Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena"

Transcript

1 Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena

2 Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE COORDINAMENTO PIANIFICAZIONE SCHEDULING quando

3 Panfcazone della produzone: schedulazone d dettaglo Sono dat: Un nseme d lavor (job): ognuno costtuto da una o pù operazon Un nseme d rsorse (macchne) che devono essere utlzzate per esegure lavor

4 Schedulng delle operazon Scelta de temp d nzo e fne d ogn operazone su ogn macchna

5 Schedulng delle operazon Consderamo: 3 lavor e 3 macchne Job J 1 Sequenza delle operazon operazone(macchna, tempo) (M 1,10) (M 2,5) (M 3,6) J 2 (M 2,5) (M 1,8) - J 3 (M 1,2) (M 3,10) (M 2,4)

6 Dagramma d Gantt Job J 1 Sequenza Operazon (M 1,10) (M 2,5) (M 3,6) J 2 (M 2,5) (M 1,8) - J 3 (M 1,2) (M 3,10) (M 2,4) M M M

7 Dagramma d Gantt Job J 1 Sequenza Operazon (M 1,10) (M 2,5) (M 3,6) J 2 (M 2,5) (M 1,8) - J 3 (M 1,2) (M 3,10) (M 2,4) M M M

8 Classfcazone de problem d schedulng Caratterzzazone de lavor: tempo d processamento p j (p kj ) data d consegna (duedate o deadlne) d j data d rlasco (release date) r j peso del lavoro (prortà) w j tempo d set-up tra due lavor s j

9 Classfcazone de problem d schedulng Caratterzzazone delle rsorse e dell ambente produttvo: macchna sngola macchne parallele dentche scorrelate unform Flow shop Job shop

10 Macchna sngola LAVORI M

11 Macchne parallele M 1 LAVORI M 2 M 3

12 Macchne n lnea (Flow shop) LAVORI M 1 M 2 M m

13 Esempo M 1 M 2 IN OUT

14 Esempo M 1 M 2 IN OUT

15 Job shop LAVORI M 1 M 2 M 3

16 Msure d prestazone (lavor) Dato l lavoro con release date e duedate: tempo d completamento C tempo d attraversamento F C r Lateness L C d Tardness T max{ 0, C d } Earlness E max{ 0, d C } Lavor n rtardo U 1 se C > d U 0 se C d

17 Lateness (Rtardo) Rtardo del lavoro : L C -d L (C ) L > 0 C - d L < 0 antcpo d rtardo C d : tempo d consegna (duedate) per l lavoro

18 Msure d prestazone (sstema) somma de temp d completamento: Σ C flow tme totale: Σ F massma Lateness: L max max L massma Tardness: T max max T Tardness totale pesata Σ w T makespan C max max C numero d lavor n rtardo Σ U

19 Equvalenza tra msure Msure d prestazone ( ) + n n n n n d r F d C L

20 Msure d prestazone Una sol. che mnmzza L max mnmzza anche T max (ma, n generale, non è vero l vceversa): T max max max max { T,..., T,0} { max{ L,0},...,max { L,0 } 1 n { L,..., L,0} max{ L,0} 1 1 n n max

21 Schedulng su sngola macchna Descrzone del problema Un nseme d n operazon deve essere eseguto su una macchna Dat I temp d processamento p, 1,,n, del lavoro sulla macchna sono not. Obettvo Sequenzare le operazon sulla macchna n modo da mnmzzare la somma de temp d completamento. mn Σ C

22 Gantt del Sequenzamento Sequenza S p 1 p 2 p 3 p 4 p n op 1 op2 op 3 C 1 C 2 C 3 op4 C 4 op n C n tempo C n Σ p : tempo d completamento totale (makespan) Obettvo: mn Σ C

23 se p 2 < p 1 allora scambando le op. 1 e 2 s ha C 2 < C 1 e C 1 C 2 C 2 + C 1 < C 2 + C 1 p 1 p 2 p 3 p 4 p n S op 1 C 1 op2 op 3 C 2 C 3 op4 C 4 op n C n tempo p 2 p 1 p 4 p n S op 2 C 2 op1 1 C 1 p 3 op 3 op 4 C 3 C 4 op n C n tempo

24 Regola SPT (shortest processng tme frst) SPT: sequenza prma le operazon che hanno tempo d esecuzone pù pccolo Consente d mnmzzare la somma de temp d completamento Σ C d n operazon (lavor) su una macchna

25 Esempo Lavor p Sequenza ottma (5, 4, 1, 3, 2)

26 Schedulng su sngola macchna Descrzone del problema Un nseme d n operazon devono essere esegut su una macchna Dat I temp d processamento p, 1,,n, del lavoro sulla macchna sono not. Peso w, 1,,n, assocato ad ogn lavoro. Obettvo Sequenzare le operazon sulla macchna n modo da mnmzzare: mn Σ w C

27 Regola WSPT (weghted shortest processng tme) WSPT: sequenza prma lavor che hanno l pù pccolo rapporto: p w Consente d mnmzzare la somma pesata de temp d completamento Σw C

28 Sa p / w > p k / w k consderamo due cas: 1. Il lavoro k è sequenzato subto dopo 2. Il lavoro è sequenzato subto dopo k Regola WSPT D p w p w p w A w w B p p A w p A w B ob f p p A C p A C k k k k k k k k k k ) ( ) ( ) (.. ' e ' D p w p w p w A w w B D p p A w p A w B ob f p p A C p A C k k k k k k k k ) ( ) ( ) (.. e

29 Regola WSPT Se p / w > p k / w k allora w k p > w p k f. ob.(1) f. ob.( 2) w k p w p k > 0 f. ob.(1) > f. ob.( 2)

30 Macchne parallele M 1 J 1 J 2 LAVORI M 2 J 3 J 4 M 3

31 Schedulng su macchne parallele scorrelate Descrzone del problema n lavor devono essere processat da m macchne dverse (unrelated) dsposte parallelo. Le macchne possono esegure un solo lavoro alla volta. Ogn lavoro deve essere eseguto su una ed una sola macchna senza nterruzone. Dat I temp d processamento p j, 1,, m, del lavoro j sulla macchna sono not. Obettvo Assegnare lavor alle macchne n modo tale da mnmzzare l tempo totale d completamento della macchna pù carca (equvalente a mnmzzare l makespan).

32 Esempo Macchne Lavor Una soluzone ammssble M 1 J 1 J 4 M 2 J 5 J 2 M 3 J 3 34 t

33 Esempo Macchne Lavor Una soluzone ottma M 1 J 1 J 4 M 2 J 5 J 3 M 3 J 2 33 t

34 Complesstà Il problema è NP-completo anche con due macchne dentche m2 pj p j 1,..., m

35 Defnzone delle varabl Una formulazone d PLI C, 1,, m, tempo d completamento della macchna x j 1 se l lavoro j è assegnato alla macchna 0 altrment C max max 1,..., m { C } tempo d completamento d tutto l sstema Nota: l tempo d completamento della macchna pù carca corrsponde al tempo d completamento del lavoro che fnsce per ultmo

36 Formulazone del Problema Defnzone delle varabl Il tempo d completamento C della generca macchna è par a: C n j 1 p j x j C max n max { } 1,..., m C max 1,..., m j 1 p j x j

37 Una formulazone del Problema mn { C } max tale che mnmax 1,..., m n j 1 p j x j m 1 x j x j 1 { 0,1 } j 1,...,n

38 Una formulazone d PLI mn W tale che C n j 1 p j x j W 1,...,m m 1 x j x j 1 { 0,1 } j 1,...,n

39 ASSEGNAMENTO DELLE OPERAZIONI DI TAGLIO NELLA PRODUZIONE DI CAPI DI ABBIGLIAMENTO

40 Lo scenaro produttvo La PAL ZILERI produce cap d abbglamento per l alta moda Ogn capo è costtuto da var pezz d tessuto (fgure) Le fgure vanno taglate da un nastro che scorre a veloctà costante v 0

41 Lo scenaro produttvo La dsposzone delle fgure sul nastro è nota a pror (cuttng stock rsolto a monte) Il taglo delle fgure è effettuato da un nseme d macchne dentche dsposte n lnea Cascuna macchna ha un area d lavoro d lunghezza W s

42 Pazzamento

43 Lo scenaro produttvo Stazon d lavoro fgure 1 2 m V cm/sec W s 2.5 m W s Area d lavoro

44 Il problema decsonale Il problema è quello d assegnare le fgure alle macchne, e d sequenzare tagl su cascuna macchna Cascun taglo deve avvenre entro una determnata fnestra temporale (dversa a seconda della macchna cu è assegnata la fgura) d ampezza W s /v 0

45 Il problema decsonale Tra l taglo d una fgura e la successva ntercorre un tempo d swtch dpendente dalla sequenza Gl obettv: mnmzzare l numero d macchne blancare carch d lavoro

46 Il problema decsonale L nseme delle fgure relatve a uno stesso capo e la loro dsposzone sul tessuto (pazzamento) gungono n tempo reale L assegnamento va decso n poco tempo (30 sec.) Problema decsonale on lne

47 Modello combnatoro

48 Modello combnatoro

49 Modello combnatoro

50 Metodologe d soluzone Due approcc rsolutv Approcco esatto, basato su metod d programmazone a numer nter Approcco eurstco, basato su algortm d nstradamento push e pull

51 Approcco esatto Il problema è smle a un problema d vehcle routng con tme wndows Generalzzazone del problema del commesso vaggatore Problema dffcle

52 Approcco esatto Sa m l nseme d tutt sottonsem d fgure che possono essere taglat da una sola macchna entro la propra fnestra temporale (tnerar) Ad ogn tneraro è assocato un dato nseme d fgure da taglare x k è una varable d decsone che è par a 1 se l tneraro k è assegnato ad una macchna La somma Σ k x k esprme l numero d tnerar, ossa l numero d macchne

53 Una formulazone d set coverng Sa {1,, n} l nseme d fgure d un pazzamento. Sa A {A 1,,A m } una matrce n m, n cu la generca colonna A k descrve un tneraro possble per una macchna. A ha component: a jk 1 se la fgura j è assegnata all tneraro k 0 altrment

54 Una formulazone d set coverng Sa x k par a 1 se la colonna A k è selezonata e 0 altrment. Una formulazone del problema è: mn k x m k 1 a k jk m 1 x x k k 1 j 1,..., n { 0,1} k 1,..., m (Barnhart C. et al., 1994; Chen, Z.L. and Powell,W.B., 1999; Van den Akker J.M. et al., 1999)

55 Approcco esatto m è l numero (elevatssmo) d possbl tnerar Anche enumerandol tutt, occorre rsolvere un problema ntero d elevatssme dmenson >>> generazone d colonne

56 ,...,m k x,...,m k x,...,n j x a x k k m k k jk m k k mn 1 1 Prmale Duale Generazone d Colonne max 1 1,...,n j u,...,m k u a u j n j j jk n j j Sa u* la soluzone del problema duale (rstretto). Un vncolo duale è volato dalla corrente soluzone duale se: 1 1 * > n j jk j u a

57 Un metodo d generazone d colonne Problema d separazone per generare un vncolo duale volato dalla corrente soluzone duale max tale a j n j 1 che a { 0,1} le fgure scelte essere esegute j u * j ( a j 1) possono tutte su una macchna

58 Il problema d separazone per generare un vncolo duale volato e qund una nuova colonna del prmale è: Un metodo d generazone d colonne 1 * j j j j j j u w U w s r Nota che r j e d j sono agreeable (le fnestre temporal d ogn fgura sono tutte lunghe W s /σ), coè: j j d d r r

59 Problema d separazone senza temp d set-up (1 r j Σw j U j ) Esste un algortmo d programmzone dnamca (Lawler and Moore, 1969) per l rsolvere l problema 1 Σw j U j Tale algortmo può essere esteso al problema 1 r j Σw j U j se release date e duedate de lavor sono agreeable

60 Un algortmo d programmazone dnamca Supponamo d ordnare job n modo che d 1 d 2 d n (r 1 r 2 r n ) Sa P(j, t) la soluzone ottma del problema 1 r j Σw j U j n cu sono consderat solo prm j job, ed n cu l tempo totale d completamento de job n tempo è al pù t P ( j, t ) max P ( j 1, t) { ( ) ( )} * P j 1, t pj + u j ; P j 1, t P( j, d ) t > d j t < r j + j p j r j + p j t d j

61 Metodologe d soluzone Approcco eurstco basato su algortm d nstradamento push e pull

62 Applcazone eurstca push 1. S ndvdua la prossma fgura da assegnare 2. La fgura selezona una macchna 3. La macchna nsersce la fgura nel propro schedule

63 push: ordnamento delle fgure LPT n ordne decrescente d tempo d taglo EDD n ordne d uscta dal sstema ERD n ordne d entrata nel sstema

64 t stante n cu M dvene dsponble S j max{r j, t + c j } prmo stante n cu può nzare la fgura j se assegnata a M Q j S j - t (dle)

65 Set-up Earlest start tme per la fgura j Ultma fgura taglata t t +c j S j Idle: Q j S j - t t

66 push: selezone della macchna La fgura j corrente scegle la macchna: mn C che s lbera prma mn W con l mnmo carco d lavoro mn Q j che è n grado d taglare la fgura j col mnmo dle

67 Applcazone eurstca pull 1. S ndvdua la prossma macchna a cu allocare un lavoro 2. La macchna selezona una fgura 3. La macchna nsersce la fgura nel propro schedule

68 pull: ordnamento delle macchne La macchna che opera la scelta è quella: mn C che s lbera prma

69 pull: selezone della fgura La macchna M corrente scegle la fgura, tra quelle non allocate: EDD che uscrà prma dal sstema ERD che entrerà prma nel sstema mn Q j la fgura j che è n grado d taglare col mnmo dle

70 Insermento della fgura In ambedue gl approcc, quando s determna un accoppamento fgura/macchna, la fgura deve essere nserta nello schedule corrente della macchna

71 Insermento della fgura INS1 (EDD) le fgure sono taglate n ordne d entrata nel sstema INS2 (FIFO) le fgure sono taglate nell ordne n cu sono state allocate

72 Eurstche push Ordnamento delle fgure Selezone macchna Inserm. Push1 LPT mn W EDD Push2 EDD mn Q j FIFO Push3 EDD mn C FIFO Push4 EDD mn W FIFO Push5 ERD mn W EDD

73 Eurstche pull Ordnamento delle macchne Selezone fgure Inserm. Pull 1 mn C EDD FIFO Pull 2 mn C mn Q j FIFO Pull 3 mn C ERD FIFO

74 Indc d performance E D + E j mn j mn E max k ( t j pj f f j j B C 1,.., m max m B n E E j j ( C ) ) earlness della fgura f j processata sulla macchna M k mnma earlness del pazzamento earlness meda del pazzamento tempo d completamento del pazzamento numero d macchne

75 Istanze real Istanza R 1 : 624 fgure raggruppate n 12 pazzament Istanza R 2 : 896 fgure raggruppate n 16 pazzament

76 Algortm push per l stanza R 1 Push1 Push2 Push3 Push4 Push5 E mn E C max m

77 Algortm pull per l stanza R 1 Pull1 Pull2 Pull3 E mn E C max m 6 7 6

78 Algortm push per l stanza R 2 Push1 Push2 Push3 Push4 Push5 E mn E C max m

79 Algortm pull per l stanza R 2 Pull1 Pull2 Pull3 E mn E C max m 7 7 7

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell er la anfcazone delle attvtà Paolo Dett Dartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell er la anfcazone delle

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

Organizzazione della produzione

Organizzazione della produzione Scheduling Organizzazione della produzione PROOTTO che cosa chi ORGNIZZZIONE PROCESSO come FLUSSO I PROUZIONE COORINMENTO PINIFICZIONE SCHEULING quando Pianificazione della produzione: schedulazione di

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

InfoCenter Product A PLM Application

InfoCenter Product A PLM Application genes d un fra o Gestone de crcolazone dell'nformazone sa crcoscrtta entro Pdetermnat ambt settoral. L'ntegrazone de sstem e de odpartment azendal rchede nuove modaltà operatve, nuove t competenze e nuov

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

Corso di laurea in Economia marittima e dei trasporti

Corso di laurea in Economia marittima e dei trasporti Unverstà degl stud d Genova Corso d laurea n Economa marttma e de trasport Il problema del cammno mnmo n ret multobettvo Relatrce: Anna Scomachen Canddato: Slvo Vlla Dedcato a: Coloro che n me Hanno sempre

Dettagli

Il problema del job scheduling in presenza di agenti egoisti

Il problema del job scheduling in presenza di agenti egoisti UNIVERSITÀ DEGLI STUDI DI SALERNO FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI CORSO DI LAUREA IN INFORMATICA SPECIALISTICA anno accademco 2007-2008 Il problema del job schedulng n presenza d agent

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

DATA MINING E CLUSTERING

DATA MINING E CLUSTERING Captolo 4 DATA MINING E CLUSTERING 4. Che cos'è l Data Mnng Per Data Mnng s'ntende quel processo d estrazone d conoscenza da banche dat, tramte l'applcazone d algortm che ndvduano le assocazon non mmedatamente

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Dati di tipo video. Indicizzazione e ricerca video

Dati di tipo video. Indicizzazione e ricerca video Corso d Laurea n Informatca Applcata Unverstà d Urbno Dat d tpo vdeo I dat vdeo sono generalmente rcch dal punto d vsta nformatvo. Sottottol (testo) Colonna sonora (audo parlato e/o musca) Frame (mmagn

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI

ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI ROBOTS A CINEMATICA RIDONDANTE: NUOVI SVILUPPI CONSENTITI DAGLI AZIONAMENTI DIRETTI E DAGLI ALGORITMI DI CONTROLLO GENETICI R. Fagla (*), M. Flppn (**), A. Zappon (***) (*)Dp. Ing. Meccanca Unv. degl Stud

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

PROGRAMMAZIONE DIDATTICA

PROGRAMMAZIONE DIDATTICA ISTITUTO ISTRUZIONE SUPERIORE STATALE CARLO GEMMELLARO CATANIA PROGRAMMAZIONE DIDATTICA ECONOMIA AZIENDALE A.S.: 2015/2016 Prof Pnzzotto Dana classe 5 b afm Obtv educatv OBTV ddattc trasversal Acqusre

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Analisi del moto pre e post urto del veicolo

Analisi del moto pre e post urto del veicolo Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza

Dettagli

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale.

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale. . ll metodo del fattore d scala globale Il progetto d un sstema d controllo dgtale può avvalers del cosddetto metodo del fattore d scala globale (FSG), attraverso l quale è possble stablre una corrspondenza

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216 Manuale d struzon Manual de Instruções Mllmar C1208 /C 1216 Mahr GmbH Carl-Mahr-Str. 1 D-37073 Göttngen Telefon +49 551 7073-0 Fax +49 551 Cod. ord. Ultmo aggornamento Versone 3757474 15.02.2007 Valda

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti UNIVERSIA DEGLI SUDI DI CAGLIARI Facoltà d Ingegnera Elettronca Corso d Calcolo Numerco 1 A.A. 00/003 Anals e confronto tra metod d regolarzzazone drett per la rsoluzone d prolem dscret mal-post Docente:

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Introduzione all uso di Matlab

Introduzione all uso di Matlab Introduzone all uso d Matlab RIASSUNTO avvo del programma costant macro funzon cclo for struttura f else help / lookfor vettor e operazon statstca: meda, varanza grafca: plot matrc e operazon generator

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE

SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE Statstca Applcata Vol. 17, n. 3, 2005 377 SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE Gan Pero Cervellera Poste Italane, Dvsone Rete Terrtorale, Drezone Operazon, Svluppo Process Ducco

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Il Ministro delle Infrastrutture e dei Trasporti

Il Ministro delle Infrastrutture e dei Trasporti Il Mnstro delle Infrastrutture e de Trasport VISTO l decreto legslatvo 30 aprle 1992, n. 285, come da ultmo modfcato dal decreto legslatvo 18 aprle 2011, n. 59, recante Attuazone delle drettve 2006/126/CE

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Edifici a basso consumo energetico: tra ZEB e NZEB

Edifici a basso consumo energetico: tra ZEB e NZEB Edfc a basso consumo energetco: tra ZEB e NZEB Prof. Ing. Percarlo Romagnon Dpartmento d Progettazone e Panfcazone n Ambent Compless Unverstà IUAV d Veneza Dorsoduro 2206 30123 Veneza perca@uav.t Modell

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Costruzioni in c.a. Metodi di analisi

Costruzioni in c.a. Metodi di analisi Corso d formazone n INGEGNERIA SISICA Verres, 11 Novembre 16 Dcembre, 2011 Costruzon n c.a. etod d anals Alessandro P. Fantll alessandro.fantll@polto.t Verres, 18 Novembre, 2011 Gl argoment trattat 1.

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Markov Random Field. Teoria e applicabilità nell elaborazione delle immagini. Giovanni Bianco. Febbraio 1998. 20 i

Markov Random Field. Teoria e applicabilità nell elaborazione delle immagini. Giovanni Bianco. Febbraio 1998. 20 i Markov Random Feld Teora e applcabltà nell elaborazone delle mmagn U ( f) = v [ 1 δ( )] 20 S N f f f * = arg mn f F { U( d f) + U( f) } Govann Banco Febbrao 1998 2 Manoscrtto depostato presso l Dp. d Ingegnera

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda Corso d TRASPORTI E AMBIENTE ng. Antono Com Ottobre 2012 Modell d domanda 1 Struttura del sstema d modell per la smulazone de sstem d trasporto OFFERTA DI INFRASTRUTTURE E SERVIZI DI TRASPORTO MODELLO

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

Capitolo 33 TRASPORTO IN PRESSIONE

Capitolo 33 TRASPORTO IN PRESSIONE Captolo 33 TRASPORTO IN PRESSIONE 1 INTRODUZIONE I sstem d condotte n pressone destnat all'approvvgonamento drco comprendono: - gl acquedott estern, che adducono l'acqua dalle font d'almentazone alle zone

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

impianti di prima pioggia

impianti di prima pioggia SHUNT ITALIANA TECHNOLOGY S.r.l. dvsone depurazone acque mpant d prma pogga un futuro per l acqua... 0867 CAPONAGO (MB) - Va G. Galle, - Tel. 0.95.96.6 - Fax 0.95.74..54 - dvacque@shunt.t - www.shunt.t

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES)

SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES) SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES) DIPARTIMENTO DI SCIENZE DELL AMBIENTE FORESTALE E DELLE SUE RISORSE (DISAFRI) UNIVERSITÀ DEGLI STUDI DELLA TUSCIA - Va San Camllo de Lells, 000 Vterbo

Dettagli