Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11"

Transcript

1 Modelli dei Sistemi di Produzione Modelli e lgoritmi della Logistica 00- Scheduling: Macchina Singola CRLO MNNINO Saienza Università di Roma Diartimento di Informatica e Sistemistica

2 Il roblema /-/ w C Dati n ob,,n e una sola macchina ogni ob è quindi associata un unica oerazione. : temo di rocessamento (oerazione associata al) ob ssunzione > 0 er ogni w : eso del ob. w C : costo di comletamento del ob. s : istante d`inizio (variabile) del ob. I ob non ossono essere interrotti (no-reemtion) C = s + Problema : trovare uno scheduling s che minimizzi il temo di comletamento esato w C = w (s + ) Nella classificazione a tre indici: Problema /-/ w C

3 Formulazione disgiuntiva Job w Per comodità usiamo variabili C = s + min C + 5C + 9C + 6C 4 s.t. C C L =,, 4 (C C i ) (C i C i ) i, i, =,, 4 C L = 0, C R + =,, n Senza erdita di generalità si one C L = 0, che imlica C L Grafo disgiuntivo 9 9 9

4 Formulazione 0, Job w min C + 5C + 9C + 6C4 s.t. C > 6 C > 9 C > C4 > C - C + 00 x > 6 C - C - 00 x > -9 C - C + 00 x > 6 C - C - 00 x > -99 C - C x4 > 6 C4 - C - 00 x4 > -97 C - C + 00 x > 9 C - C - 00 x > -99 C - C x4 > 9 C4 - C - 00 x4 > -97 C - C x4 > C4 - C - 00 x4 > -97 binary x x x4 x x4 x4 end 9 6 File tio l, che uò essere letto dai rinciali solutori commerciali Variabili a sinistra, costanti a destra Il segno > denota il L Grafo disgiuntivo 9 9 9

5 Il roblema /-/ w C OSS: non conviene lasciare la macchina inattiva fra il comletamento di un ob e l`inizio del successivo In ogni soluzione ottima, un ob comincia quindi esattamente quando il recedente termina. Chiamiamo questa soluzione comatta. La sequenza (ermutazione),, n dei ob sulla macchina determina univocamente la soluzione comatta k- k n k k n Obs.: temo di comletamento del k-esimo ob C k r k r Problema /-/ w C : trovare la sequenza dei ob,, n che minimizza il temo di comletamento esato w C

6 La regola di Smith Regola di Smith: ordina er valori non crescenti del raorto w / Quindi, se,, n è una sequenza rodotta dalla regola di Smith: w w OSS. Se alcuni raorti coincidono, esistono iù sequenze che soddisfano la regola di Smith. w n n Th. 6. (Della regola di Smith) La soluzione comatta associata una sequenza,, n rodotta dalla regola di Smith è ottima er il roblema /-/ w C

7 Dimostrazione Regola di Smith Dimostrazione Teorema della regola di Smith Sia una sequenza ottima. Per assurdo suoniamo che non risetti la regola di Smith. Esistono quindi due ob adiacenti, e k, tale che k viene immediatamente doo in e si ha: w / < w k / k Consideriamo la sequenza ` ottenuta da invertendo e k t+ k ` k t t+ k t+ + k OBS. Tutti i temi di comletamento dei ob rimangono invariati tranne quelli del ob e del ob k.

8 Dimostrazione Regola di Smith ` i i t k Sia t il temo di comletamento del ob che recede in (e k in `) Siano C e C` i temi di comletamento in S e S`, risettivamente C` =t+ + k C`k =t+ k C =t+ C k =t+ + k Differenza di costo fra C e C: = wc wc = w (C` -C ) + w k (C`k -C k ) Sostituendo = w (t+ + k - t- ) + w k (t+ k t - - k ) = w ( k ) + w k (- ) t+ k t+ k C` C C`k C k t+ + k Da w / < w k / k w k < w k = w k - w k < 0 e non è ottima, contraddizione.

9 Esemio Job w w / = /, w / = 5/9, w / = 9, w 4 / 4 = Sequenza ottima: (, 4,, ) C = 9 C =, C =, C 4 = 4 w C = 8, w C =65, w C = 9, w 4 C 4 = 4 Costo totale = w C + w C + w C + w 4 C 4 = 6 OBS: il makesan 9 è uguale er ogni sequenza

10 Sequenze equivalenti Lemma. 6. (Sequenze Equivalenti) Se er ogni ob N, il suo eso w è uguale al suo temo di rocessamento, allora ogni sequenza è ottima Per ogni N, si ha w / =. Dal Teorema 6. (della regola di Smith) segue che ogni sequenza è ottima. Lemma. 6. (Valore della soluzione w = ) Se er ogni allora la soluzione ottima vale: f ( N) N N N si ha w = Per il Lemma 6. ogni sequenza è ottima: quindi anche = {,,,n} n n n- C = C = C n = + + n

11 Dimostrazione Lemma 6. Quindi lo schedule: r C r è ottimo e il suo valore f(n) è dato da ) ( ) ( ) ( ) ( n n N N r r N C w C N f i N N i i N n N,, Saendo che i N N i i N N f,, ) ( ) (,, N f i N N i i N N N

12 Poliedro degli schedule ammissibili Descriviamo l insieme S() R N degli scheduling ammissibili C. In altri termini C = (C,, C n ) T sequenza = {,, n} tale che C J C S() se e solo se esiste una C k,, n k k k C = (9,,,4) T S() 4 = {,4,,) 4 9 C = (0,0,,4) T S() = {,4,,)

13 Proiezione delle soluzioni Sia C = (C,, C n ) T R N uno schedule ammissibile, i.e. C S() Sia N un sottoinsieme di ob e sia S ( ) l insieme degli scheduling ammissibili er i soli ob in ( temi dei ob in ) llora la roiezione C di C nello sazio R soddisfa C S ( ) Esemio N = {,,,4}, = {,} C = (9,,,4) T S() = {,4,,)} 4 J C = (,) T = {,} 4 Naturalmente l ottimalità di C risetto a un sistema di esi w non imlica l ottimalità di C in S ( ) risetto w (C è in generale non comatta)

14 Vincoli validi Def. Sia dato un insieme di unti P R n, e siano a R n e b R. Il vincolo a T x b è detto valido er P se e solo se è soddisfatto da tutti i unti di P, ovvero se e solo se non esiste x P tale che a T x < b. P P Lemma. Sia dato un insieme di unti P R n, e sia a R n. Sia b = min{a T x: x P} llora a T x b è un vincolo valido er P. Infatti, se esistesse un unto x P tale che a T x < b si avrebbe min{a T x: x P} a T x < b contraddizione. 4

15 Prorietà degli schedule ammissibili Teorema. 6.4 () Sia N un sottoinsieme di ob e sia f ) ( llora il vincolo C f() è valido er S() Dim. Qual è il valore minimo che uò assumere la quantità? ) (, S C C ) ( * S C Sia C * la soluzione ottima del roblema ) ( : min S C C ) ( : min * S Q Q C ) ( ) ( : min f S Q Q dal Lemma 6. ) ( ) ( : min ) ( : min ) ( : f S Q Q S C C S C C C * roiezione di C nello sazio R

16 Esemio Esemio N = {,,,4}, = {,} J f() = ½ (+9) + ½ ( + 9 ) = 9 C f() 9C + C 9 C = (9,,,4) T S() C soddisfa il vincolo 9C + C = 9 + = 8 9

17 Il oliedro degli schedule ammissibili Per ogni N il vincolo C f() è valido er S() Chiamiamo S c () il oliedro degli scheduling comatti, e cioè l involucro convesso degli scheduling comatti associati a. Si uò far vedere che S c () coincide con S c (): C C f() N N C = f(n) R n Gli schedule comatti coincidono coi vertici Ext(S c ()) di S c ()

18 Esemio: vertici di S c () I vertici Ext(S c ()) di S c () corrisondono agli scheduling comatti. Esemio: C = (9,,,4) T S() = {,4,,)} J C = (7,7,,9) T S() = {,4,,)} Le combinazioni convesse aartengono al oliedro ma non corrisondono a schedule ammissibili Esemio: ½ C + ½ C = (,5,,.5)

19 Il roblema singola macchina Temo di comletamento esato con vincoli di recedenza

20 Il roblema /rec/ w C I questa arte affronteremo una generalizzazione del roblema singola macchina con temo di comletamento esato La generalizzazione revede la resenza di vincoli di recedenza fra ob Il roblema diviene in questo modo sostanzialmente iù difficile E imortante quindi oter disorre di buoni rilassamenti In linea di rinciio è ossibile usare la formulazione 0, associata al rogramma disgiuntivo corrisondente Tuttavia la resenza della big M rende questa formulazione molto debole Introduciamo quindi una tecnica generale er costruire rilassamenti nota come Rilassamento Lagrangiano

21 Il roblema /rec/ w C Dati n ob,,n e una sola macchina : temo di rocessamento (oerazione associata al) ob w : eso del ob. w C : costo di comletamento del ob. I ob non ossono essere interrotti (no-reemtion) C = s + lcuni ob osso iniziare solo doo il comletamento di altri: C C i + er ogni i Problema : trovare uno scheduling comatto C che minimizzi il temo di comletamento esato w C e soddisfi tutti i vincoli di recedenza Nella classificazione a tre indici: Problema /rec/ w C

22 Esemio Job w Grafo disgiuntivo C C + C 4 C + C 4 C +

23 Formulazione 0, Job w min C + 5C + 9C + 6C4 s.t. C > 6 C > 9 C > C4 > C - C + 00 x > 6 C - C - 00 x >= -9 binary x x x4 end C - C + 00 x > 9 C - C - 00 x > -99 C - C x4 > C4 - C - 00 x4 > -97 C - C > C4 - C > C4 - C > 6 9 Sol Ottima C = 6, C = 6, C = 7, C4 = 9. Valore: Grafo disgiuntivo x =x =x 4 =x =x 4 =x 4 = 9 9

24 Comlessità roblema /rec/ w C Il roblema /rec/ w C è in genere difficile comutazionalmente. Per alcune classi di vincoli aggiuntivi il roblema uò essere risolto efficientemente In articolare, se il grafo associato ai vincoli aggiuntivi è serie-arallelo (ad esemio, un cammino o un insieme di cammini assanti er nodi distinti). Si ossono usare tecniche di soluzione tio Branch&Bound Per alicare queste tecniche occorre definire un rilassamento Di seguito illustreremo una tecnica di rilassamento molto studiata, nota col nome di Rilassamento Lagrangiano.

25 Esemio min C + 5C + 9C + 6C 4 C - C u = C 4 - C u = C 4 - C u = C Ext(S c ()) min C + 5C + 9C + 6C 4 + ( - C + C ) + ( C 4 + C ) + ( C 4 + C ) C Ext(S c ()) + min 5C + 7C + 7C + C 4 C Ext(S c ()) Problema residuo risolvibile con il Greedy. J w' w / 5/6 7/ Valore z RL (u) = z RL ((,,) T ) = + 0 = < 69(valore ottimo P(Q) )

26 Teorema del Rilassamento Lagrangiano P(Q): z Q = min x {c T x: x b, x Q }, con Q R n e matrice m n RL(u): z RL (u) = min x {c T x + u T (b- x), x Q}, con u 0 Teorema 6.5 (del rilassamento lagrangiano) Per ogni RL(u) è un rilassamento di P(Q) e si ha z RL (u) z Q u m R Dim. La regione ammissibile Q di RL(u) è ottenuta rimuovendo vincoli da quella di P(Q): R ={x: x b, x Q} R Q x ammissibile er P(Q) x b b- x 0 u 0, b- x 0 u T (b- x ) 0 c T x + u T (b- x ) c T x (er ogni x R, la f.o.di RL(u) è della f.o. di P(Q) ) RL(u) è un rilassamento di P(Q) e z RL (u) z Q

27 Esemio min C + 5C + 9C + 6C 4 C - C u = C 4 - C u = C 4 - C u = C Ext(S c ()) min C + 5C + 9C + 6C 4 + ( - C + C ) + ( C 4 + C ) + ( C 4 + C ) C Ext(S c ()) 6+ min 5C + 8C + 8C + C 4 C Ext(S c ()) J w' w' / 5/6 8/9 8 / Valore z RL (u) = z RL ((,,) T ) = 6+ 0 = 8 < 69 (valore ottimo P(Q) ) OSS z RL ((,,) T ) = 8 > z RL ((,,) T )

28 Duale Lagrangiano Il valore z RL (u) =min x {c T x + u T (b- x), x Q}, u 0 varia con u Per ottenere il miglior lower bound ossibile, siamo interessati al massimo di z RL (u) al variare di u Il roblema DL: z RL =max u {z RL (u) } è detto Duale Lagrangiano. Quindi DL: max u min x {c T x + u T (b- x), x Q, u 0} DL è un robrema di rogrammazione non lineare e uò con varie tecniche (es. il metodo del subgradiente) essere risolto Di seguito mostreremo un aroccio basato sul metodo del simlesso dinamico.

29 Risolvere il duale lagrangiano DL: max u min x { c T x + u T (b- x), x Q, u 0} ssunzione : Q = {x,, x r } è un insieme finito Q} uò essere risolto er enumerazione trovando il minimo delle seguenti quantità Per fissato u = u il roblema min x {c T x + u T (b- x), x v (u ) = c T x + u T (b- x ) v (u ) = c T x + u T (b- x ) v r (u ) = c T x r + u T (b- x r ) OSS: min {v (u ),, v r (u )} = max {v: v v (u ),, v v r (u ), v R} DL uò essere riscritto come max u 0 max v {v: v v (u),, v v r (u), v R}

30 Risolvere il duale lagrangiano Quindi DL = max u min x {c T x + u T (b- x), x Q, u 0} diventa DLv max u max v v = max u,v v v c T x + u T (b- x ) v c T x + u T (b- x ) v c T x r + u T (b- x r ) v R, u R m + Le variabili di DLv sono v R e u R m Ogni vincolo corrisonde a un unto di Q Se Q è grande si uò (si deve!) alicare il metodo del simlesso dinamico. Comonente essenziale: oracolo di searazione.

31 Oracolo di Searazione Riga i Descrizione imlicita di: x ^ R n a i Oracolo di Searazione x^ P ={x R n : x<b} ^x P ^x P a ^ i x > b i vincolo violato b x^ < b i x^ P Oracolo di searazione: algoritmo che, dato un oliedro P ={x R n : x<b} e un unto x * R n stabilisce se x * P oure restituisce un vincolo della descrizione di P violato da x *

32 Oracolo di searazione er DLv Oracolo di Searazione: Data una soluzione (v *, u * ) di DLv trova un vincolo tale che v * > c T x t + (u * ) T (b- x t ) (vincolo violato) o dimostra che tale vincolo non esiste. I vincoli corrisondono ai unti di Q Oracolo di Searazione Trova x t Q che minimizza c T x t + (u * ) T (b- x t ) Se c T x t + u *T (b- x t ) < v * v u T (b- x t ) vincolo violato c x t ltrimenti c T x + u *T (b- x) v * er ogni x Q e non esiste un vincolo violato

33 Oracolo di searazione er /rec/ w C (u * ) T b + min c T x - u *T x x Q Nel caso del roblema /rec/ w C, doo aver rilassato i vincoli di recedenza C b, il roblema residuo è un roblema/-/ w C. Le soluzioni del rilassamento (insieme Q) sono quindi schedule comatti, corrisondenti ai vertici di S c () Il roblema di searazione er (v * u * ) diventa quindi u *T b + min w T C - u *T C C Ext(S c ()) Il roblema qua sora uò essere risolto con la regola di Smith.

34 Metodo del Simlesso Dinamico Risolve un roblema di Programmazione Lineare: max c T x : x P ={x R n : x b, c T x k} ssunzione: roblema non illimitato Due ingredienti: max c T x x b, c T x k x ^ R n Oracolo di Searazione di P Metodo del Simlesso ^x P ^x P ^ a i x > b i x * soluzione ottima roblema illimitato nessuna soluzione (P =

35 Definizione del roblema core D 0 d 0 b D=D 0 ; d=d 0 max c T x x Q = Dx<d, (P Q) c T x k Nuova D e nuovo d D d a T i b i ggiunta del vincolo violato Metodo del Q= Simlesso x * ottima (in Q) Oracolo di Searazione di P x * P a it x>b i x * P P= x * ottima

36 Esemio min C + 5C + 9C + 6C 4 C - C C 4 - C C 4 - C C Ext(S c ()) J w Risolviamo il duale lagrangiano alicando il simlesso dinamico Il roblema core iniziale è costruito a artire da vincoli corrisondenti a un sottoinsieme di schedule comatti. Senza erdita di generalità, ossiamo aggiungere al roblema (e al rimo roblema core) in vincolo v k con k oortuno, in modo da rendere non illimitati i roblemi nella successione. Essendo il valore finale di v un lower bound sul valore ottimo del roblema originario, k uò essere scelto come il valore di una soluzione ammissibile er il roblema originario.

37 Esemio min C + 5C + 9C + 6C 4 C - C C 4 - C C 4 - C C Ext(S c ()) J w La sequenza = {,, 4, } è ammissibile. C( ) = (5,9,9,8) T w T C = = 54 Possiamo orre nel duale lagrangiano v 54

38 Esemio Duale Lagrangiano max v v 54 v R, u R + J w Sol ottima: v * = 54, u * = (0,0,0) Oracolo di searazione u * b + min (w (u * ) T ) C C Ext(S c ()) 0+ min C + 5C + 9C + 6C 4 x Ext(S c ()) = (, 4,, ) C = (9,,, 4) J w w / / 5/9 9 Regola di Smith wc = 6

39 Esemio Duale Lagrangiano max v v 54 v R, u R + J w Sol ottima: v * = 54, u * = (0,0,0) C = (9,,, 4) Test w T C + (u * ) T (b- C ) < v * 6 < 54 Si aggiunge al duale lagrangiano il vincolo v u T (b- C ) w C w C = 6 C = (-8, -5, -9) b - C = (9, 8, ) v - 9u 8u u b

40 Esemio Duale Lagrangiano max v v 54 v - 9u 8u u 6 v R, u R + J w Sol ottima: v * = 54, u * = (.5,0,0) Oracolo di searazione (u * ) T b + min (w - (u * ) T ) C x Ext(S c ()),5+ min,5c + 5C -,5C + 6C 4 x Ext(S c ()) = (,4,, ) C = (6, 8, 9, 9) J w,5 5 -,5 6 w /, 5/9 -,5 Regola di Smith wc = 7

41 Esemio Duale Lagrangiano max v v 54 v - 9u 8u u 6 v R, u R + J w Sol ottima: v * = 54, u * = (.5,0,0) C = (6, 8, 9, 9) Test w T C + (u * ) T (b- C ) < v * Se violato da (v * u * ), si aggiunge al core il vincolo v u T (b- C ) w C w C = C = (,, -9) 0 0 b - C = (-, 0, ) 0 0 v - u + u 7 Il vincolo non è violato da (v * u * ), v * valore soluzione ottima del duale lagrangiano b

Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale

Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Saienza Università di Roma - Diartimento di Ingegneria Informatica, Automatica e Gestionale Scheduling Renato Bruni bruni@dis.uniroma.it Il materiale resentato è derivato da quello dei roff. A. Sassano

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Logistica (mn) 6 CFU Appello del 22 Luglio 2010

Logistica (mn) 6 CFU Appello del 22 Luglio 2010 Logistica (mn) 6 CFU Aello del Luglio 010 NOME: COGNOME: MATR: Avvertenze ed istruzioni: Il comito dura ore e quindici. Non è ermesso lasciare l'aula senza consegnare il comito o ritirarsi. Se dovessero

Dettagli

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P 4. Reti correttrici e regolatori industriali Un sistema di controllo ad anello chiuso deve soddisfare le secifiche assegnate nel dominio della frequenza e quelle assegnate nel dominio del temo. Queste

Dettagli

Risposta: 2009 2010 Quantità Prezzo ( ) Quantità Prezzo ( ) Automobili 8.000 15.000 6.500 14.500 Biciclette 80.000 195,52 94.

Risposta: 2009 2010 Quantità Prezzo ( ) Quantità Prezzo ( ) Automobili 8.000 15.000 6.500 14.500 Biciclette 80.000 195,52 94. 1. Domanda Si consideri un sistema economico che roduce solo due beni: automobili e biciclette. È noto che nel 009 sono state rodotte 8.000 automobili che sono state venduto al rezzo di 15.000 e 80.000

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO CM a.s. /3 PROLEMA DELL TILE DEL CONSMATORE CON IL VINCOLO DEL ILANCIO Il consumatore è colui che acquista beni er destinarli al rorio consumo. Linsieme dei beni che il consumatore acquista rende il nome

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η =

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η = CICLI ERMODINAMICI DIREI: Maccine termice Le maccine ce anno come scoo uello di trasformare ciclicamente in lavoro il calore disonibile da una sorgente termica sono dette maccine termice o motrici e il

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 Controlli Digitali Laurea Magistrale in Ingegneria Meccatronica CONTROLLORI PID Tel. 0522 522235 e-mail: secchi.cristian@unimore.it Introduzione regolatore Proorzionale, Integrale, Derivativo PID regolatori

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

Ancora sulla II parte dell articolo ALCUNE REGOLARITA DAI NUMERI PRIMI di Guido Carolla 1

Ancora sulla II parte dell articolo ALCUNE REGOLARITA DAI NUMERI PRIMI di Guido Carolla 1 Ancora sulla II arte dell articolo ALCUNE REGOLARITA DAI NUMERI PRIMI di Guido Carolla 1 1. Un osservazione sulle somme contratte e sul software del massimo ga Facendo seguito a quanto l autore ha iniziato

Dettagli

1 Il campo elettrico. 1.1 Azione a distanza

1 Il campo elettrico. 1.1 Azione a distanza 1 Il camo elettrico 1.1 Azione a distanza L idea di interazione fra cori è stata semre associata all idea di un contatto: la ossibilità che un oggetto otesse esercitare un azione in una regione di sazio

Dettagli

1. Classificazione delle risorse

1. Classificazione delle risorse 1. Classificazione delle risorse Classificazione delle risorse in base alla disponibilità. - Risorse rinnovabili Sono risorse utilizzate per l esecuzione di una attività per tutta la sua durata, ma sono

Dettagli

6. CAMPO MAGNETICO ROTANTE.

6. CAMPO MAGNETICO ROTANTE. 6 CAMPO MAGNETICO ROTANTE Il camo magnetico monofase Il funzionamento delle macchine elettriche rotanti alimentate in corrente alternata si basa sul rinciio del camo magnetico rotante: il suo studio viene

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA GEOMETRIA IL TEOREMA DI PITAGORA E LE SUE APPLICAZIONI PREREQUISITI l conoscere le rorietaá delle quattro oerazioni ed oerare con esse l conoscere il significato ed oerare con otenze ed estrazioni di radici

Dettagli

Una proposizione è una affermazione di cui si possa stabilire con certezza il valore di verità

Una proposizione è una affermazione di cui si possa stabilire con certezza il valore di verità Logica 1. Le roosizioni 1.1 Cosa studia la logica? La logica studia le forme del ragionamento. Si occua cioè di stabilire delle regole che ermettano di assare da un'affermazione vera ad un'altra affermazione

Dettagli

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza 5 LAVR ED ENERGIA La valutazione dell equazione del moto di una articella a artire dalla forza agente su di essa risulta articolarmente semlice qualora la forza è costante; in tal caso è ossibile stabilire

Dettagli

Dispensa n.1 Esercitazioni di Analisi Mat. 1

Dispensa n.1 Esercitazioni di Analisi Mat. 1 Disensa n.1 Esercitazioni di Analisi Mat. 1 (a cura di L. Pisani) C.d.L. in Matematica Università degli Studi di Bari a.a. 2003/04 i Indice Notazioni iii 1 Princii di sostituzione 1 1.1 Funzioni equivalenti

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

Esercizi SINTESI E RIEPILOGO. Parole chiave. Formule e proprietà importanti. Tema B. In più: esercizi interattivi

Esercizi SINTESI E RIEPILOGO. Parole chiave. Formule e proprietà importanti. Tema B. In più: esercizi interattivi Unità Esercizi In iù: esercizi interattivi Tema B SINTESI E RIEPILG Parole chiave Ascissa. 17 Asse delle ascisse. 17 Asse delle ordinate. 17 Asse. 17 Asse. 17 Coefficiente angolare. 10 Coordinata. 17 Distanza

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

E chiaro allora che, rappresentando l evento impossibile e quello certo le due situazioni limite, per un qualunque evento si avrà:

E chiaro allora che, rappresentando l evento impossibile e quello certo le due situazioni limite, per un qualunque evento si avrà: CORSO ELEMENTARE SULLA PROBABILITA Eserimento aleatorio: ogni fenomeno del mondo reale il cui svolgimento è accomagnato da un certo grado di incertezza. rova (tentativo) singola esecuzione di un ben determinato

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DEI MODELLI E DEI SISTEMI TESI DI LAUREA

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DEI MODELLI E DEI SISTEMI TESI DI LAUREA UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DEI MODELLI E DEI SISTEMI TESI DI LAUREA Sistemi Ibridi: stabilità e alicazioni al controllo Relatore: Francesco

Dettagli

L equilibrio chimico

L equilibrio chimico Equilibrio chimico L equilibrio chimico Ogni reazione, in un sistema chiuso, evolve sontaneamente ad uno stato di equilibrio Quando viene raggiunto lo stato di Equilibrio Chimico: le velocità della reazione

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

Un puntatore è una variabile che contiene l indirizzo di una variabile. Una variabile di tipo puntatore è dichiarata tramite il costruttore di tipo *

Un puntatore è una variabile che contiene l indirizzo di una variabile. Una variabile di tipo puntatore è dichiarata tramite il costruttore di tipo * PUNTATORI Un untatore è una variabile che contiene l indirizzo di una variabile var. di tio "untatore a variabile di tio T" indir. di variab. variabile di tio T valore di tio T Una variabile di tio untatore

Dettagli

SENSAZIONE SONORA. 18.1 L orecchio umano. 18.2 La sensazione sonora - Audiogramma normale

SENSAZIONE SONORA. 18.1 L orecchio umano. 18.2 La sensazione sonora - Audiogramma normale Corso di Imiati Tecnici a.a. 009/010 Docente: Prof. C. Isetti CAPITOLO 18 18.1 L orecchio umano La ercezione di suoni, come d altra arte già osservato al riguardo della luce, coinvolge sia asetti fisici

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Regolazione degli impianti a vapore

Regolazione degli impianti a vapore Regolazione degli imianti a vaore Ing. A. Paolo Carlucci Nel rogetto di una centrale termoelettrica intervengono numerosi fattori: utilizzazione annua, ovvero quante ore all anno una centrale deve funzionare;

Dettagli

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze.

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze. Università degli Studi di erugia Corso di Laurea Magistrale in Scienze della olitica e dell'mministrazione Lezione n. Riasso di microeconomia CONOMI FINNZ ULIC nza Caruso Le referenze Come i consumatori

Dettagli

STABILITÀ DEI SISTEMI LINEARI

STABILITÀ DEI SISTEMI LINEARI STABILITÀ DEI SISTEMI LINEARI Quando un sistema fisico inizialmente in quiete viene sottoosto ad un ingresso di durata finita o di amiezza limitata, l uscita del sistema dovrebbe stabilizzarsi a un certo

Dettagli

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria Formulazioni PLI di problemi di decisione Dispensa per il modulo di Analisi e Ottimizzazione dei Processi di Produzione Università di Roma Tor Vergata a cura di Andrea Pacifici, Claudio Cavalletti, Daniela

Dettagli

[4] che, nel caso piano, assume la seguente forma: T = [4 ] Denominate a x, a y e a z le componenti del vettore traslazione t ed indicando con

[4] che, nel caso piano, assume la seguente forma: T = [4 ] Denominate a x, a y e a z le componenti del vettore traslazione t ed indicando con L'LLINEMENTO DELLE SCNSIONI LSER SCNNER MEDINTE L'IMPLEMENTZIONE DI UN INSIEME RIDONDNTE DI SISTEMI RISOLUTIVI Massimo CHILLEMI, Luigi GICOBBE DISI Facoltà di Ingegneria Università di Messina, 0903977208,

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

MOSS (Mini One Stop Shop) Mini Sportello Unico

MOSS (Mini One Stop Shop) Mini Sportello Unico MOSS (Mini One Sto Sho) Mini Sortello Unico Oerazioni di e-commerce diretto Giovedì 13 novembre 2014 Gruo di lavoro oerazioni doganali e intracomunitarie Gruo di lavoro oerazioni doganali e intracomunitarie

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Il trade-off Efficienza Equità. L ottimo paretiano e l ottimo sociale. Quale teoria della giustizia? ECONOMIA E FINANZA PUBBLICA

Il trade-off Efficienza Equità. L ottimo paretiano e l ottimo sociale. Quale teoria della giustizia? ECONOMIA E FINANZA PUBBLICA niversità degli Studi di erugia orso di Laurea Magistrale in Scienze della olitica e dell'mministrazione EONOMI E FINNZ LI Lezione n 7-8 Il trade-off Efficienza Equità L ottimo aretiano e l ottimo sociale

Dettagli

SoftCare² Pro Touchless

SoftCare² Pro Touchless SoftCare² Pro Touchless l IMPIANTO COMBINATO SoftCare² Pro Touchless le massime restazioni di lavaggio touchless SoftCare² Pro Touchless Sono disonibili due varianti dell'imianto: semlice oure combinata

Dettagli

Valutazione dei consumi globali di energia e delle emissioni di un sistema

Valutazione dei consumi globali di energia e delle emissioni di un sistema ESERCITAZIONE 1 Valutazione dei consumi globali di energia e delle emissioni di un sistema Il sistema a cui faremo generalmente riferimento in questo corso sarà uno stabilimento di azienda manifatturiera,

Dettagli

I NUMERI INDICI. Numeri indici indici (misurano il livello di variabilità, concentrazione, dipendenza o interdipendenza, ecc.)

I NUMERI INDICI. Numeri indici indici (misurano il livello di variabilità, concentrazione, dipendenza o interdipendenza, ecc.) NUMER NDC Numeri indici indici (misurano il livello di variabilità, concentrazione, diendenza o interdiendenza, ecc.) si utilizzano er confrontare grandezze nel temo e nello sazio e sono dati dal raorto

Dettagli

La FREQUENZA del suono

La FREQUENZA del suono ACUSTICA PSICOFISICA La FREQUENZA del suono Infra Audio Ultra... K Hz Frequenza L orecchio è sensibile solo a variazioni della ressione, intorno a quella media atmosferica, caratterizzate da oscillazioni

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle robabilità Evento casuale Chissà quante volte vi hanno detto: Scegli una carta da questo mazzo e voi scegliete casualmente una carta. Perché casualmente? Cosa vuol dire scegliere a caso?

Dettagli

La presa dei fotogrammi

La presa dei fotogrammi UNITÀ T2 La resa dei fotogrammi TEORI 1 Fotogrammetria aerea 2 Relazione tra scala dei fotogrammi e altezza di volo 3 Parametri del volo aereo fotogrammetrico 4 Gestione del volo fotogrammetrico 5 Fotogrammetria

Dettagli

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T CICLI MOORI Utilizzando un motore (sorgente di lavoro meccanico oerante in maniera ciclica) che evolve secondo il ciclo isotermo-adiabatico di Carnot in maniera internamente reversibile, scambiando calore

Dettagli

N.B. La parte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata.

N.B. La parte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata. N.B. La arte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata. Telerilevamento e modelli matematici Michele Scardi La biomassa fitolanctonica, generalmente esressa come concentrazione

Dettagli

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao)

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao) Trigonometria (tratto dal sito Comito in classe di Matematica di Gilberto Mao) Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al

Dettagli

Appunti di Termodinamica

Appunti di Termodinamica ullio Paa unti di ermodinamica Per arofondire consultare il testo: Paa; Lezioni di Fisica-ermodinamica, edizioni Kaa, Roma 1 Sistemi e variabili termodinamiche Equazioni di stato 1 Introduzione La termodinamica

Dettagli

Capitolo 4 GPS. Prof. MAURO CAPRIOLI. Capitolo 4 GPS

Capitolo 4 GPS. Prof. MAURO CAPRIOLI. Capitolo 4 GPS 89 ...89 1 - Introduzione...91 2 - Princiio di base del osizionamento GPS...92 3 - Organizzazione del sistema GPS...93 3.1 - La sezione saziale...93 3.2 - La sezione di controllo...95 3.3 - La sezione

Dettagli

CONCORRENZA PERFETTA E DINAMICA

CONCORRENZA PERFETTA E DINAMICA 1 CONCORRENZA PERFETTA E DINAMICA 1. La caratterizzazione dell'equilibrio di mercato Per caratterizzare un mercato di concorrenza erfetta consideriamo un certo numero di imrese che roducono e offrono tutte

Dettagli

Elementi di meccanica dei fluidi

Elementi di meccanica dei fluidi IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 Caitolo 3 Elementi di meccanica dei fluidi 3. IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 3. Introduzione In molti imianti il collegamento

Dettagli

Complementi ed esercizi di Idrodinamica I parte. 1. Proprietà fisiche dei fluidi

Complementi ed esercizi di Idrodinamica I parte. 1. Proprietà fisiche dei fluidi Comlementi ed esercizi di Idrodinamica I arte.. Prorietà fisiche dei fluidi. Densità e modulo di elasticità a comressione cubica. Come è noto la densità di massa ρ misura la massa contenuta nell unità

Dettagli

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain 1 PROGRAMMAZIONE LINEARE 1 1 Programmazione lineare 1.1 Modelli matematici Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling

Dettagli

Scambio termico 6.1. 6.1.1 Introduzione. 6.1.2 Conduzione

Scambio termico 6.1. 6.1.1 Introduzione. 6.1.2 Conduzione 6. Scambio termico 6.. Introduzione Lo studio dei fenomeni di scambio termico si uò ricondurre a due variabili: la temeratura e il flusso di calore. La temeratura indica l energia molecolare media di un

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Aunti ed Esercizi di Fisica ecnica e Macchine ermiche Ca.7. I cicli termici delle macchine motrici Paolo Di Marco Versione 006.0 0.0.07 La resente disensa è redatta ad esclusivo uso didattico er gli allievi

Dettagli

0 A B I C O L M P E Q R F G D H N *

0 A B I C O L M P E Q R F G D H N * UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Modelli di Sistemi di Produzione I scritti d'esame appelli 2004/05 e 2005/06 Esercizio 1 job 3: I (M 1, 3) L (M 2, 4) M (M 3, 11)

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

CARATTERISTICHE DELLA SOLLECITAZIONE

CARATTERISTICHE DELLA SOLLECITAZIONE RRISIH D SOIZIO bbiamo visto che la trave uò essere definita come un solido generato da una figura iana S (detta seione retta o seione ortogonale) che si muove nello saio mantenendosi semre ortogonale

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Economia dell'informazione

Economia dell'informazione Economia dell'informazione Disensa 3 Monoolio Martina Gambaro & Andrea Borghesan martina.gambaro@unive.it - borg@unive.it Sommario Monoolio... 1 Massimizzazione del rofitto in monoolio... Monoolio ed elasticità...

Dettagli

APPLICAZIONI DELLA RICERCA OPERATIVA

APPLICAZIONI DELLA RICERCA OPERATIVA Università degli Studi della Calabria Laurea in Informatica A.A. 2004/2005 Appunti di supporto didattico al corso di APPLICAZIONI DELLA RICERCA OPERATIVA Indice 1 Introduzione alla teoria dello Scheduling

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Il caso delle reti sociali

Il caso delle reti sociali Il caso delle reti sociali Reti Small worlds Scale-free Reti e otere Mircofondamenti delle reti e redizione Reti di diendenza e formazione di coalizioni Piccoli mondi La teoria del mondo iccol: Stanley

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I rocessi termodinamici che vengono realizzati nella ratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

STUDIO D ALESSIO COMMERCIALISTI

STUDIO D ALESSIO COMMERCIALISTI Circolare informativa n 4/2011 STUDIO D ALESSIO COMMERCIALISTI Novità fiscali introdotte dalla Legge 14 settembre 2011 n. 148 La resente circolare ha lo scoo di fornire una anoramica delle numerose novità

Dettagli

SISTEMA D ALLARME E COMUNICATORI

SISTEMA D ALLARME E COMUNICATORI SISTEMA D ALLARME E COMUNICATORI MANUALE D USO Grazie er aver acquistato un sistema di sicurezza DAITEM adeguato alle vostre esigenze di rotezione. Precauzioni L installazione del sistema deve essere effettuata

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Gestione delle Scorte

Gestione delle Scorte Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Gestione delle Scorte Renato Bruni bruni@dis.uniroma.it Il materiale presentato è derivato da quello dei proff.

Dettagli

5. Dati sperimentali e loro elaborazione 9. 5.1 Resistenza interna del triodo 9. 5.2 Conduttanza mutua del triodo 16

5. Dati sperimentali e loro elaborazione 9. 5.1 Resistenza interna del triodo 9. 5.2 Conduttanza mutua del triodo 16 Sommario Pa. 1. Scoo dell eserienza 2 2. Presuosti teorici 3 3. Aarato Strumentale 6 4. Descrizione dell eserimento 8 5. Dati serimentali e loro elaborazione 9 5.1 Resistenza interna del triodo 9 5.2 Conduttanza

Dettagli

2 3 N TRACCIAMENTO GRAFICO DEI DOMINI DI ROTTURA DI SEZIONI IN CEMENTO ARMATO

2 3 N TRACCIAMENTO GRAFICO DEI DOMINI DI ROTTURA DI SEZIONI IN CEMENTO ARMATO TRACCIAMENTO GRAFICO DEI DOMINI DI ROTTURA DI SEZIONI IN CEMENTO ARMATO MAURO FABBIANI, roessionista in Vicenza GIANLUCA PANTO, della Beton Piave di Nervesa della Battaglia M 1 2 3 N Sommario Il metodo

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

AVVISO INTEGRATIVO DI EMISSIONE RELATIVO A: ABN AMRO BANK N.V. MINI FUTURES LONG E MINI FUTURES SHORT CERTIFICATES SU

AVVISO INTEGRATIVO DI EMISSIONE RELATIVO A: ABN AMRO BANK N.V. MINI FUTURES LONG E MINI FUTURES SHORT CERTIFICATES SU Avviso Integrativo della Nota Integrativa relativa al rogramma di emissione degli ABN Mini Futures Long e Mini Futures Short Certificates su Future sull Oro, sull Argento, sul Platino, sul Palladio e sul

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale Aunti ed Esercizi di Fisica Tecnica e Macchine Termiche Ca. 0. Elementi di sicrometria, condizionamento dell aria e benessere ambientale Nicola Forgione Paolo Di Marco Versione 0.0.04.0. La resente disensa

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

MERCATO E FALLIMENTI DEL MERCATO

MERCATO E FALLIMENTI DEL MERCATO Lezione seconda Ricordiamo alcuni quesiti di Teoria ositiva Beni ubblici e meccanismi di decisione olitica Perché la difesa della nazione è fatta dallo stato e non da imrese rivate? in autostrada si aga

Dettagli

ROTARY. La web communication. Distretto 2040 Rotary International

ROTARY. La web communication. Distretto 2040 Rotary International ROTARY La web communication Distretto 2040 Rotary International Indice Premessa 1 Scenario 2 Perché creare un sito web er il club? 3 Come realizzare un sito web 4 I contenuti del sito 4 Il sito internazionale

Dettagli

DISPENSE DEI CORSI DI AEROTECNICA E PROGETTAZIONE Istituto Tecnico Industriale Statale Francesco Giordani Caserta

DISPENSE DEI CORSI DI AEROTECNICA E PROGETTAZIONE Istituto Tecnico Industriale Statale Francesco Giordani Caserta Costruzioni aeronautiche DISPENSE DEI CORSI DI AEROTECNICA E PROGETTAZIONE Istituto Tecnico Industriale Statale Francesco Giordani Caserta Ing. Ciro Sarano Piano di lavoro Sistema e ambiente Indice Piano

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

ATMOSFERE CONTROLLATE NELLA METALLURGIA DELLE POLVERI Teoria e pratica

ATMOSFERE CONTROLLATE NELLA METALLURGIA DELLE POLVERI Teoria e pratica ATMOSFERE CONTROLLATE NELLA METALLURGIA DELLE POLVERI Teoria e ratica Enrico MOSCA TORINO 1 1. INTRODUZIONE Le atmosfere controllate si definiscono come un singolo gas o una miscela di gas, la cui comosizione

Dettagli

Introduzione Ordini parziali e Reticoli Punti fissi

Introduzione Ordini parziali e Reticoli Punti fissi Introduzione Ordini parziali e Reticoli Punti fissi By Giulia Costantini (819048) & Giuseppe Maggiore (819050) Table of Contents ORDINE PARZIALE... 3 Insieme parzialmente ordinato... 3 Diagramma di Hasse...

Dettagli

SOLUZIONI ESERCIZI PARTE PRIMA: FONDAMENTI DI MICROECONOMIA 1

SOLUZIONI ESERCIZI PARTE PRIMA: FONDAMENTI DI MICROECONOMIA 1 SOUZIONI ESERCIZI PARTE PRIMA: FONDAMENTI DI MICROECONOMIA 1 EQUIIBRIO DI MERCATO, DOMANDA E OFFERTA PROBEMA 1 (SVOTO IN AUA): amministrazione ubblica ha aena deciso di aumentare le accise sulla benzina.

Dettagli

Intelligenza Artificiale e Reti Neurali

Intelligenza Artificiale e Reti Neurali Intelligenza Artificiale e Reti Neurali Daniel J. Amit (1938-2007 Le reti neurali sono nate (esclusivamente? er un rogetto iù grande, quello della INTELLIGENZA ARTIFICIALE L intelligenza artificiale cerca

Dettagli

Bibliografia. Gestione operativa della produzione. Terminologia. Schedulazione. Schedulazione operativa della produzione

Bibliografia. Gestione operativa della produzione. Terminologia. Schedulazione. Schedulazione operativa della produzione Bibliografia Gestione operativa della produzione Schedulazione operativa della produzione 14/12/2001 11.54 E.L. Lawler, J.K. Lenstra, A.G.H. Rinnoy Kan, D.B. Shmoys, Sequencing and Scheduling: Algorithms

Dettagli

Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale. L. De Giovanni, V. Dal Sasso

Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale. L. De Giovanni, V. Dal Sasso Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale L. De Giovanni, V. Dal Sasso 1 Esercizio 1. Dato il problema min 2x 1 x 2 s.t. x 1 + 2x 2 7 2x 1 x 2 6 3x 1 + 2x 2

Dettagli

COMUNE DI CENTO REGOLAMENTO PER L ACCOGLIENZA DI PERSONE ASSISTITE PRESSO STRUTTURE RESIDENZIALI AUTORIZZATE

COMUNE DI CENTO REGOLAMENTO PER L ACCOGLIENZA DI PERSONE ASSISTITE PRESSO STRUTTURE RESIDENZIALI AUTORIZZATE COMUNE DI CENTO REGOLAMENTO PER L ACCOGLIENZA DI PERSONE ASSISTITE PRESSO STRUTTURE RESIDENZIALI AUTORIZZATE ag. 1 di 13 Premessa. L Amministrazione Comunale garantisce l inserimento ed il mantenimento

Dettagli

AREA 1: FUNZIONI E LIMITI

AREA 1: FUNZIONI E LIMITI AREA : FUNZIONI E LIMITI INSIEMI NUMERICI E FUNZIONI Per ricordare H Un insieme E si dice: itato sueriormente se esiste un numero k, non necessariamente aartenente a E, che eá maggiore o uguale di tutti

Dettagli

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS INTRODUZIONE Per conoscere la struttura di un grafo connesso è importante individuare nel grafo la distribuzione di certi punti detti cutpoints (punti

Dettagli

Introduzione alla trigonometria

Introduzione alla trigonometria Introduzione alla trigonometria Angoli e loro misure In questa unità introdurremo e studieremo una classe di funzioni che non hai ancora incontrato, le funzioni goniometriche. Esse sono imortanti sorattutto

Dettagli

Simulazione adattiva dei flussi di traffico

Simulazione adattiva dei flussi di traffico Simulazione adattiva dei flussi di traffico Roberto Gabrielli(*), Alessandra Guidazzi (*), Raffaele Miserocchi (*) Marco Antonio Boschetti(**), Vittorio Maniezzo(**), Matteo Roffilli(**) (*) Servizio Pianificazione

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 5 La dualità nella Programmazione Lineare In questo capitolo verrà introdotto un concetto di fondamentale importanza sia per l analisi dei problemi di Programmazione Lineare, sia per lo sviluppo

Dettagli

Le Macchine a Fluido. Tutor Ing. Leonardo Vita

Le Macchine a Fluido. Tutor Ing. Leonardo Vita Le Macchine a Fluido Tutor Ing. Leonardo Vita Introduzione Si uò definire macchina, in senso lato, un qualsiasi convertitore di energia cioè, in generale, una scatola chiusa in cui entra e da cui esce

Dettagli