Gli integrali indefiniti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gli integrali indefiniti"

Transcript

1 Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una funzione f() definita e ontinua in [ a, b] ioè tra l asse, il G f e le rette e b. Se la funzione è una retta di equazione trapezio rettangolo, ma in generale ome si può alolare l area A? y m q, il alolo si ridue a quello dell area di un Si dimostra he questo problema è strettamente legato alla determinazione di una funzione la ui derivata sia uguale a f(). Diventa quindi importante, per il alolo dell area A, saper determinare una funzione hiamata primitiva di f() ioè una funzione F() tale he F '( ) f ( ). Comineremo quindi trattando questo problema. 80

2 FUNZIONI PRIMITIVE DI UNA FUNZIONE Definizione F() si die primitiva di f() se F '( ) f ( ) Esempio Quali sono le funzioni primitive di f ( ) os? Riordando he D( sen) os avrò he F ( ) sen ma anhe y sen (on R ) risulta funzione primitiva di f ( ) os poihé D( sen ) os. Abbiamo infatti il seguente teorema: Teorema: se F() è una primitiva di f() anhe F() ( R ) è una primitiva di f() ed ogni primitiva di f() è del tipo F(). Dimostrazione Poihé D ( F( ) ) F' ( ) f ( ) anhe F ( ) è primitiva di f(). Inoltre se G() è una primitiva di f() si ha: D ( G( ) F( )) G'( ) F'( ) f ( ) f ( ) 0 G ( ) F( ) G ( ) F( ) Definizione: l insieme delle primitive di f() viene indiato on il simbolo f ( ) d he si legge integrale indefinito di f() in d. Quindi se F() è una primitiva di f() f ( ) d F( ) on R f() prende il nome di funzione integranda. 8

3 L integrazione indefinita può essere onsiderata l operazione inversa della differenziazione poihé ( f ( ) d) d( F( ) ) F'( ) d f ( d d ) E hiaro inoltre he D ( f ( ) d) D( F( ) ) F'( ) f ( ) Proprietà dell integrale indefinito. k f ( ) d k f ( ) d Dimostrazione Se F() è una primitiva di f() allora k F() è primitiva di k f () poihé D( k F( )) k f ( ) Esempio: os d os d ( sen ) o anhe sen. ( ( ) g( ) ) d f ( ) d f g( ) d Dimostrazione Se F() e G() sono primitive rispettivamente di f() e di g(),allora D ( F( ) G( ) ) f ( ) g( ) e quindi F() G() è una primitiva di f()g(). os d sen Esempio: ( os ) d d 8

4 INTEGRALI INDEFINITI IMMEDIATI α α ) d on α α ) d ln (*) ) sen d os os d sen os d tg sen d ot g d arsen d artg a ) a d ln a (riorda he Da a ln a ) e d e (aso partiolare per a e ) (*) NOTA ln > 0 > 0 ln (ln ) D ln( ) < 0 d ln ( ) < 0 Esempi ) d ) d d ln ) os d tg sen os d d arsen ) e d e d e 8

5 INTEGRAZIONI BASATE SULLA REGOLA DI DERIVAZIONE DI UNA FUNZIONE COMPOSTA Riordando la regola di derivazione di una funzione omposta, abbiamo: ) f α Esempio : ( ) f '( ) d f α α ( ) sen sen os d α Infatti se deriviamo sen D sen os sen os Esempio : ( ) d α Cerhiamo di riportari al aso f ( ) f '( ) d osserviamo he D( ), mentre nella nostra funzione integranda abbiamo solo. Per ottenere f () moltiplihiamo e dividiamo per : ( ) ( ) ( ) d d Esempio : Esempio : ln ln d d Osserviamo he ( ) e he D ( ) ( ), quindi ( ) ( ) d d NOTA Un aso signifiativo è : ( ) f ' d f ( ) f ( ) 8

6 ) f '( ) d ln f ( ) f ( ) Esempio : d Se i aorgiamo he D ( ), abbiamo subito: D( ) d d ln Esempio : sen os d In questo aso D( ) sen ose osì: os mentre noi abbiamo sen possiamo. Possiamo aggiustare le sen os ( sen) D(os ) os os d d d ln os ) a) ( senf ( ) ) f '( ) d os( f ( ) ) Esempio: sen d Se f ( ) allora ( f ( ) ) D. Possiamo aggiustare le ose: sen d ( sen) d os b) ( os f ( ) ) f '( ) d sen( f ( ) ) Esempio: π os d. π π π os d os d sen 85

7 ) f '( ) d tg ) os f ( ) ( f ( ) Esempio: d tg os d) f '( ) d ot g ) sen f ( ) ( f ( ) Esempio: sen d d ot g sen e) f '( ) d arsen ) f ( ) ( f ( ) Esempio: d d arsen f) f '( ) d artg( f ( ) ) f ( ) artg Esempio: d d d ) a f ( ) f '( ) f ( ) a d ln a f ( ) f ( ) ( e f '( ) ) d e Esempio : e d e d e notando he D( ) Esempio : sen sen os d ln 86

8 ) sen d Appunti di Matematia 5 Eserizi su integrazioni immediate os 6) sen os d ) sen d os 7) ( ) d ) ( ) d 8) d π ) d 9) sen d 5) d 0) sen ( ) d ) d 6) tg d ot ) 7) g d e d 8) d 9) d ln ) d ) d 5 e 0) d e 5 ) d e 5) e d os 6) ( ) d π ) os d 7) os d ) sen 8) sen d ( ) d ) e d 9) d e 0) 5) d d 87

9 Soluzioni degli eserizi sen ) sen 6) os 5 ) 7) 5 ( ) ) ( ) 5 5 8) arsen ) ( ) π 9) os 5) 0) ot ( ) g 6) ln os ) artg 7) ln sen ) e 8) ln ) ln ln ) ln( 5) artg 9) ln 5 5 0) ln( e ) 5 ) sen ) sen 5) ln e 8 6) ( ) 7) sen ot 8) os ) g ( ) ) e 9) ln 5) e 0) artg ( ) 88

10 INTEGRAZIONE MEDIANTE SEMPLICI TRASFORMAZIONI DELLA FUNZIONE INTEGRANDA ) d In questo aso onviene sempliemente separare i termini al numeratore: d d d d artg ln( ) ) sen d Riordiamo he os sen, quindi: os sen d d d os d sen ) os d Analogamente al preedente riordando he os os ) sen d Possiamo srivere: sen sen sen sen( os ) sen sen os sen d sen d sen os d os quindi os 5) os d Possiamo srivere os os os os ( sen ) os os sen ome nel aso preedente. e si proede 89

11 6) d senos In questo aso onviene sostituire sen os e poi separare i due termini: sen os sen os sen os ln os ln sen sen sen os os sen os sen os os sen d d d d d d 7) tg d sen os os os os tg d d d d d tg 8) d sen Se poniamo sen sen sen os e ritroviamo un integrale simile al n 6: sen sen sen sen os sen os sen os d d d d d os os os sen os d d d ln os ln sen sen os sen 90

12 INTEGRAZIONE DELLE FUNZIONI RAZIONALI FRATTE Consideriamo una funzione razionale fratta N( ) f ( ) on grado di D(). D( ) Distinguiamo due asi: a) Se il grado del numeratore N() è maggiore o uguale al grado del denominatore D() si esegue la divisione. Esempio: d Quindi ( )( ) 0 e sostituendo ( )( ) ( ) 0 ( ) d d d d 0 ln 0 b) Se grado di N() < grado di D() Se il grado di D() è, allora il grado di N() sarà 0 (quindi N() ostante) e l integrale si risolve failmente. Esempio: 0 d 0 d 0 ln Se il grado di D() è, allora D() a b e distinguiamo tre asi a seonda he il disriminante dell equazione a b 0 ( ) sia positivo, nullo o negativo. 9

13 9 CASO : 0 > In questo aso i si riondue a ( ) f d f f ) ( ln ) ( ' Esempio: d 7 Considerando il denominatore si ha he ( )( ) : erhiamo due ostanti, he hiameremo A e B, in modo he si abbia: 7 B A Basta sviluppare al seondo membro dell uguaglianza e porre, per il prinipio di identità dei polinomi, l uguaglianza tra i oeffiienti del numeratore: ( ) ( ) ( )( ) 7 B A ( ) ( ) ( ) 7 B A B A Uguagliando i oeffiienti si ha il sistema: 7 B A B A B A Periò: ( ) ( ) 7 e quindi: d d d ln ln 7 Attenzione Se nel polinomio al denominatore a oorre riordare he ( )( ) a b a. Esempio: d ammette ome radii ;, periò la sua somposizione sarà: ( ) ( ) ( )( ) 5 / /, da ui 5 B A e, proedendo ome nell esempio preedente, si giunge alla soluzione.

14 CASO : 0 In questo aso il polinomio al denominatore è un quadrato pertanto i si riondue a ( ) f ' d f ( ) f ( ) d Esempio : è il quadrato di ( ) periò l integrale assegnato può essere sritto ome: d d ( ) ( ) ( ) Esempio : 5 d 9 6 Prima di spezzare il numeratore dobbiamo vedere quello he può essere utile affinhé il numeratore possa essere riportato ad essere la derivata del denominatore. D (9 6 ) Quindi possiamo srivere d 9 6 d ln 8 6 ( 9 6 ) 9 ( ) NOTA: La prima parte della risoluzione può anhe essere sritta ome ln ( ) ln ln 9

15 9 CASO : 0 < In questo aso il polinomio al denominatore non si può somporre. Esempio : 6 d Proviamo a fare in modo he nel denominatore i sia un quadrato in modo da poter appliare ( ) f artg d f f ) ( ) ( ) '( ( ) ( ) 6, quindi: ( ) 6 d d Ora è neessario far diventare il termine noto al denominatore in modo da poter appliare l integrale dell arotangente: ( ) artg d d d Esempio : d Anhe in questo aso, prima di spezzare il numeratore, vediamo osa oorre faendo la derivata del denominatore: D ) ( Quindi basta spezzare senza fare ulteriori passaggi: ( ) ln d d d d d ( ) ( ) artg d ln ln

16 Eserizi su integrazioni di funzioni razionali fratte d ) d ) d ) 9 5 ) d d 5) 8 6 6) d d 7) 8) d 95

17 Soluzioni degli eserizi ) ln ln ln ) ln ln ln 5 ) ln 5 ln 5 ln ) ln 5) 6) ln ln 7) artg 7 8) ln( ) artg 7 96

18 INTEGRAZIONE PER SOSTITUZIONE d Esempio : L integrale non è immediato e, per erare di renderlo tale, poniamo t. t t d t dt d t dt t dt dt dt t t t t( t ) t ln t Tornando alla variabile (essendo t ) abbiamo: ln Esempio : d sen Nota Per risolvere integrali in ui ompaiono funzioni goniometrihe, può essere utile riordare he sen t t t os dove t tg t Considerando quindi la sostituzione t tg si ha: artgt artgt d t dt Sostituendo: sen t t t t d dt dt ln t ln tg Osservazione: eravamo già pervenuti a questo risultato on aloli più omplessi nell esempio 8 degli integrali in ui si utilizzano delle somposizioni. 97

19 Esempio : a d In questo aso poniamo a sent da ui d a os t dt e sostituendo: a d a ( a sent) a os t dt a ( sen t) a ost dt a os t dt os t a a t a a dt ( os t) dt sent Dalle formule goniometrihe: a t a a t a sent sent ost Visto he a sent, si ha soluzione dell integrale: sent vale a dire t arsen da ui, sostituendo nella a a a t a a a sent ost arsen a a a a arsen a a Per esempio se abbiamo d poniamo sent da ui d os t dt e, seguendo i passaggi preedenti, si ha: ( sen t) ostdt os tdt os t dt arsen t sent 98

20 INTEGRAZIONE PER PARTI Riordando la regola di derivazione del prodotto: D ( f ( ) g( ) ) f '( ) g( ) f ( ) g'( ) f '( ) g( ) D( f ( ) g( ) ) f ( ) g'( ) ed integrando: '( ) g( ) d f ( ) g( ) f f ( ) g' ( ) d he viene detta regola di integrazione per parti in ui f () prende il nome di fattore derivato e g() è detto fattore finito. Esempio : os d Possiamo onsiderare os ome fattore derivato ioè os D( sen) : ( ) d sen sen d sen os D sen NOTA: se avessimo selto ome fattore derivato ( D situazione senza risolvere l integrale. Esempio : e d e d D( e ) d e e d e e Esempio : ln d ), avremmo solo ompliato la ln d D ln d ln d ln d ln Esempio : artgd In asi ome questo, possiamo sempre pensare he la funzione sia moltipliata per un fattore D() e quindi artgd D( ) artg d artg d artg ln( ) Esempio 5: ln d ( ) ln d ln ln d D d ln 99

21 Eserizi di riapitolazione sugli integrali indefiniti ) d 6) d 5 d ) 5 6 ) ( arsen) d ) d 5) 9 6) e d 7) d 5 d 8) os 9) ln d 0) e sen d ) ln d d os sen ) d os sen ) os sen d ) d 5) d 7) 9 d d 8) 0 5 9) os d 0) e d ) ) d ) d d ) sen 5) d ( ) 6) d 9 d 7) artg d d 8) 9 9) d 5 0) 5 d 00

22 Soluzioni degli eserizi ) arsen ) ln ln ) ( arsen ) ) ln 5) artg 6 6) e ( ) 5 7) ln( 5) artg 8) tg ln tg 9) ln ln 0) e ( sen os ) 5 ) ln ) ln os sen ) os ) arsen 5) ln 6) ln 5 ln ) artg 8) 5 9) tg 0) e ( ) ) arsen ( ) ) ( ) ) ln( ) artg ) tg 5) 6) ln( 9) artg 7) artg artg 8) ln ln 6 6 9) 7 ln 5 5 0) arsen 5 5 0

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE.

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. DEF. Una funzione F() si die primitiva di una funzione y f() definita nell intervallo

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Integrale Indefinito e l Antiderivata Il proesso inverso della derivazione si hiama integrazione. Nota la variazione istantanea di una grandezza p.es. la veloità) è neessario sapere ome si omporta tale

Dettagli

Analisi 1 e 2 - Quarto compitino Soluzioni proposte

Analisi 1 e 2 - Quarto compitino Soluzioni proposte Analisi 1 e 2 - Quarto ompitino Soluzioni proposte 23 maggio 2017 Eserizio 1. Risolvere il problema di Cauhy y = x(4 y2 ) y y(0) = α al variare di α R, α 0 Soluzione proposta. Se α = 2 oppure α = 2 abbiamo

Dettagli

16 L INTEGRALE INDEFINITO

16 L INTEGRALE INDEFINITO 9. Integrali immediati 6 L INTEGRALE INDEFINITO Riassumiamo le puntate preedenti: si die INTEGRALE INDEFINITO di una funzione f ( ), la famiglia di tutte e sole quelle funzioni la ui derivata è uguale

Dettagli

Il calcolo letterale

Il calcolo letterale Il alolo letterale Monomi Si die ESPRESSIONE ALGEBRICA LETTERALE (o sempliemente espressione algebria) un espressione in ui ompaiono lettere he rappresentano numeri. Esempio: 5 b 4 + 5 1 OSS: QUANDO non

Dettagli

Prefazione LUIGI PIANESE

Prefazione LUIGI PIANESE Prefazione Questo volume è dediato all integrazione indefinita, essendo il problema dell integrazione definita ompletamente risolto dal teorema fondamentale. L argomento, spesso, presenta notevoli diffioltà

Dettagli

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO Si die he, per he tende a, la funzione y=f() ha per ite l e si srive: l = l I( ) ESEMPIO DI VERIFICA DI

Dettagli

Gli approcci alla programmazione dinamica: alcuni esempi

Gli approcci alla programmazione dinamica: alcuni esempi Gli approi alla programmazione dinamia: aluni esempi Franeso Menonin February, 2002 Ottimizzazione dinamia Il problema he qui si onsidera è quello di un soggetto he intende massimizzare (o minimizzare)

Dettagli

TAVOLA DEGLI INTEGRALI INDEFINITI

TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni elementari c c ln c arc tan c arc tan c a a a e e c TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni composte f( ) f ( ) f '( ) C ' f ln f ( ) c f( ) f '( ) arctan( f

Dettagli

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti 5. CALCOLO INTEGRALE Il calcolo integrale nasce, da un lato per l esigenza di calcolare l area di regioni piane o volumi e dall altro come operatore inverso del calcolo differenziale. 5. Integrali indefiniti

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Università degli Studi di Teramo Faoltà di Sienze Politihe Corso di Laurea in Statistia Lezioni del Corso di Matematia a ura di D. Tondini a.a. 3/4 CAPITOLO II LE EQUAZIONI DIFFERENZIALI. GENERALITÀ È

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometrihe Definizione Una trasformazione geometria dei punti del piano è una orrispondenza biunivoa tra i punti del piano: ad ogni punto P del piano orrisponde uno e un solo punto P

Dettagli

Proprietà delle operazioni sui numeri naturali

Proprietà delle operazioni sui numeri naturali Proprietà delle operazioni sui numeri naturali 1. Le proprietà delle operazioni possono essere introdotte geometriamente in modo da fornirne una giustifiazione intuitiva e una visualizzazione : 2. Le proprietà

Dettagli

2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx =

2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx = CAPITOLO 1 Integrali 1.1 Integrali indefiniti 1.1.1. Esercizi svolti 1 Calcolare: ( 3 3 + 5 3 3 + 4 4 ) d Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità,

Dettagli

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 16 gennaio 2018 Fila 1.

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 16 gennaio 2018 Fila 1. Corso di Laurea in Ingegneria delle Teleomuniazioni ANALISI MATEMATICA Prova sritta del 6 gennaio 8 Fila. Esporre il proedimento di risoluzione degli eserizi in maniera ompleta e leggibile.. (Punti 5)

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3 Proprietà delle operazioni sui numeri naturali 1. Le proprietà delle operazioni possono essere introdotte geometriamente in modo da fornirne una giustifiazione intuitiva e una visualizzazione : 2. Le proprietà

Dettagli

Unità Didattica N 29 : L integrale Indefinito

Unità Didattica N 29 : L integrale Indefinito Unità Didattica N 9 L integrale indefinito ) La definizione di integrale indefinito ) Proprietà dell ' integrale indefinito ) Integrali indefiniti immediati ) Integrazione per decomposizione ) Integrazione

Dettagli

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch O Le omotetie Dato un numero reale non nullo h e un punto P del piano l omotetia di rapporto h e entro O è quella trasformazione he assoia a P il punto P' tale he P P OP' = h OP. Se è P(xy) allora P'(hx

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

1 Integrale multiplo di una funzione limitata su di un rettangolo

1 Integrale multiplo di una funzione limitata su di un rettangolo INTEGLE DELLE FUNZIONI DI PIÙ VIBILI INTEGLE MULTIPLO DI UN FUNZIONE LIMITT SU DI UN ETTNGOLO Integrale delle funzioni di più variabili Indie Integrale multiplo di una funzione limitata su di un rettangolo

Dettagli

Scrivi l equazione di un iperbole conoscendone i fuochi e la costante ( = differenza costante) 2k.

Scrivi l equazione di un iperbole conoscendone i fuochi e la costante ( = differenza costante) 2k. . ESERCIZI SULL IPERBOLE A partire dall equazione di un iperbole stabilisi quanto valgono I. le oordinate dei vertii e dei fuohi II. la ostante (differenza ostante delle distanze di un punto dai fuohi)

Dettagli

Note sulla correttezza di RSA e sulla complessità degli attacchi

Note sulla correttezza di RSA e sulla complessità degli attacchi Note sulla orrettezza di RSA e sulla omplessità degli attahi P. Bonatti 21 novembre 2016 1 Rihiami elementari di algebra Elevamento a potenza di binomi Riordiamo la definizione di oeffiiente binomiale:

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Calcolo degli integrali indefiniti

Calcolo degli integrali indefiniti Appendice B Calcolo degli integrali indefiniti Se f è una funzione continua nell intervallo X, la totalità delle sue primitive prende il nome di integrale indefinito della funzione f, o del differenziale

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

G. Parmeggiani 15/5/2017. Algebra e matematica discreta, a.a. 2016/2017, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 5

G. Parmeggiani 15/5/2017. Algebra e matematica discreta, a.a. 2016/2017, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 5 G. Parmeggiani 5/5/7 Algera e matematia disreta, a.a. 6/7, Suola di Sienze - Corso di laurea: parte di Algera Informatia Svolgimento degli Eserizi per asa 5 Si dia quale delle due seguenti posizioni definise

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

1 La Lagrangiana di una particella in una campo di forze potenziale

1 La Lagrangiana di una particella in una campo di forze potenziale Introduzione alle equazioni di Eulero-Lagrange e ai potenziali generalizzati G.Falqui, Dipartimento di Matematia e Appliazioni, Università di Milano Bioa. Corso di Sistemi Dinamii e Meania Classia, a.a.

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA TRASFORMATA DI LAPLACE I sistemi dinamii invarianti e lineari (e tali sono le reti elettrihe) possono essere studiati, nel dominio del tempo, attraverso le equazioni differenziali nelle quali l'inognita

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI Enrio Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI E. Borghi - L equazione di Dira nella approssimazione di Pauli Rihiami a studi presenti in fisiarivisitata Leggendo L equazione di Dira

Dettagli

Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione

Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione Polinomio di Taylor e approssimazioni Approssimazione di una funzione nell intorno di un

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 14 gennaio nel punto x = 0

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 14 gennaio nel punto x = 0 log(1 + Domanda 1 La funzione f( = sin( se < 0 ( se 0, nel punto = 0 è continua a sinistra ma non a destra è continua è continua a destra ma non a sinistra D non è continua né a destra né a sinistra sin

Dettagli

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 )

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 ) Soluzioni delle Esercitazioni VII -6//8 A. Integrali indefiniti. Si ha +)d. Si ha + )d. Si ha + d +. Si ha d 5. Si ha / + / )d / ) d d + ++c ++c. + / +c + +c. + ) d ln + / +c ln + +c. ) / d )/ +) / d +)/

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati.

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in Farmacia - anno acc / docente: Giulia Giantesio, gntgli@unifeit Esercizi : Calcolo Integrale Integrali indefiniti

Dettagli

GEOMETRIA ANALITICA 8 LE CONICHE

GEOMETRIA ANALITICA 8 LE CONICHE GEOMETRIA ANALITICA 8 LE CONICHE Tra tutte le urve, ne esistono quattro partiolari he vengono hiamate onihe perhé sono ottenute tramite l intersezione di una superfiie i-onia on un piano. A seonda della

Dettagli

Esercitazione del Analisi I

Esercitazione del Analisi I Esercitazione del 0-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 0-0 Integrale di funzioni razionali Supponiamo di voler calcolare un integrale del tipo P () Q() d

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. 9- Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. 9/ Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Goniometria. r x. con x = 1 rad se l = r.

Goniometria. r x. con x = 1 rad se l = r. Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali ( = /360 dell'angolo giro), anhe se una Legge dello Stato italiano del 960 impone di esprimerli in radianti. Ogni

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Unità Didattica 1. Sistemi di Numerazione

Unità Didattica 1. Sistemi di Numerazione Unità Didattia Sistemi di Numerazione Sistemi di Numerazione Posizionali Criterio per la rappresentazione di un insieme infinito di numeri mediante un insieme limitato di simoli. Un sistema di numerazione

Dettagli

Metodi di Integrazione. Integrazione per decomposizione in somma

Metodi di Integrazione. Integrazione per decomposizione in somma Metodi di Integrazione Integrazione per decomposizione in somma Integrazione per parti Integrazione per sostituzione Integrazione per decomposizione in somma In molti casi il calcolo dell integrale indefinito

Dettagli

viene detto il sostegno della curva. Se σè iniettiva, diciamo che la superficieè semplice. Le equazioni

viene detto il sostegno della curva. Se σè iniettiva, diciamo che la superficieè semplice. Le equazioni Fondamenti di Analisi Matematia 2 - a.a. 2010-11 (Canale 1) Corso di Laurea in Ingegneria Gestionale, Meania e Meatronia Valentina Casarino Appunti sulle superfii 1. Superfii regolari Riordiamo he si die

Dettagli

Integrali. Primitive di una funzione di una variabile

Integrali. Primitive di una funzione di una variabile Integrali Paolo Montanari Appunti di Matematica Integrali 1 Primitive di una funzione di una variabile Sia f() una funzione definita in un intervallo X R. Una primitivadi f()su Xè una qualunque funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva PROBLEMA Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. Si consideri la funzione reale f m di variabile

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Proprietà globali delle funzioni ontinue Tramite i limiti, abbiamo studiato il omportamento di una funzione nell intorno di un punto (proprietà loali). Ora i oupiamo di funzioni ontinue su tutto un intervallo,

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta.

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta. FUNZIONI CONTINUE funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si die ontinua in un punto D se risulta Analizza bene la definizione: lim x f ( x) = f ( ) Il punto deve

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Generalità sulle equazioni differenziali ordinarie del primo ordine Si chiama equazione differenziale ordinaria[ ] del primo ordine un equazione nella quale compare y = y e la sua

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica Pisa, 0 giugno 019 e 1 se 0 Domanda 1 La funzione f : R R definita da 1 se = 0 A) ha minimo ma non ha massimo ) ha massimo ma non

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Appunti di Matematica Disequazioni goniometriche Disequazioni goniometriche elementari a) Riprendiamo gli esempi che abbiamo fatto per le equazioni trasformandoli in disequazioni: sen Le soluzioni saranno:

Dettagli

Soluzione Traccia A. 14 febbraio 2013

Soluzione Traccia A. 14 febbraio 2013 Soluzione Traccia A 1 febbraio 21 ESERCIZIO 1. Dopo aver disegnato il grafico della circonferenza di equazione x 2 + y 2 2x = trovare le eventuali intersezioni con la retta di equazione 2x y + 2 =. Per

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

II-7 Integrale indefinito

II-7 Integrale indefinito PRIMITIVE II-7 Integrale indefinito Indice Primitive Tecniche di integrazione I. Linearità dell integrale............................................. 3. Integrali quasi immediati...........................................

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

LA GEOMETRIA CON L EQ PARAMETRICA DI VAG Sp-retta Cap. IV Pag. 1 LA RETTA E IL PIANO

LA GEOMETRIA CON L EQ PARAMETRICA DI VAG Sp-retta Cap. IV Pag. 1 LA RETTA E IL PIANO IV. L A R E T T A NELLO SPAZIO Sp-retta Cap. IV Pag. LA RETTA E IL PIANO Nella formulazione del piano generio si aveva he dato un punto X la distanza CX ( os.dir. = α, β, γ veniva ad essere il segmento

Dettagli

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da Esercitazione n 5 1 Limiti e continuità di funzioni in più variabili Esercizio 1: Si verifici ce la funzione f definita per ogni (, y) R 2 da { 4 y 4 se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0)

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

= 0 Ciascuna frazione tende ad x x 4 2 cos x lim x = il secondo addendo del numeratore è una funzione x (cos sin x 3 1) cos(x π 2 )

= 0 Ciascuna frazione tende ad x x 4 2 cos x lim x = il secondo addendo del numeratore è una funzione x (cos sin x 3 1) cos(x π 2 ) + sen x Es. lim x = il numeratore tende ad un numero positivo, il x 4 denominatore tende a zero. x 4 lim x = il denominatore ha grado maggiore del numeratore. x 8 + x sen x lim x +( + x) sen x = lim x

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Ricevimento del 2 Febbraio 2011

Ricevimento del 2 Febbraio 2011 Ricevimento del 2 Febbraio 20 Davide Boscaini Queste sono le note del ricevimento del 2 Febbraio. Ho scelto di scrivere queste poche pagine per una maggior chiarezza e per chi non fosse stato presente

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 4 Luglio 2014

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 4 Luglio 2014 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 4 uglio 014 1 3 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore on impedenza interna R G è ollegato ad un

Dettagli

Integrali indefiniti, definiti e impropri - teoria

Integrali indefiniti, definiti e impropri - teoria Integrali indefiniti, definiti e impropri - teoria Primitiva Data una funzione si dice primitiva di tale f. la f. che ha per derivata, ovvero. Le primitive di una f. sono infinite e tutte uguali a meno

Dettagli

= 2 (64 1) = 42 > 28.

= 2 (64 1) = 42 > 28. 9 LEZIONE 9 Esercizio 9.. Data una funzione y = f() = nell intervallo [, ], calcolare i valori e le aree dei rettangoli y = f(), y = f(), y = f() R = f(), R = f(), R = f(). Utilizzare il metodo dei rettangoli

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) IV foglio di esercizi ESERCIZIO. Nei seguenti esercizi risolvere il problema di valori iniziali nell intervallo indicato. ) y 3y = e su (, + ), con y(0) = 0, )

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4 I modelli di Chebyshev Si può ottenere una veloità di aduta più rapida in prossimità della frequenza di taglio rispetto a quella del modello di Butterworth, a disapito di una diminuzione di monotoniità

Dettagli

ORDINAMENTO 2003 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2003 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 3 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Nell insieme delle rette dello spazio si consideri la relazione così definita: «due rette si dicono parallele se sono complanari

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie Unità Didattica N 07 Le equazioni di primo grado ad una incognita 6 U.D. N 07 Le equazioni di primo grado ad una incognita 0) Identità ed equazioni 0) Equazione di primo grado ad una incognita 0) Equazione

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo

Dettagli

10. Integrazione delle funzioni RAZIONALI FRATTE ( = rapporti di polinomi)

10. Integrazione delle funzioni RAZIONALI FRATTE ( = rapporti di polinomi) 0. Integrazione delle funzioni RAZIONALI FRATTE ( rapporti di polinomi) Studieremo ora tecniche specifiche per gli integrali della forma A ( ), B ( ) essendo A( ) e B ( ) due polinomi. E lecito supporre

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 8 Febbraio 013 1 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore, la ui tensione varia nel tempo ome

Dettagli

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme Capitolo 1 Vettori applicati 1.1 Richiami teorici Definizione 1.1 Un sistema di vettori applicati Σ è un insieme {(P i,v i ), P i E, v i V, i = 1,...,N}, (1.1) dove P i è detto punto di applicazione del

Dettagli