Prova scritta intercorso 2 31/5/2002

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prova scritta intercorso 2 31/5/2002"

Transcript

1 Prova scritta intercorso 3/5/ Diploma in Scienza e Ingegneria dei Materiali anno accademico - Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione ora e 45 minuti ) Un elettrone si trova in una buca di potenziale finita ma molto profonda, di larghezza L = Å ed energia U = ev. Approssimando la buca ad infinita, determinare l energia di punto zero del sistema (rispetto al fondo della buca), esprimendola sia in J che in ev (a). Per eccitare l elettrone dallo stato fondamentale allo stato con numero quantico n = 3, si può utilizzare l assorbimento dei fotoni di un fascio di luce. Calcolare la lunghezza d onda necessaria (sempre nell approssimazione di buca infinita) (b). Una volta terminata la transizione, ossia quando l elettrone si trova nello stato n=3, qual è la probabilità di trovare l elettrone in un intervallo di larghezza x = L/3 posto al centro della buca (c)? Infine, calcolate l energia del fotone che sarebbe invece necessaria per ionizzare la buca, ossia per liberare l elettrone a partire dallo stato fondamentale (d) [punti: a = 4/; b = 3/; c=/; d=/] ) Un elettrone di energia E = 5 ev si trova in una regione x< in cui l energia potenziale è nulla, ossia U(=, e si muove nel verso positivo dell asse x. Supponete che la funzione d onda sia un pacchetto d onde così esteso da poter essere considerato un onda armonica con ottima approssimazione. Nel propagarsi, la particella incide su un gradino di potenziale di altezza U = E posto in x= (cioè U(=U =E per x>). Determinate la lunghezza d onda di de Broglie associata all elettrone nella regione x< (a). Determinate l espressione delle funzioni d onda che descrivono la particella nelle due regioni x< e x> (b). Determinate i coefficienti che fissano l ampiezza dei termini della funzione d onda corrispondenti all onda riflessa e a quella trasmessa in funzione dell ampiezza dell onda incidente (c). Quali sono le probabilità complessive che la particella venga riflessa o trasmessa sul gradino, al termine del processo (d)? Infine, ad un istante intermedio, quando il pacchetto d onde sta ancora incidendo sul gradino, che probabilità c è che la particella sia localizzata al di là del gradino (ossia nella regione x>) (e)? Per dare una risposta numerica completa a quest ultima domanda, assumete che il pacchetto d onde incidente abbia una lunghezza complessiva x = nm (trascurate l allargamento progressivo del pacchetto) e che salvo per una regione di estensione trascurabile in prossimità degli estremi del pacchetto, l onda possa essere considerata armonica con ampiezza costante. [punti: a = 3/; b=3/; c=/; d=/; e=/] U( U =E x 3) Descrivete in non più di mezza pagina (salvo calligrafie molto larghe) il fenomeno quantistico noto come effetto tunnel. Quando si verifica? Che relazione c è con il comportamento classico? Se possibile, cercate di includere anche in modo approssimato alcuni aspetti quantitativi nella trattazione (ad esempio discutendo come varia la probabilità di trasmissione al variare delle caratteristiche della barriera di potenziale, in particolare larghezza e altezza). Carica dell elettrone e =.6-9 C Costante di Planck ridotta ħ =.5-34 J s Massa dell elettrone m = 9-3 kg

2 Soluzioni ) Ripercorrendo velocemente i calcoli della buca infinita, troviamo che i k possibili sono: k=nπ/l con n=,, 3..., L energia (assumendo U(= nella regione x [,L]) è data da E=p /(m)=(ħk) /(m), per cui le energie degli stati stazionari sono: E n π ml = n con n=,, 3,... L energia di punto zero è la differenza tra l energia dello stato fondamentale E e il fondo dell energia potenziale. Nel caso nostro U min =, perciò la prima risposta è (a) energia di punto zero: E = (ħπ) /(ml ) =.5-8 J = 9.4 ev Un fotone che una volta assorbito porti l elettrone dallo stato n= allo stato n=3 deve possedere un energia hν pari all energia necessaria E 3 -E, per cui la lunghezza d onda corrispondente è (b) λ = c/ν = hc/(e 3 -E ) = c hc hc hc 8 λ = = = = =.65 m =6.5 nm ν E E E (3 ) 8E 3 Lo stato n=3 è descritto dalla seguente autofunzione normalizzata: φ( = (/L) ½ sin(3πx/l). La densità di probabilità è data da P(= φ( =(/L) sin (3πx/L). Per trovare la probabilità richiesta, si deve fare l integrale di questa densità tra x =L/3 e x =L/3. Tuttavia l integrale non è necessario. Infatti è facile notare che x e x coincidono con due nodi della funzione d onda che delimitano i tre lobi uguali di cui essa è composta. Perciò l integrale corrisponde esattamente ad un lobo mentre l integrale su tutti e tre i lobi deve essere uguale a, essendo la funzione d onda normalizzata. Perciò la probabilità richiesta è esattamente (c) P = /3 = 33% L energia di ionizzazione che il fotone deve fornire è data dalla differenza tra la minima energia in cui la particella è libera di allontanarsi indefinitamente dalla buca e l energia E dello stato fondamentale. La prima energia coincide con U, perché per E U inizia lo spettro continuo, con funzioni d onda che si estendono all infinito e i cui pacchetti corrispondenti descrivono particelle che si allontanano all infinito. Perciò (d) minima energia del fotone per la ionizzazione: U -E = 9.6 ev

3 ) Una elettrone libero di energia E possiede una quantità di moto p=mv legata all energia dalla relazione E=p /(m), per cui p=(me) ½. Dalle relazioni di de Broglie, si ottiene perciò (a) λ = h p = 34 h 6.6 J s = 3 me 8 kg J =. - m =. Å Lo stesso risultato si trova anche risolvendo l equazione di Schroedinger indipendente dal tempo nella regione x<: d d φ φ( = Eφ( () + φ = k m Le soluzioni indipendenti di questa equazione sono: () dove si è posto me k = (3) φ ( x ) = exp( ± ik (4) [oppure sin(k e cos(k] che corrispondono ad onde armoniche con frequenza angolare spaziale k. Perciò la lunghezza d onda λ è data da λ=π/k, che restituisce lo stesso risultato (a) già trovato. Per rispondere alla domanda (b) dobbiamo risolvere l equazione di Schroedinger indipendente dal tempo per x< e per x>. Nella prima regione, x<, l eq. di S. è la (), e due soluzioni indipendenti sono date dalla (4). Entrambe queste soluzioni non divergono da nessuna parte, per cui sono fisicamente valide. La soluzione generale è perciò la combinazione lineare: (b prima parte) φ( = φ ( = A e ikx + Be -ikx valida per x< (5) Nella regione x>, c è un potenziale costante U(=U =E. Quindi l eq. di S. indipendente dal tempo è d d φ φ( + U φ( = Eφ( (6) χ φ = m (7) dove si è posto m( U E) χ =. Notate che essendo U =E, si ha che k = χ Le soluzioni indipendenti della (7) sono φ(=exp(±χ=exp(±k Di queste due soluzioni, però, quello con il segno + nell esponenziale non è fisicamente valida perché diverge per x. Quindi, la soluzione generale valida è (b seconda parte) φ( = φ ( = Ce -χx = Ce -kx valida per x > (8) che descrive un onda evanescente. La (5) e la (8) insieme forniscono una risposta alla domanda (b).

4 Adesso dobbiamo trovare le relazioni tra i coefficienti A, B e C. Queste discendono dalle condizioni di raccordo nel punto x=: φ (x=) = φ (x=) A + B = C dφ /(x=) = dφ /(x=) ik (A-B) = -kc che risolte in termini di A forniscono la terza risposta: ik + k i + i (c) B = A = A = ia e C = A = ( i) A ik k i i Per quanto riguarda le probabilità di trasmissione e riflessione, sappiamo che laddove si ha un onda evanescente, una volta terminata l onda incidente, al termine del processo, nella regione x> non c è più nulla (C=) e quindi l onda è stata interamente riflessa. Perciò si ha (d) P riflessione = e P trasmissione = Un altro modo per arrivare a questo stesso risultato è di considerare che per un pacchetto d onde quasi-armonico il rapporto dei moduli quadri delle ampiezze fornisce la probabilità (purché la velocità di propagazione sia la stessa). Un integrale di onde evanescenti non forma un pacchetto d onde armoniche, per cui questo discorso si applica solo all onda riflessa. Quindi abbiamo P riflessione = B/A = -i = e quindi P trasmissione = - P riflessione = Per l ultima domanda, dobbiamo calcolare la probabilità utilizzando l integrale della φ( : kx A Px > = φ( = C e = i A = (9) k k Ora dobbiamo sapere quanto vale A. Utilizzando il fatto che inizialmente c è solo l onda incidente che forma un pacchetto di forma squadrata avente lunghezza x e ampiezza A, la condizione di normalizzazione fornisce A x= da cui A =/ x, e quindi (e) P x> = /(k = λ/(π = /68 =.6-4 =.6 %

5 3) L effetto tunnel si verifica quando una particella di energia E incide su una barriera di potenziale la cui sommità U max >E. In questo caso, classicamente la particella non avrebbe nessuna possibilità di attraversare la barriera e verrebbe sempre riflessa indietro. Invece, in meccanica quantistica c è sempre una probabilità finita che la particella attraversi la barriera e si ritrovi dall altra parte. Dato che l energia della particella è inferiore al massimo del potenziale, per illustrare il fenomeno si usa l immagine di una particella che scava un tunnel nella barriera per attraversarla. Nella regione in cui U(>E la funzione d onda presenta un andamento esponenziale (onda evanescente). Per il caso di barriera di potenziale quadrata, si può calcolare una formula analitica che fornisce la probabilità di trasmissione. Questa espressione in generale è un po complicata. Però nel caso in cui questa probabilità è sufficientemente piccola (per cui l onda riflessa dalla fine della barriera può essere trascurata e possiamo usare gli stessi calcoli fatti per il gradino di potenziale), la probabilità si riduce sostanzialmente al modulo φ( della funzione d onda alla fine della barriera (nel punto x = L), e la φ( è data dalla sola onda evanescente come è stata calcolata nell esercizio. Perciò si ha P trasmissione exp(-χl) dove χ ha l espressione data nell esercizio (). Questo risultato ci dice che all aumentare della larghezza L della barriera e della sua altezza in energia U, la probabilità P trasmissione diminuisce esponenzialmente con L e con la radice di U -E.

FACSIMILE prova scritta intercorso 1 (per allenamento)

FACSIMILE prova scritta intercorso 1 (per allenamento) FACSIMILE prova scritta intercorso 1 (per allenamento) Laurea in Scienza e Ingegneria dei Materiali anno accademico -3 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione:

Dettagli

La barriera di potenziale: effetto tunnel

La barriera di potenziale: effetto tunnel La barriera di potenziale: effetto tunnel 1 Barriera di potenziale: caso classico V v V v 0 per a Enrico > x > a Silva - proprietà intellettuale v non ceduta V(x) = 0 Non per x è permessa, > a in particolare,

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Funzione d onda ed equazione di Schrödinger

Funzione d onda ed equazione di Schrödinger Capitolo 2 Funzione d onda ed equazione di Schrödinger Se i corpi luminosi sono carichi d incertezza, non resta che affidarsi al buio, alle regioni deserte del cielo. Che cosa può esserci di piú stabile

Dettagli

May 5, 2013. Fisica Quantistica. Monica Sambo. Sommario

May 5, 2013. Fisica Quantistica. Monica Sambo. Sommario May 5, 2013 Bohr, Born,, Dirac e Pauli accettano in modo incondizionato la nuova fisica Einstein, De, e pur fornendo importanti contributi alla nuova teoria cercano di ottenere una descrizione CAUSALE

Dettagli

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni?

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? La natura della luce Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? Se si potesse fotografare un fotone in un certo istante vedremmo una deformazione

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Un onda e.m. e un onda trasversa cioe si propaga in direzione ortogonale alle perturbazioni ( campo elettrico e magnetico) che l hanno generata. Nel vuoto la velocita di propagazione

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Università di Modena e Reggio Emilia TIROCINIO FORMATIVO ATTIVO - CLASSE A049 Matematica e fisica PROVA SCRITTA - 21 settembre 2012.

Università di Modena e Reggio Emilia TIROCINIO FORMATIVO ATTIVO - CLASSE A049 Matematica e fisica PROVA SCRITTA - 21 settembre 2012. busta 1 QUESITI DI MATEMATICA 1. Nel piano euclideo dotato di un riferimento cartesiano ortogonale monometrico, sia Γ il luogo dei punti che soddisfano l'equazione X 2-2X = - 4Y -Y 2. 1.1 Stabilire che

Dettagli

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme Da Newton a Planck Meccanica classica (Newton): insieme La struttura dell atomo di leggi che spiegano il mondo fisico fino alla fine del XIX secolo Prof.ssa Silvia Recchia Quantomeccanica (Planck): insieme

Dettagli

Introduzione alle onde Elettromagnetiche (EM)

Introduzione alle onde Elettromagnetiche (EM) Introduzione alle onde Elettromagnetiche (EM) Proprieta fondamentali L energia EM e il mezzo tramite il quale puo essere trasmessa informazione tra un oggetto ed un sensore (e.g. radar) o tra sensori/stazioni

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83 I convertitori c.c.-c.c. monodirezionali sono impiegati per produrre in uscita un livello di tensione diverso da quello previsto per la sorgente. Verranno presi in considerazione due tipi di convertitori

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Caratterizzazione dei segnali aleatori nel dominio della frequenza

Caratterizzazione dei segnali aleatori nel dominio della frequenza Capitolo 5 Caratterizzazione dei segnali aleatori nel dominio della frequenza 5. Introduzione In questo capitolo affrontiamo lo studio dei segnali aleatori nel dominio della frequenza. Prendiamo come esempio

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Guide d onda. Cerchiamo soluzioni caratterizzate da una propagazione lungo z

Guide d onda. Cerchiamo soluzioni caratterizzate da una propagazione lungo z GUIDE D ONDA Guide d onda Cerchiamo soluzioni caratterizzate da una propagazione lungo z Onde progressive e regressive Sostituendo nell equazione d onda ( essendo Valido anche per le onde regressive Equazione

Dettagli

Capitolo 4 Le spettroscopie. 1. Lo spettro elettromagnetico

Capitolo 4 Le spettroscopie. 1. Lo spettro elettromagnetico Capitolo 4 Le spettroscopie 1. Lo spettro elettromagnetico 2) Tipi di spettroscopia Emissione: transizione da livello superiore a livello inferiore Assorbimento: contrario 2.1 Spettroscopie rotazionali,

Dettagli

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto. Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità

Dettagli

Matematica e teoria musicale 1

Matematica e teoria musicale 1 Matematica e teoria musicale 1 Stefano Isola Università di Camerino stefano.isola@unicam.it Il suono Il fine della musica è dilettare e muovere in noi diversi sentimenti, il mezzo per raggiungere tale

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno

Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno Fisica quantistica Introduzione alla polarizzazione e altri sistemi a due livelli Christian Ferrari Liceo di Locarno Sommario La polarizzazione della luce e del fotone Altri sistemi a due livelli L evoluzione

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Il diodo emettitore di luce e la costante di Planck

Il diodo emettitore di luce e la costante di Planck Progetto A1e Un esperimento in prestito di Lauree Scientifiche G. Rinaudo Dicembre 2005 Il diodo emettitore di luce e la costante di Planck Scopo dell esperimento Indagare il doppio comportamento corpuscolare

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle.

- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle. Richiami di onde Durante il corso di fisica avete visto che le onde possono dividersi in - Onde meccaniche (come quelle del mare, le onde sismiche, le onde sonore) caratterizzate dalla necessità di un

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura.

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura. Verifica dei postulati di Einstein sulla velocità della luce, osservazioni sull esperimento di Michelson e Morley Abbiamo visto che la necessità di introdurre un mezzo come l etere nasceva dalle evidenze

Dettagli

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line.

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line. 4 IV Giornata Oggi termineremo questo percorso sulla luce misurando l intensità luminosa della distribuzione di massimi e minimi delle figure di diffrazione e di interferenza. In particolare confronteremo

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA A.A. 204/5 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Energia potenziale Problema 26 Una molla ha una costante elastica k uguale a 440 N/m. Di quanto

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

allora la retta di equazione x=c è asintoto (verticale) della funzione

allora la retta di equazione x=c è asintoto (verticale) della funzione 1)Cosa rappresenta il seguente limite e quale ne è il valore? E il limite del rapporto incrementale della funzione f(x)= con punto iniziale, al tendere a 0 dell incremento h. Il valore del limite può essere

Dettagli

Lezione 14: L energia

Lezione 14: L energia Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Ottica fisica e ottica ondulatoria Lezione 12

Ottica fisica e ottica ondulatoria Lezione 12 Ottica fisica e ottica ondulatoria Lezione La luce è un onda elettromagnetica; ne studiamo le proprietà principali, tra cui quelle non dipendenti direttamente dalla natura ondulatoria (ottica geometrica

Dettagli

TX Figura 1: collegamento tra due antenne nello spazio libero.

TX Figura 1: collegamento tra due antenne nello spazio libero. Collegamenti Supponiamo di avere due antenne, una trasmittente X e una ricevente X e consideriamo il collegamento tra queste due antenne distanti X X Figura : collegamento tra due antenne nello spazio

Dettagli

Tabella periodica degli elementi

Tabella periodica degli elementi Tabella periodica degli elementi Perchè ha questa forma? Ovvero, esiste una regola per l ordinamento dei singoli atomi? Le proprietà dei materiali hanno una relazione con la tabella? L applicazione dei

Dettagli

Natura della luce. Qualsiasi tipo di onda è caratterizzato da:

Natura della luce. Qualsiasi tipo di onda è caratterizzato da: Natura della luce James C. Maxwell (1831-79) dimostrò che tutte le proprietà note della luce erano spiegabili attraverso un insieme di equazioni basate sull ipotesi che la luce fosse un onda elettromagnetica

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi CAPITOLO 1 NMR Risonanza Magnetica Nucleare INTRODUZIONE Nel 1946 due ricercatori, F. Block ed E.M.Purcell, hanno indipendentemente osservato per

Dettagli

INDIRIZZO FISICO INFORMATICO MATEMATICO A047-A049 Classe Comune

INDIRIZZO FISICO INFORMATICO MATEMATICO A047-A049 Classe Comune INDIRIZZO FISICO INFORMATICO MATEMATICO A047-A049 Classe Comune 1. Quale delle seguenti funzioni soddisfa l uguaglianza f(a+b) = f(a)+f(b) per ogni coppia di numeri reali a, b? A) f(x) = 3x B) f(x) = 3

Dettagli

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ Appunti di Elettronica Capitolo 3 Parte II Circuiti limitatori di tensione a diodi Introduzione... 1 Caratteristica di trasferimento di un circuito limitatore di tensione... 2 Osservazione... 5 Impiego

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO - SCIENTIFICO TECNOLOGICO 2010 Corso Sperimentale Progetto Brocca Tema di Fisica

ESAME DI STATO DI LICEO SCIENTIFICO - SCIENTIFICO TECNOLOGICO 2010 Corso Sperimentale Progetto Brocca Tema di Fisica ESAME DI STATO DI LICEO SCIENTIFICO - SCIENTIFICO TECNOLOGICO 2010 Corso Sperimentale Progetto Brocca Tema di Fisica La prova Il candidato svolga una relazione su uno solo dei seguenti due temi, a sua

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA.

IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA. CORSO DI CHIMICA E PROPEDEUTICA BIOCHIMICA FACOLTA DI MEDICINA E CHIRURGIA. IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA. Un enzima è una proteina capace di catalizzare una specifica reazione

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La misura della distanza

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La misura della distanza Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento La misura della distanza Metodi di misura indiretta della distanza Stadia verticale angolo parallattico costante

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

30 RISONANZE SULLE LINEE DI TRASMISSIONE

30 RISONANZE SULLE LINEE DI TRASMISSIONE 3 RISONANZE SULLE LINEE DI TRASMISSIONE Risuonatori, ovvero circuiti in grado di supportare soluzioni risonanti( soluzioni a regime sinusoidali in assenza di generatori) vengono largamente utilizzati nelle

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e " i k x u k ψ x + a = e " i k x + a u k x + a = e " i k a e " i k x u k

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e  i k x u k ψ x + a = e  i k x + a u k x + a = e  i k a e  i k x u k Teorema di Bloch Introduzione (vedi anche Ascroft, dove c è un approccio alternativo) Cominciamo col considerare un solido unidimensionale. Il modello è quello di una particella (l elettrone) in un potenziale

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

Soluzione del tema d esame di matematica, A.S. 2005/2006

Soluzione del tema d esame di matematica, A.S. 2005/2006 Soluzione del tema d esame di matematica, A.S. 2005/2006 Niccolò Desenzani Sun-ra J.N. Mosconi 22 giugno 2006 Problema. Indicando con A e B i lati del rettangolo, il perimetro è 2A + 2B = λ mentre l area

Dettagli

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo.

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo. acroeconomia, Esercitazione 2. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 oneta/1 Sapendo che il PIL reale nel 2008 è pari a 50.000 euro e nel 2009 a 60.000 euro, che dal 2008 al

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

APPUNTI SUI METODI PERT-C.P.M.

APPUNTI SUI METODI PERT-C.P.M. APPUNTI SUI METODI PERT-C.P.M. (corso di ricerca operativa) A cura di: Antonio Scalera 1 PERT/C.P.M. I metodi Pert e C.P.M. studiano lo sviluppo di un progetto attraverso la programmazione delle attività

Dettagli

Carlo Cosmelli. La visione del mondo della Relatività e della Meccanica Quantistica. Settimana 5. Lezione 5.1 La funzione d onda I parte

Carlo Cosmelli. La visione del mondo della Relatività e della Meccanica Quantistica. Settimana 5. Lezione 5.1 La funzione d onda I parte La visione del mondo della Relatività e della Meccanica Quantistica Settimana 5 Lezione 5.1 La funzione d onda I parte Carlo Cosmelli 1 Riassunto al 1924 Quindi: 1900 - Planck: lo scambio di Energia [onda

Dettagli

Il gradino di potenziale.

Il gradino di potenziale. Il gradino di potenziale. Cerchiamo adesso di applicare quanto visto sull equazione di Schröedinger per gli stati stazionari ad alcuni casi semplici e particolarmente significativi. Per chiarezza e semplicità

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia. Francesco Nobili

Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia. Francesco Nobili Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia Francesco Nobili TECNICHE SPETTROSCOPICHE Le tecniche spettroscopiche sono tecniche analitiche basate sull interazione tra

Dettagli

LEZIONE 2 ( Interazione delle particelle con la materia)

LEZIONE 2 ( Interazione delle particelle con la materia) LEZIONE 2 ( Interazione delle particelle con la materia) INTERAZIONE DELLE RADIAZIONI FOTONICHE La materia viene ionizzata prevalentemente ad opera degli elettroni secondari prodotti a seguito di una interazione

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

Qualche semplice considerazione sulle onde di Daniele Gasparri

Qualche semplice considerazione sulle onde di Daniele Gasparri Qualche semplice considerazione sulle onde di Daniele Gasparri Le onde sono delle perturbazioni periodiche che si propagano nello spazio; quasi sempre (tranne nel caso della luce) si ha un mezzo che permette

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Esami d Analisi Matematica 1. Filippo De Mari e Marina Venturino

Esami d Analisi Matematica 1. Filippo De Mari e Marina Venturino Esami d Analisi Matematica 1 Filippo De Mari e Marina Venturino Indice Parte 1. ANNO ACCADEMICO 1999-000 5 1. Corso di Studi in Ingegneria Meccanica 5 Parte. ANNO ACCADEMICO 001-00 15 1. Corso di Studi

Dettagli

Struttura Elettronica degli Atomi

Struttura Elettronica degli Atomi Prof. A. Martinelli Struttura Elettronica degli Atomi Dipartimento di Farmacia 1 La Natura ondulatoria della luce - La luce visibile è una piccola parte dello spettro delle onde elettromagnetiche. 1 La

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004 Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

POLARIZZAZIONE ORIZZONTALE O VERTICALE?

POLARIZZAZIONE ORIZZONTALE O VERTICALE? A.R.I. Sezione di Parma Conversazioni del 1 Venerdì del Mese POLARIZZAZIONE ORIZZONTALE O VERTICALE? Venerdi, 7 dicembre, ore 21:15 - Carlo, I4VIL Oscillatore e risuonatore di Hertz ( http://www.sparkmuseum.com

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli