Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11"

Transcript

1 Modelli dei Sistemi di Produzione Modelli e lgoritmi della Logistica 00- Scheduling: Macchina Singola CRLO MNNINO Saienza Università di Roma Diartimento di Informatica e Sistemistica

2 Il roblema /-/ w C Dati n ob,,n e una sola macchina ogni ob è quindi associata un unica oerazione. : temo di rocessamento (oerazione associata al) ob ssunzione > 0 er ogni w : eso del ob. w C : costo di comletamento del ob. s : istante d`inizio (variabile) del ob. I ob non ossono essere interrotti (no-reemtion) C = s + Problema : trovare uno scheduling s che minimizzi il temo di comletamento esato w C = w (s + ) Nella classificazione a tre indici: Problema /-/ w C

3 Formulazione disgiuntiva Job w Per comodità usiamo variabili C = s + min C + 5C + 9C + 6C 4 s.t. C C L =,, 4 (C C i ) (C i C i ) i, i, =,, 4 C L = 0, C R + =,, n Senza erdita di generalità si one C L = 0, che imlica C L Grafo disgiuntivo 9 9 9

4 Formulazione 0, Job w min C + 5C + 9C + 6C4 s.t. C > 6 C > 9 C > C4 > C - C + 00 x > 6 C - C - 00 x > -9 C - C + 00 x > 6 C - C - 00 x > -99 C - C x4 > 6 C4 - C - 00 x4 > -97 C - C + 00 x > 9 C - C - 00 x > -99 C - C x4 > 9 C4 - C - 00 x4 > -97 C - C x4 > C4 - C - 00 x4 > -97 binary x x x4 x x4 x4 end 9 6 File tio l, che uò essere letto dai rinciali solutori commerciali Variabili a sinistra, costanti a destra Il segno > denota il L Grafo disgiuntivo 9 9 9

5 Il roblema /-/ w C OSS: non conviene lasciare la macchina inattiva fra il comletamento di un ob e l`inizio del successivo In ogni soluzione ottima, un ob comincia quindi esattamente quando il recedente termina. Chiamiamo questa soluzione comatta. La sequenza (ermutazione),, n dei ob sulla macchina determina univocamente la soluzione comatta k- k n k k n Obs.: temo di comletamento del k-esimo ob C k r k r Problema /-/ w C : trovare la sequenza dei ob,, n che minimizza il temo di comletamento esato w C

6 La regola di Smith Regola di Smith: ordina er valori non crescenti del raorto w / Quindi, se,, n è una sequenza rodotta dalla regola di Smith: w w OSS. Se alcuni raorti coincidono, esistono iù sequenze che soddisfano la regola di Smith. w n n Th. 6. (Della regola di Smith) La soluzione comatta associata una sequenza,, n rodotta dalla regola di Smith è ottima er il roblema /-/ w C

7 Dimostrazione Regola di Smith Dimostrazione Teorema della regola di Smith Sia una sequenza ottima. Per assurdo suoniamo che non risetti la regola di Smith. Esistono quindi due ob adiacenti, e k, tale che k viene immediatamente doo in e si ha: w / < w k / k Consideriamo la sequenza ` ottenuta da invertendo e k t+ k ` k t t+ k t+ + k OBS. Tutti i temi di comletamento dei ob rimangono invariati tranne quelli del ob e del ob k.

8 Dimostrazione Regola di Smith ` i i t k Sia t il temo di comletamento del ob che recede in (e k in `) Siano C e C` i temi di comletamento in S e S`, risettivamente C` =t+ + k C`k =t+ k C =t+ C k =t+ + k Differenza di costo fra C e C: = wc wc = w (C` -C ) + w k (C`k -C k ) Sostituendo = w (t+ + k - t- ) + w k (t+ k t - - k ) = w ( k ) + w k (- ) t+ k t+ k C` C C`k C k t+ + k Da w / < w k / k w k < w k = w k - w k < 0 e non è ottima, contraddizione.

9 Esemio Job w w / = /, w / = 5/9, w / = 9, w 4 / 4 = Sequenza ottima: (, 4,, ) C = 9 C =, C =, C 4 = 4 w C = 8, w C =65, w C = 9, w 4 C 4 = 4 Costo totale = w C + w C + w C + w 4 C 4 = 6 OBS: il makesan 9 è uguale er ogni sequenza

10 Sequenze equivalenti Lemma. 6. (Sequenze Equivalenti) Se er ogni ob N, il suo eso w è uguale al suo temo di rocessamento, allora ogni sequenza è ottima Per ogni N, si ha w / =. Dal Teorema 6. (della regola di Smith) segue che ogni sequenza è ottima. Lemma. 6. (Valore della soluzione w = ) Se er ogni allora la soluzione ottima vale: f ( N) N N N si ha w = Per il Lemma 6. ogni sequenza è ottima: quindi anche = {,,,n} n n n- C = C = C n = + + n

11 Dimostrazione Lemma 6. Quindi lo schedule: r C r è ottimo e il suo valore f(n) è dato da ) ( ) ( ) ( ) ( n n N N r r N C w C N f i N N i i N n N,, Saendo che i N N i i N N f,, ) ( ) (,, N f i N N i i N N N

12 Poliedro degli schedule ammissibili Descriviamo l insieme S() R N degli scheduling ammissibili C. In altri termini C = (C,, C n ) T sequenza = {,, n} tale che C J C S() se e solo se esiste una C k,, n k k k C = (9,,,4) T S() 4 = {,4,,) 4 9 C = (0,0,,4) T S() = {,4,,)

13 Proiezione delle soluzioni Sia C = (C,, C n ) T R N uno schedule ammissibile, i.e. C S() Sia N un sottoinsieme di ob e sia S ( ) l insieme degli scheduling ammissibili er i soli ob in ( temi dei ob in ) llora la roiezione C di C nello sazio R soddisfa C S ( ) Esemio N = {,,,4}, = {,} C = (9,,,4) T S() = {,4,,)} 4 J C = (,) T = {,} 4 Naturalmente l ottimalità di C risetto a un sistema di esi w non imlica l ottimalità di C in S ( ) risetto w (C è in generale non comatta)

14 Vincoli validi Def. Sia dato un insieme di unti P R n, e siano a R n e b R. Il vincolo a T x b è detto valido er P se e solo se è soddisfatto da tutti i unti di P, ovvero se e solo se non esiste x P tale che a T x < b. P P Lemma. Sia dato un insieme di unti P R n, e sia a R n. Sia b = min{a T x: x P} llora a T x b è un vincolo valido er P. Infatti, se esistesse un unto x P tale che a T x < b si avrebbe min{a T x: x P} a T x < b contraddizione. 4

15 Prorietà degli schedule ammissibili Teorema. 6.4 () Sia N un sottoinsieme di ob e sia f ) ( llora il vincolo C f() è valido er S() Dim. Qual è il valore minimo che uò assumere la quantità? ) (, S C C ) ( * S C Sia C * la soluzione ottima del roblema ) ( : min S C C ) ( : min * S Q Q C ) ( ) ( : min f S Q Q dal Lemma 6. ) ( ) ( : min ) ( : min ) ( : f S Q Q S C C S C C C * roiezione di C nello sazio R

16 Esemio Esemio N = {,,,4}, = {,} J f() = ½ (+9) + ½ ( + 9 ) = 9 C f() 9C + C 9 C = (9,,,4) T S() C soddisfa il vincolo 9C + C = 9 + = 8 9

17 Il oliedro degli schedule ammissibili Per ogni N il vincolo C f() è valido er S() Chiamiamo S c () il oliedro degli scheduling comatti, e cioè l involucro convesso degli scheduling comatti associati a. Si uò far vedere che S c () coincide con S c (): C C f() N N C = f(n) R n Gli schedule comatti coincidono coi vertici Ext(S c ()) di S c ()

18 Esemio: vertici di S c () I vertici Ext(S c ()) di S c () corrisondono agli scheduling comatti. Esemio: C = (9,,,4) T S() = {,4,,)} J C = (7,7,,9) T S() = {,4,,)} Le combinazioni convesse aartengono al oliedro ma non corrisondono a schedule ammissibili Esemio: ½ C + ½ C = (,5,,.5)

19 Il roblema singola macchina Temo di comletamento esato con vincoli di recedenza

20 Il roblema /rec/ w C I questa arte affronteremo una generalizzazione del roblema singola macchina con temo di comletamento esato La generalizzazione revede la resenza di vincoli di recedenza fra ob Il roblema diviene in questo modo sostanzialmente iù difficile E imortante quindi oter disorre di buoni rilassamenti In linea di rinciio è ossibile usare la formulazione 0, associata al rogramma disgiuntivo corrisondente Tuttavia la resenza della big M rende questa formulazione molto debole Introduciamo quindi una tecnica generale er costruire rilassamenti nota come Rilassamento Lagrangiano

21 Il roblema /rec/ w C Dati n ob,,n e una sola macchina : temo di rocessamento (oerazione associata al) ob w : eso del ob. w C : costo di comletamento del ob. I ob non ossono essere interrotti (no-reemtion) C = s + lcuni ob osso iniziare solo doo il comletamento di altri: C C i + er ogni i Problema : trovare uno scheduling comatto C che minimizzi il temo di comletamento esato w C e soddisfi tutti i vincoli di recedenza Nella classificazione a tre indici: Problema /rec/ w C

22 Esemio Job w Grafo disgiuntivo C C + C 4 C + C 4 C +

23 Formulazione 0, Job w min C + 5C + 9C + 6C4 s.t. C > 6 C > 9 C > C4 > C - C + 00 x > 6 C - C - 00 x >= -9 binary x x x4 end C - C + 00 x > 9 C - C - 00 x > -99 C - C x4 > C4 - C - 00 x4 > -97 C - C > C4 - C > C4 - C > 6 9 Sol Ottima C = 6, C = 6, C = 7, C4 = 9. Valore: Grafo disgiuntivo x =x =x 4 =x =x 4 =x 4 = 9 9

24 Comlessità roblema /rec/ w C Il roblema /rec/ w C è in genere difficile comutazionalmente. Per alcune classi di vincoli aggiuntivi il roblema uò essere risolto efficientemente In articolare, se il grafo associato ai vincoli aggiuntivi è serie-arallelo (ad esemio, un cammino o un insieme di cammini assanti er nodi distinti). Si ossono usare tecniche di soluzione tio Branch&Bound Per alicare queste tecniche occorre definire un rilassamento Di seguito illustreremo una tecnica di rilassamento molto studiata, nota col nome di Rilassamento Lagrangiano.

25 Esemio min C + 5C + 9C + 6C 4 C - C u = C 4 - C u = C 4 - C u = C Ext(S c ()) min C + 5C + 9C + 6C 4 + ( - C + C ) + ( C 4 + C ) + ( C 4 + C ) C Ext(S c ()) + min 5C + 7C + 7C + C 4 C Ext(S c ()) Problema residuo risolvibile con il Greedy. J w' w / 5/6 7/ Valore z RL (u) = z RL ((,,) T ) = + 0 = < 69(valore ottimo P(Q) )

26 Teorema del Rilassamento Lagrangiano P(Q): z Q = min x {c T x: x b, x Q }, con Q R n e matrice m n RL(u): z RL (u) = min x {c T x + u T (b- x), x Q}, con u 0 Teorema 6.5 (del rilassamento lagrangiano) Per ogni RL(u) è un rilassamento di P(Q) e si ha z RL (u) z Q u m R Dim. La regione ammissibile Q di RL(u) è ottenuta rimuovendo vincoli da quella di P(Q): R ={x: x b, x Q} R Q x ammissibile er P(Q) x b b- x 0 u 0, b- x 0 u T (b- x ) 0 c T x + u T (b- x ) c T x (er ogni x R, la f.o.di RL(u) è della f.o. di P(Q) ) RL(u) è un rilassamento di P(Q) e z RL (u) z Q

27 Esemio min C + 5C + 9C + 6C 4 C - C u = C 4 - C u = C 4 - C u = C Ext(S c ()) min C + 5C + 9C + 6C 4 + ( - C + C ) + ( C 4 + C ) + ( C 4 + C ) C Ext(S c ()) 6+ min 5C + 8C + 8C + C 4 C Ext(S c ()) J w' w' / 5/6 8/9 8 / Valore z RL (u) = z RL ((,,) T ) = 6+ 0 = 8 < 69 (valore ottimo P(Q) ) OSS z RL ((,,) T ) = 8 > z RL ((,,) T )

28 Duale Lagrangiano Il valore z RL (u) =min x {c T x + u T (b- x), x Q}, u 0 varia con u Per ottenere il miglior lower bound ossibile, siamo interessati al massimo di z RL (u) al variare di u Il roblema DL: z RL =max u {z RL (u) } è detto Duale Lagrangiano. Quindi DL: max u min x {c T x + u T (b- x), x Q, u 0} DL è un robrema di rogrammazione non lineare e uò con varie tecniche (es. il metodo del subgradiente) essere risolto Di seguito mostreremo un aroccio basato sul metodo del simlesso dinamico.

29 Risolvere il duale lagrangiano DL: max u min x { c T x + u T (b- x), x Q, u 0} ssunzione : Q = {x,, x r } è un insieme finito Q} uò essere risolto er enumerazione trovando il minimo delle seguenti quantità Per fissato u = u il roblema min x {c T x + u T (b- x), x v (u ) = c T x + u T (b- x ) v (u ) = c T x + u T (b- x ) v r (u ) = c T x r + u T (b- x r ) OSS: min {v (u ),, v r (u )} = max {v: v v (u ),, v v r (u ), v R} DL uò essere riscritto come max u 0 max v {v: v v (u),, v v r (u), v R}

30 Risolvere il duale lagrangiano Quindi DL = max u min x {c T x + u T (b- x), x Q, u 0} diventa DLv max u max v v = max u,v v v c T x + u T (b- x ) v c T x + u T (b- x ) v c T x r + u T (b- x r ) v R, u R m + Le variabili di DLv sono v R e u R m Ogni vincolo corrisonde a un unto di Q Se Q è grande si uò (si deve!) alicare il metodo del simlesso dinamico. Comonente essenziale: oracolo di searazione.

31 Oracolo di Searazione Riga i Descrizione imlicita di: x ^ R n a i Oracolo di Searazione x^ P ={x R n : x<b} ^x P ^x P a ^ i x > b i vincolo violato b x^ < b i x^ P Oracolo di searazione: algoritmo che, dato un oliedro P ={x R n : x<b} e un unto x * R n stabilisce se x * P oure restituisce un vincolo della descrizione di P violato da x *

32 Oracolo di searazione er DLv Oracolo di Searazione: Data una soluzione (v *, u * ) di DLv trova un vincolo tale che v * > c T x t + (u * ) T (b- x t ) (vincolo violato) o dimostra che tale vincolo non esiste. I vincoli corrisondono ai unti di Q Oracolo di Searazione Trova x t Q che minimizza c T x t + (u * ) T (b- x t ) Se c T x t + u *T (b- x t ) < v * v u T (b- x t ) vincolo violato c x t ltrimenti c T x + u *T (b- x) v * er ogni x Q e non esiste un vincolo violato

33 Oracolo di searazione er /rec/ w C (u * ) T b + min c T x - u *T x x Q Nel caso del roblema /rec/ w C, doo aver rilassato i vincoli di recedenza C b, il roblema residuo è un roblema/-/ w C. Le soluzioni del rilassamento (insieme Q) sono quindi schedule comatti, corrisondenti ai vertici di S c () Il roblema di searazione er (v * u * ) diventa quindi u *T b + min w T C - u *T C C Ext(S c ()) Il roblema qua sora uò essere risolto con la regola di Smith.

34 Metodo del Simlesso Dinamico Risolve un roblema di Programmazione Lineare: max c T x : x P ={x R n : x b, c T x k} ssunzione: roblema non illimitato Due ingredienti: max c T x x b, c T x k x ^ R n Oracolo di Searazione di P Metodo del Simlesso ^x P ^x P ^ a i x > b i x * soluzione ottima roblema illimitato nessuna soluzione (P =

35 Definizione del roblema core D 0 d 0 b D=D 0 ; d=d 0 max c T x x Q = Dx<d, (P Q) c T x k Nuova D e nuovo d D d a T i b i ggiunta del vincolo violato Metodo del Q= Simlesso x * ottima (in Q) Oracolo di Searazione di P x * P a it x>b i x * P P= x * ottima

36 Esemio min C + 5C + 9C + 6C 4 C - C C 4 - C C 4 - C C Ext(S c ()) J w Risolviamo il duale lagrangiano alicando il simlesso dinamico Il roblema core iniziale è costruito a artire da vincoli corrisondenti a un sottoinsieme di schedule comatti. Senza erdita di generalità, ossiamo aggiungere al roblema (e al rimo roblema core) in vincolo v k con k oortuno, in modo da rendere non illimitati i roblemi nella successione. Essendo il valore finale di v un lower bound sul valore ottimo del roblema originario, k uò essere scelto come il valore di una soluzione ammissibile er il roblema originario.

37 Esemio min C + 5C + 9C + 6C 4 C - C C 4 - C C 4 - C C Ext(S c ()) J w La sequenza = {,, 4, } è ammissibile. C( ) = (5,9,9,8) T w T C = = 54 Possiamo orre nel duale lagrangiano v 54

38 Esemio Duale Lagrangiano max v v 54 v R, u R + J w Sol ottima: v * = 54, u * = (0,0,0) Oracolo di searazione u * b + min (w (u * ) T ) C C Ext(S c ()) 0+ min C + 5C + 9C + 6C 4 x Ext(S c ()) = (, 4,, ) C = (9,,, 4) J w w / / 5/9 9 Regola di Smith wc = 6

39 Esemio Duale Lagrangiano max v v 54 v R, u R + J w Sol ottima: v * = 54, u * = (0,0,0) C = (9,,, 4) Test w T C + (u * ) T (b- C ) < v * 6 < 54 Si aggiunge al duale lagrangiano il vincolo v u T (b- C ) w C w C = 6 C = (-8, -5, -9) b - C = (9, 8, ) v - 9u 8u u b

40 Esemio Duale Lagrangiano max v v 54 v - 9u 8u u 6 v R, u R + J w Sol ottima: v * = 54, u * = (.5,0,0) Oracolo di searazione (u * ) T b + min (w - (u * ) T ) C x Ext(S c ()),5+ min,5c + 5C -,5C + 6C 4 x Ext(S c ()) = (,4,, ) C = (6, 8, 9, 9) J w,5 5 -,5 6 w /, 5/9 -,5 Regola di Smith wc = 7

41 Esemio Duale Lagrangiano max v v 54 v - 9u 8u u 6 v R, u R + J w Sol ottima: v * = 54, u * = (.5,0,0) C = (6, 8, 9, 9) Test w T C + (u * ) T (b- C ) < v * Se violato da (v * u * ), si aggiunge al core il vincolo v u T (b- C ) w C w C = C = (,, -9) 0 0 b - C = (-, 0, ) 0 0 v - u + u 7 Il vincolo non è violato da (v * u * ), v * valore soluzione ottima del duale lagrangiano b

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 Controlli Digitali Laurea Magistrale in Ingegneria Meccatronica CONTROLLORI PID Tel. 0522 522235 e-mail: secchi.cristian@unimore.it Introduzione regolatore Proorzionale, Integrale, Derivativo PID regolatori

Dettagli

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza 5 LAVR ED ENERGIA La valutazione dell equazione del moto di una articella a artire dalla forza agente su di essa risulta articolarmente semlice qualora la forza è costante; in tal caso è ossibile stabilire

Dettagli

Dispensa n.1 Esercitazioni di Analisi Mat. 1

Dispensa n.1 Esercitazioni di Analisi Mat. 1 Disensa n.1 Esercitazioni di Analisi Mat. 1 (a cura di L. Pisani) C.d.L. in Matematica Università degli Studi di Bari a.a. 2003/04 i Indice Notazioni iii 1 Princii di sostituzione 1 1.1 Funzioni equivalenti

Dettagli

STABILITÀ DEI SISTEMI LINEARI

STABILITÀ DEI SISTEMI LINEARI STABILITÀ DEI SISTEMI LINEARI Quando un sistema fisico inizialmente in quiete viene sottoosto ad un ingresso di durata finita o di amiezza limitata, l uscita del sistema dovrebbe stabilizzarsi a un certo

Dettagli

CARATTERISTICHE DELLA SOLLECITAZIONE

CARATTERISTICHE DELLA SOLLECITAZIONE RRISIH D SOIZIO bbiamo visto che la trave uò essere definita come un solido generato da una figura iana S (detta seione retta o seione ortogonale) che si muove nello saio mantenendosi semre ortogonale

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Introduzione alla trigonometria

Introduzione alla trigonometria Introduzione alla trigonometria Angoli e loro misure In questa unità introdurremo e studieremo una classe di funzioni che non hai ancora incontrato, le funzioni goniometriche. Esse sono imortanti sorattutto

Dettagli

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p Caitolo Ventitrè Offerta dell industria Offerta dell industria concorrenziale Come si combinano le decisioni di offerta di molte imrese singole in un industria concorrenziale er costituire l offerta di

Dettagli

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V LEGGI DEI GS Per gas si intende un fluido rivo di forma o volume rorio e facilmente comrimibile in modo da conseguire notevoli variazioni di ressione e densità. Le variabili termodinamiche iù aroriate

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

6 Collegamento cerniera con piastra d anima (Fin Plate)

6 Collegamento cerniera con piastra d anima (Fin Plate) 6 Collegamento cerniera con iastra d anima (in Plate) 6. Generalità e caratteristiche del collegamento Il collegamento a cerniera con iastra d anima si realizza saldando in oicina una iastra all elemento

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

RICERCA DI SISTEMA ELETTRICO

RICERCA DI SISTEMA ELETTRICO Agenzia Nazionale er le Nuove Tecnologie, l Energia e lo Sviluo Economico Sostenibile RICERCA DI SISTEMA ELETTRICO Studio comarativo tra fabbisogni energetici netti, lato edificio, sia er la climatizzazione

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

MERCATI NON CONCORRENZIALI. 2. grande numero di produttori e consumatori in ciascun mercato; 3. omogeneità del bene prodotto/venduto in ogni mercato

MERCATI NON CONCORRENZIALI. 2. grande numero di produttori e consumatori in ciascun mercato; 3. omogeneità del bene prodotto/venduto in ogni mercato MERCATI NON CONCORRENZIALI Le iotesi che sorreono lo schema di concorrenza eretta sono: 1. inormazione eretta e comleta er tutti li aenti; 2. rande numero di roduttori e consumatori in ciascun mercato;

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Ministero dell Istruzione, dell Università e della Ricerca PROVA DI AMMISSIONE AI CORSI DI LAUREA E DI LAUREA MAGISTRALE A CICLO UNICO DIRETTAMENTE FINALIZZATI ALLA FORMAZIONE DI ARCHITETTO Anno Accademico

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Rapporto sull Impatto della Sanità d Iniziativa. Valentina Barletta Paolo Francesconi Francesco Profili Laura Policardo

Rapporto sull Impatto della Sanità d Iniziativa. Valentina Barletta Paolo Francesconi Francesco Profili Laura Policardo Raorto sull Imatto della Sanità d Iniziativa Valentina Barletta Paolo Francesconi Francesco Profili Laura Policardo Novembre 2013 Indice 1 Storia e sviluo del rogetto sanità d iniziativa in Regione Toscana

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

Esercizio 1 Soluzione Esercizio 2 Soluzione

Esercizio 1 Soluzione Esercizio 2 Soluzione Esercizio 1 Si specifichi, mediante una formula del prim ordine un apparato che funziona nel modo seguente: All istante 0 esso emette un segnale s, che può essere uno 0 o un 1. Se, dopo l emissione di

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti Project Management Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Project Management 2 Metodi per supportare le decisioni relative alla gestione di progetti esempi sono progetti nell

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

COMUNE DI CALVELLO PROVINCIA DI POTENZA AREA: SETTORE AMMINISTRATIVO. DETERMINAZIONE DSG N 00954/2014 del 09/12/2014

COMUNE DI CALVELLO PROVINCIA DI POTENZA AREA: SETTORE AMMINISTRATIVO. DETERMINAZIONE DSG N 00954/2014 del 09/12/2014 N PAP-01410-2014 Si attesta che il resente atto è stato affisso all'albo Pretorio on-line dal 09/12/2014 al 24/12/2014 L'incaricato della ubblicazione GENNARO COLASURDO COMUNE DI CALVELLO PROVINCIA DI

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Esercizi sull Association Analysis

Esercizi sull Association Analysis Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf.

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Appunti dalle lezioni di

Appunti dalle lezioni di Università di Roma La Sapienza Sede di Latina (Università Pontina) Corso di Laurea in Ingegneria Informatica Appunti dalle lezioni di Ricerca Operativa Anno Accademico 2003-2004 Indice Introduzione 5 Che

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 1 - Greedy!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

LIVELLO STRATEGICO E TATTICO

LIVELLO STRATEGICO E TATTICO Corso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO 1 ESEMPI DI PROBLEMI DECISIONALI LIVELLO STRATEGICO Capacity growth planning LIVELLO TATTICO Aggregate planning

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI IL GIOCO DEL. OVVERO: 000$ PER SPOSTARE DUE BLOCCHETTI EMANUELE DELUCCHI, GIOVANNI GAIFFI, LUDOVICO PERNAZZA Molti fra i lettori si saranno divertiti a giocare al gioco del, uno dei più celebri fra i giochi

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli