MICROSOFT DYNAMICS CRM ONLINE 2015 PERCORSO ACADEMY MICROSOFT DYNAMICS CRM ONLINE 2015 A CHI E RIVOLTO IL CORSO Questo piano formativo si rivolge a tutte le persone che desiderano acquisire

Dettagli

Si appoggia a Internet come canale per veicolare le informazioni. Un LMS permette di:

Si appoggia a Internet come canale per veicolare le informazioni. Un LMS permette di: Compito I settimana del II modulo Fagnani Lorena classe E13 1. La sezione del modulo dedicata ai Learning Management System elenca diverse funzioni di gestione, comunicazione e valutazione che possono

Dettagli

Corso di Informatica (Basi di Dati)

Corso di Informatica (Basi di Dati) Corso di Informatica (Basi di Dati) Lezione 1 (12 dicembre 2008) Introduzione alle Basi di Dati Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati Lucidi del Corso di Basi di Dati 1, Prof. Carlo Batini,

Dettagli

Sistemi Informativi Aziendali I

Sistemi Informativi Aziendali I Modulo 5 Sistemi Informativi Aziendali I 1 Corso Sistemi Informativi Aziendali I - Modulo 5 Modulo 5 Il Sistema Informativo verso il mercato, i canali ed i Clienti: I nuovi modelli di Business di Internet;

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

GAT.crm Customer Solution Case Study

GAT.crm Customer Solution Case Study GAT.crm Customer Solution Case Study SET Contact Center di Successo con VoIp e Crm In breve Profilo aziendale La storia di SET inizia nel 1989 dalla ferma volontà di Valter Vestena, che dopo aver creato

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Data Mining. Introduzione La crescente popolarità

Dettagli

CORSI DI FORMAZIONE AMMEGA.IT. Formazione informatica di base IC 3 /MOS. http://www.ammega.it

CORSI DI FORMAZIONE AMMEGA.IT. Formazione informatica di base IC 3 /MOS. http://www.ammega.it Formazione informatica di base IC 3 /MOS http://www.ammega.it Formazione informatica di base IC 3 Descrizione sintetica IC 3 è un Programma di Formazione e Certificazione Informatica di base e fornisce

Dettagli

Data Warehousing (DW)

Data Warehousing (DW) Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale

Dettagli

SIG-FIN UN CRM PER TUTTE LE ESIGENZE

SIG-FIN UN CRM PER TUTTE LE ESIGENZE SIG-FIN UN CRM PER TUTTE LE ESIGENZE SIG-FIN (Sistema Informativo Gestionale Finanziario) è la soluzione di CRM (Customer Relationship Management) sviluppato da Cesaweb per tutte le società Finanziarie

Dettagli

Taminco: incremento della produttività della forza vendite grazie all app Sales Anywhere

Taminco: incremento della produttività della forza vendite grazie all app Sales Anywhere 2013 SAP AG o una sua affiliata. Tutti i diritti riservati.. Taminco: incremento della produttività della forza vendite grazie all app Sales Anywhere Partner Taminco Settore di mercato Industria chimica

Dettagli

Analisi dei Requisiti

Analisi dei Requisiti Analisi dei Requisiti Pagina 1 di 16 Analisi dei Requisiti Indice 1 - INTRODUZIONE... 4 1.1 - OBIETTIVO DEL DOCUMENTO...4 1.2 - STRUTTURA DEL DOCUMENTO...4 1.3 - RIFERIMENTI...4 1.4 - STORIA DEL DOCUMENTO...4

Dettagli

Obiettivo Principale: gli studenti imparano come funziona Internet, e che relazione ha con gli indirizzi web (URL) e con le pagine web.

Obiettivo Principale: gli studenti imparano come funziona Internet, e che relazione ha con gli indirizzi web (URL) e con le pagine web. 18 LEZIONE: Internet Tempo della lezione: 45-60 Minuti. - Tempo di preparazione: 20 Minuti. Obiettivo Principale: gli studenti imparano come funziona Internet, e che relazione ha con gli indirizzi web

Dettagli

Introduzione al Data Mining Parte 1

Introduzione al Data Mining Parte 1 Introduzione al Data Mining Parte 1 Corso di Laurea Specialistica in Ingegneria Informatica II Facoltà di Ingegneria, sede di Cesena (a.a. 2009/2010) Prof. Gianluca Moro Dipartimento di Elettronica, Informatica

Dettagli

Introduzione al Datamining. Francesco Passantino francesco@iteam5.net www.iteam5.net/francesco

Introduzione al Datamining. Francesco Passantino francesco@iteam5.net www.iteam5.net/francesco Introduzione al Datamining Francesco Passantino francesco@iteam5net wwwiteam5net/francesco Cos è il datamining Processo di selezione, esplorazione e modellazione di grandi masse di dati, al fine di scoprire

Dettagli

L ARCHIVIAZIONE E LA GESTIONE DATI ATTRAVERSO L INTERAZIONE TRA MICROSOFT ACCESS ED EXCEL 1 INTRODUZIONE

L ARCHIVIAZIONE E LA GESTIONE DATI ATTRAVERSO L INTERAZIONE TRA MICROSOFT ACCESS ED EXCEL 1 INTRODUZIONE Roccatello Ing. Eduard L ARCHIVIAZIONE E LA GESTIONE DATI ATTRAVERSO L INTERAZIONE TRA MICROSOFT ACCESS ED EXCEL 1 INTRODUZIONE Agenda Presentazione docente Definizione calendario Questionario pre corso

Dettagli

1. I database. La schermata di avvio di Access

1. I database. La schermata di avvio di Access 7 Microsoft Access 1. I database Con il termine database (o base di dati) si intende una raccolta organizzata di dati, strutturati in maniera tale che, effettuandovi operazioni di vario tipo (inserimento

Dettagli

Data Mining in SAP. Alessandro Ciaramella

Data Mining in SAP. Alessandro Ciaramella UNIVERSITÀ DI PISA Corsi di Laurea Specialistica in Ingegneria Informatica per la Gestione d Azienda e Ingegneria Informatica Data Mining in SAP A cura di: Alessandro Ciaramella La Business Intelligence

Dettagli

Informatica Documentale

Informatica Documentale Informatica Documentale Ivan Scagnetto (scagnett@dimi.uniud.it) Stanza 3, Nodo Sud Dipartimento di Matematica e Informatica Via delle Scienze, n. 206 33100 Udine Tel. 0432 558451 Ricevimento: giovedì,

Dettagli

Rappresentazione grafica di entità e attributi

Rappresentazione grafica di entità e attributi PROGETTAZIONE CONCETTUALE La progettazione concettuale, ha il compito di costruire e definire una rappresentazione corretta e completa della realtà di interesse, e il prodotto di tale attività, è lo schema

Dettagli

Uno standard per il processo KDD

Uno standard per il processo KDD Uno standard per il processo KDD Il modello CRISP-DM (Cross Industry Standard Process for Data Mining) è un prodotto neutrale definito da un consorzio di numerose società per la standardizzazione del processo

Dettagli

Contenuti di un sito web alcune considerazioni

Contenuti di un sito web alcune considerazioni Contenuti di un sito web alcune considerazioni Contenuti unici, interessanti e di qualità Il principale problema che tutti i siti devono affrontare riguarda l aere contenuti unici, interessanti e di qualità.

Dettagli

A. Cosa è la privacy B. Cosa sono i dati personali C. I principi fondamentali da conoscere per proteggere i dati personali

A. Cosa è la privacy B. Cosa sono i dati personali C. I principi fondamentali da conoscere per proteggere i dati personali ACE PROTEGGE LA RISERVATEZZA DEI TUOI DATI Ace European Group Ltd. fin dalla sua nascita ha deciso di ispirare la propria azione ai valori della sicurezza, della trasparenza e della qualità. Il risultato

Dettagli

ITI Galilei Salerno Corso Database ed SQL

ITI Galilei Salerno Corso Database ed SQL ITI Galilei Salerno Corso Database ed SQL prof Carmine Napoli Introduzione Database: Si definisce Database un insieme di dati, di solito di notevoli dimensioni, raccolti, memorizzati ed organizzai in modo

Dettagli

LA FORZA DELLA SEMPLICITÀ. Business Suite

LA FORZA DELLA SEMPLICITÀ. Business Suite LA FORZA DELLA SEMPLICITÀ Business Suite LA MINACCIA È REALE Le minacce online alla tua azienda sono reali, qualunque cosa tu faccia. Chiunque abbia dati o denaro è un bersaglio. Gli incidenti relativi

Dettagli

PCKeeper. Con operatore

PCKeeper. Con operatore PCKeeper Con operatore è un'applicazione all-in-one caratterizzata dall'inedita combinazione degli algoritmi di un programma per computer con le competenze di un esperto informatico in carne ed ossa. Gli

Dettagli

Premessa... 1. Fasi del processo... 3. Zone di rischio... 4

Premessa... 1. Fasi del processo... 3. Zone di rischio... 4 Sommario Premessa... 1 Fasi del processo... 3 Zone di rischio... 4 Premessa Le tecnologie informatiche hanno rivoluzionato da tempo il modo in cui lavorano le aziende e le organizzazioni in genere. Gestire

Dettagli

Corso di Access. Prerequisiti. Modulo L2A (Access) 1.1 Concetti di base. Utilizzo elementare del computer Concetti fondamentali di basi di dati

Corso di Access. Prerequisiti. Modulo L2A (Access) 1.1 Concetti di base. Utilizzo elementare del computer Concetti fondamentali di basi di dati Corso di Access Modulo L2A (Access) 1.1 Concetti di base 1 Prerequisiti Utilizzo elementare del computer Concetti fondamentali di basi di dati 2 1 Introduzione Un ambiente DBMS è un applicazione che consente

Dettagli

Web Marketing. Ultimo aggiornamento 25-06-2011. Gli importi sono iva esclusa

Web Marketing. Ultimo aggiornamento 25-06-2011. Gli importi sono iva esclusa Web Marketing Ultimo aggiornamento 25-06-2011 Gli importi sono iva esclusa Information Technology Services Forniamo soluzioni professionali e concrete ai Vostri problemi informatici. Il nostro segreto?

Dettagli

IBM SPSS Direct Marketing 21

IBM SPSS Direct Marketing 21 IBM SPSS Direct Marketing 21 Nota: Prima di utilizzare queste informazioni e il relativo prodotto, leggere le informazioni generali disponibili in Note a pag. 109. Questa versione si applica a IBM SPSS

Dettagli

INFORMATICA PER LE APPLICAZIONI ECONOMICHE PROF.SSA BICE CAVALLO

INFORMATICA PER LE APPLICAZIONI ECONOMICHE PROF.SSA BICE CAVALLO Basi di dati: Microsoft Access INFORMATICA PER LE APPLICAZIONI ECONOMICHE PROF.SSA BICE CAVALLO Database e DBMS Il termine database (banca dati, base di dati) indica un archivio, strutturato in modo tale

Dettagli

Il ROI del consolidamento dei Server

Il ROI del consolidamento dei Server Il ROI del consolidamento dei Server Sul lungo periodo, un attività di consolidamento dei server è in grado di far scendere i costi IT in modo significativo. Con meno server, le aziende saranno in grado

Dettagli

Introduzione alla famiglia di soluzioni Windows Small Business Server

Introduzione alla famiglia di soluzioni Windows Small Business Server Introduzione alla famiglia di soluzioni Windows Small Business Server La nuova generazione di soluzioni per le piccole imprese Vantaggi per le piccole imprese Progettato per le piccole imprese e commercializzato

Dettagli

L e-book a scuola. 1 Al tema sono peraltro dedicati alcuni lavori specifici, fra i quali in italiano si segnala per

L e-book a scuola. 1 Al tema sono peraltro dedicati alcuni lavori specifici, fra i quali in italiano si segnala per L e-book a scuola Arriviamo così a un ultimo tema su cui vorrei spendere qualche parola. Un tema che richiederebbe peraltro, per essere trattato con l attenzione e il rigore che sarebbero necessari, ben

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

LABORATORIO. 2 Lezioni su Basi di Dati Contatti:

LABORATORIO. 2 Lezioni su Basi di Dati Contatti: PRINCIPI DI INFORMATICA CORSO DI LAUREA IN SCIENZE BIOLOGICHE Gennaro Cordasco e Rosario De Chiara {cordasco,dechiara}@dia.unisa.it Dipartimento di Informatica ed Applicazioni R.M. Capocelli Laboratorio

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T2 3-Compilatori e interpreti 1 Prerequisiti Principi di programmazione Utilizzo di un compilatore 2 1 Introduzione Una volta progettato un algoritmo codificato in un linguaggio

Dettagli

Lezione 10 Business Process Modeling

Lezione 10 Business Process Modeling Lezione 10 Business Process Modeling Ingegneria dei Processi Aziendali Modulo 1 - Servizi Web Unità didattica 1 Protocolli Web Ernesto Damiani Università di Milano Step dell evoluzione del business process

Dettagli

CRM DEDUPLICA. Deduplica e Normalizzazione dei clienti doppi... o simili. Validità: Settembre 2014

CRM DEDUPLICA. Deduplica e Normalizzazione dei clienti doppi... o simili. Validità: Settembre 2014 CRM DEDUPLICA Deduplica e Normalizzazione dei clienti doppi... o simili Validità: Settembre 2014 Questa pubblicazione è puramente informativa. SISECO non offre alcuna garanzia, esplicita od implicita,

Dettagli

SOLUZIONE Web.Orders online

SOLUZIONE Web.Orders online SOLUZIONE Web.Orders online Gennaio 2005 1 INDICE SOLUZIONE Web.Orders online Introduzione Pag. 3 Obiettivi generali Pag. 4 Modulo di gestione sistema Pag. 5 Modulo di navigazione prodotti Pag. 7 Modulo

Dettagli

Bisanzio Software Srl AMICA IMPORTA. Come importare dati nella famiglia di prodotti AMICA GESTIONALE (www.amicagestionale.it)

Bisanzio Software Srl AMICA IMPORTA. Come importare dati nella famiglia di prodotti AMICA GESTIONALE (www.amicagestionale.it) Bisanzio Software Srl AMICA IMPORTA Come importare dati nella famiglia di prodotti AMICA GESTIONALE (www.amicagestionale.it) Nicola Iarocci 10/05/2010 AMICA IMPORTA Stato del documento: BOZZA Stato del

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

7. Microsoft Access. 1) Introduzione a Microsoft Access

7. Microsoft Access. 1) Introduzione a Microsoft Access 1) Introduzione a Microsoft Access Microsoft Access è un programma della suite Microsoft Office utilizzato per la creazione e gestione di database relazionali. Cosa è un database? Un database, o una base

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati Informatica 3 Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Lezione 10 - Modulo 1 Perchè

Dettagli

WEBsfa: l automazione della forza vendita via Web

WEBsfa: l automazione della forza vendita via Web WEBsfa: l automazione della forza vendita via Web White Paper 1 Gennaio 2005 White Paper Pag. 1 1/1/2005 L automazione della Forza Vendita Le aziende commerciali che che sviluppano e alimentano il proprio

Dettagli

PIÙ IN DETTAGLIO Come si crea una scuola virtuale? Come viene associato un insegnate alla scuola? Cos è il Codice scuola?

PIÙ IN DETTAGLIO Come si crea una scuola virtuale? Come viene associato un insegnate alla scuola? Cos è il Codice scuola? PIÙ IN DETTAGLIO Come si crea una scuola virtuale? Quando si compila il modulo di registrazione, selezionare l opzione scuola.una volta effettuata la registrazione, si può accedere a un ambiente molto

Dettagli

1. Struttura di un CMS

1. Struttura di un CMS E107 WEB SYSTEM Corso on line di progettazione siti dinamici: livello base R E A L I Z Z A Z I O N E D I 1. Struttura di un CMS By e107 Italian Team Sito web:http://www.e107italia.org Contatto: admin@e107italia.org

Dettagli

SPORTLANDIA TRADATE Cookie Policy

SPORTLANDIA TRADATE Cookie Policy SPORTLANDIA TRADATE Cookie Policy Informativa Privacy (art.13 D.Lgs. 196/2003): i dati che i partecipanti al Blog conferiscono all atto della loro iscrizione sono limitati all indirizzo e-mail e sono obbligatori

Dettagli

disponibili nel pacchetto software.

disponibili nel pacchetto software. Modulo syllabus 4 00 000 00 0 000 000 0 Modulo syllabus 4 DATABASE 00 000 00 0 000 000 0 Richiede che il candidato dimostri di possedere la conoscenza relativa ad alcuni concetti fondamentali sui database

Dettagli