alternata verso di percorrenza nel circuito cambia periodicamente nel tempo usi comuni dell energia elettrica si basano sulla corrente AC

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "alternata verso di percorrenza nel circuito cambia periodicamente nel tempo usi comuni dell energia elettrica si basano sulla corrente AC"

Transcript

1 Corrente alternata La corrente si dice alternata se il suo verso di percorrenza nel circuito cambia periodicamente nel tempo; dunque a differenza della corrente continua la corrente alternata non ha una polarità definita e un verso definito La corrente alternata si indica col simbolo AC ( alternate current ); la corrente continua si indica con DC ( direct current ). Molti usi comuni dell energia elettrica si basano sulla corrente AC; ad esempio la corrente proveniente dalle centrali elettriche che alimenta abitazioni, uffici, industrie, luoghi di lavoro è sempre AC; l intensità varia sinusoidalmente nel tempo, e cambia verso con una frequenza che per le reti europee è di 50 Hz (dunque inverte il segno 50 volte al secondo); negli USA la frequenza è 60 Hz. Quali vantaggi ha la corrente alternata rispetto a quella continua? Si adatta meglio a meccanismi rotanti, quali generatori e motori elettrici Con la corrente, anche il campo magnetico da essa generato cambia verso: ciò permette applicazioni pratiche basate sull induzione magnetica E funzionale all utilizzo del trasformatore, uno strumento estremamente importante nell elettronica moderna, in particolare per quanto riguarda il trasporto di energia elettrica a grandi distanze

2 Il circuito LC Il circuito LC è strumento fondamentale per la generazione, manipolazione, e l utilizzo di correnti alternate. Nei circuiti LC sono presenti induttori e condensatori (in realtà la resistenza è ineliminabile, per cui sono di fatto RLC). A differenza dei circuiti RC ed RL, caratterizzati da un regime transiente concluso il quale le grandezza fondamentali tornano ad essere costanti, negli LC le grandezze fondamentali variano indefinitamente nel tempo. L andamento temporale è sinusoidale, caratterizzato da un periodo (T) e una frequenza (w) di oscillazione caratteristica del circuito. Di conseguenza, anche il campo elettrico all interno del condensatore e campo magnetico nell induttore non sono costanti, ma oscillano nel tempo, dando origine a oscillazioni elettromagnetiche. Vedremo che: w U 1 LC Negli LC valgono in ogni istante le leggi di Kirchoff e, in assenza di resistenze, vale la conservazione dell energia totale: C U L 1 T q C w 1 Li LC COSTANTE NEL TEMPO

3 Il circuito LC: primo semiperiodo a) C totalmente carico, U E è massima; L è scarico, ovvero i=0, U L =0 b) C inizia a scaricarsi, la corrente fluisce in senso antiorario attraversando L; l energia si trasferisce da C ad L: U E decresce ed U L cresce ma U E + U L è costante c) C è scarico, i è massima, il campo magnetico in L è anch esso al suo massimo valore; l energia è totalmente accumulata in L. d) la corrente inizia a decrescere: L reagisce compensando la diminuzione con la corrente indotta; i continua a fluire nello stesso verso, caricando i piatti di C con cariche opposte a quelle iniziali e) C è di nuovo totalmente carico, ma con campo elettrico opposto a quello iniziale; corrente e campo magnetico in L sono nulli, tutta l energia è in U E (a) (b) (c) (d) (e)

4 Il circuito LC: secondo semiperiodo f) Inizia il processo inverso, caratterizzato da una corrente di verso orario: C si scarica, cresce la corrente ed il campo magnetico in L g) corrente e campo magnetico sono di nuovo al loro massimo, C è scarico h) la corrente diminuisce, inizia il processo di ricarica del condensatore che riporta il sistema allo stato di partenza (a). In assenza di resistenze che dissipano energia, il processo si ripete indefinitamente con una frequenza caratteristica. ( f ) (g) (h) ( a)

5 Il circuito LC: periodo completo (a) (b) (c) (d) (e) (h) (g) ( f )

6 Equazioni del circuito oscillatore LC Consideriamo il circuito LC in figura; nei circuiti AC non esiste un verso assoluto della corrente positiva; assumiamo convenzionalmente che la corrente positiva scorra in verso orario q di i d a Va Vb VC Vc Vd VL L C dt l equazione di Kirchoff è: q di L 0 di d q sostituendo C dt c b dt dt si ottiene un equazione differenziale del ordine in q(t), detta anche equazione dell oscillatore: d q q L 0 (1) dt C Si dimostra facilmente che questa equazione è soddisfatta dalla funzione sinusoidale: q( t) Qcos( wt ) ove è una fase arbitraria, Q il valore massimo della carica sui piatti del condensatore, ed w la frequenza caratteristica del circuito

7 Equazioni dell oscillatore LC Dimostrazione: calcoliamo le derivate della carica: derivata 1 derivata dq d q wq cos( wt ) dt dt Sostituiamo nell equazione dell oscillatore: Lw Qcos( wt ) Qcos( wt ) 0 C 1 Chiaramente l equazione è soddisfatta per: w w Qcos( wt ) w L 0 C 1 frequenza LC dell oscillatore LC 1 Carica del condensatore: q( t) Qcos( wt ) Corrente nel circuito: i( t) wq sin( wt ) Isin( wt ) I e Q sono i valori massimi di corrente e carica durante l oscillazione Il circuito LC è il prototipo di circuito a corrente alternata: il verso della corrente non è costante, ma varia continuamente con una frequenza caratteristica del circuito data da w

8 q(t) Q Equazioni dell oscillatore LC: fase arbitraria =0 t = 0 Nella soluzione dell oscillatore vi è una fase indeterminata, per cui qualsiasi valore di soddisfa allo stesso modo l equazione di ordine; il valore di è fissato dalla condizione iniziale; ad esempio scegliendo =0 stabiliamo che per t = 0, C è totalmente carico e la corrente nulla: q( t) Qcos( wt) q(0) Q i( t) wq sin( wt) i(0) 0 i(t) I Avendo definito positiva la corrente di verso orario, il segno implica che all inizio la corrente scorre in verso antiorario q(t) e i(t) differiscono, oltre che per ampiezza dell oscillazione, per una fase uguale ad ¼ di periodo: quando q(t) = Q la corrente è nulla quando i(t) = I la carica sui piatti è nulla

9 Oscillatore LC: carica e corrente (a) () c () e ( g ) ( a) Q I qt () it () T 4 T 3T 4 T t t Scegliere 0 significa traslare i(t) e q(t) lungo l asse del tempo, ovvero iniziare il processo oscillatorio da un altra situazione; ad esempio per l istante t = 0 corrisponde alla configurazione (e) w w 3 w w T w LC

10 Oscillatore LC: potenziali (a) () c () e ( g ) ( a) Q C Q C T 4 ( ) q() t Q V cos( ) C t wt C C T 3T 4 ( ) di Q V cos( ) L t L wt dt C T t t Le d.d.p. ai capi di C ed L sono uguali in ampiezza ma di segno opposto, ovvero differiscono per una fase uguale ad ½ di periodo. In questo modo ad ogni istante la loro somma è sempre nulla, come imposto dall equazione di Kirchoff

11 Energia elettrica: Oscillatore LC: energia q() t Q U t t C C C ( ) cos ( w ) Li() t w Q L Q Energia magnetica: UL( t) sin ( wt) sin ( wt) C L energia totale è conservata, infatti in qualsiasi istante t: U ( t) U ( t) C L Q C U () C t l ampiezza delle oscillazioni Q /(C) è la stessa per U C e U L ; quando U C è massima U L è nulla, e viceversa U () L t

12 frequenza angolare: frequenza: carica massima: Problema 31.1 Un condensatore con C = mf viene caricato ad una tensione V = 50 V; una volta scollegato dalla batteria, viene connesso ad una bobina di L =0 mh, così da generare oscillazioni LC (si assume resistenza nulla) a) Calcolare la frequenza caratteristica, la carica massima, la corrente massima, e l energia immagazzinata nel circuito: w LC 0mH mf 410 s w Hz 796 H F Tm C A V corrente massima: I w Q w C V Hz mc A Q 1 Energia: U L I 10 mh (0.5 A).5mJ C Hz Q C V mf 50V 100 mc 4 Hz s

13 d c i a b Problema 31.1 b) Calcolare intensità e verso (orario o antiorario) della corrente nel circuito agli istanti t= 1 s, 5 s, 8 s i( t) wq sin( wt) I sin( wt) t 1s i 0.5Asin 5000 rad 0.5 A( 0.987) 0.49A 0 t 5s i 0.5Asin 5000 rad 0.5 A( 0.71) 0.36A 0 t 8s i 0.5Asin rad 0.5 A(0.94) 0.47A 0 orario orario antiorario 5000 radianti corrispondono a 5000/ = oscillazioni; eliminando le oscillazioni complete, si ottiene 0.77 oscillazioni, corrispondenti ad una fase 0.77 = 1.55 ; siamo quindi vicini alla condizione i(t) massima e positiva (verso orario) e carica ai piatti nulla (la fase g dell oscillazione); 5000/ = , corrispondente alla fase 0.87 = 1.75 ; siamo tra 3/ e, nella fase h dell oscillazione 40000/ =6366., corrispondente alla fase 0. = 0.4 ; dunque poco prima di /; la corrente è vicina al suo massimo negativo, fase c dell oscillazione

14 Problema 31.1 c) Calcolare la f.e.m. autoindotta agli istanti t= 1 s, 5 s, 8 s; ad ogni istante indicare se la corrente autoindotta è concorde o discorde con la corrente presente in quegli istanti nel circuito i di d a w Qcos( wt) dt c t 1s E 50V cos 5000 rad 50V V L t 5s E 50V cos 5000 rad 50V V L t 8s E 50V cos rad 50V V L b E L di Q L cos( wt) 50V cos( wt) dt C concorde con i concorde con i discorde da i NB: per t =1s, t =3s i(t) è positiva, di/dt è negativa: la corrente si riduce, per cui la corrente autoindotta è concorde con i(t); per t = 8s i(t) è negativa, di/dt è negativa: ciò significa che i(t) in valore assoluto è in aumento per cui la corrente autoindotta deve essere discorde da i(t)

15 Il circuito reale RLC Nel circuito LC, l energia oscilla sinusoidalmente, trasferendosi continuamente da condensatore ed induttore. Ovviamente nei circuiti reali c è sempre una seppur piccola resistenza. Dunque, un LC in realtà è sempre RLC. Le resistenze dissipano energia, per cui l effettivo andamento è oscillatorio smorzato, come nel grafico della corrente in figura: dopo alcune oscillazioni l energia iniziale del circuito è totalmente dissipata e la corrente si estingue. Per avere oscillazioni durevoli nel tempo è necessario inserire nel circuito un generatore di corrente alternata, variabile sinusoidalmente nel tempo, che compensi la perdita di energia dovuta alla resistenza del circuito. Al fine di avere la massima ampiezza di corrente è necessario che il generatore eroghi una corrente di frequenza (w g ) uguale alla frequenza caratteristica del circuito LC, ovvero che sia: wg w 1/ LC condizione di risonanza

16 Il generatore di corrente alternata In figura è illustrato il funzionamento di un generatore di corrente alternata. Supponiamo di mettere in rotazione uniforme, mediante forza meccanica applicata dall esterno, una spira conduttiva, immersa in un campo magnetico uniforme. La variazione del flusso genera una f.e.m. indotta e dunque una corrente nella spira. La f.e.m. indotta dalla rotazione della spira è alternata, con frequenza uguale a quella di rotazione della spira: E : f.e.m. massima m w : frequenza di rotazione della spira g sin( t) E E m w g Gli estremi della spira terminano con due anelli conduttori connessi mediante delle spazzole metalliche al circuito esterno: durante la rotazione della spira le spazzole restano in contatto col resto del circuito, permettendo alla corrente prodotta di trasferirsi all esterno; la corrente generata è: i I sin( wgt ) La differenza di fase tra f.e.m. e corrente dipende dal circuito esterno

17 Potenza nel circuito RLC Nel circuito RLC l energia media del campo magnetico e del campo elettrico sono costanti, per cui non causano dissipazione di energia; l energia prodotta dal generatore è interamente consumata su R, dunque il trasferimento di energia netta avviene tra il generatore e la resistenza. La potenza istantanea dissipata su R è (dimentichiamo la fase): sin 1 P t Ri t RI t ( ) ( ) sin ( wg ) Dalla potenza istantanea calcoliamo la potenza media dissipata su R in un periodo (consideriamo che il valor medio di sin è 1/): P Ri RI sin ( wgt) R Possiamo riscrivere questo risultato in modo più compatto utilizzando il concetto di valore quadratico medio: per la corrente: I I I qm i () t Il valore quadratico medio di una grandezza variabile nel tempo corrisponde al valore massimo diviso radice di (questa definizione vale per qualsiasi grandezza variabile in modo sinusoidale nel tempo) I

18 Potenza nel circuito RLC Possiamo quindi riscrivere la potenza media dissipata su R: V V / E qm m P R I qm Dunque considerando valori quadratici medi al posto di quelli istantanei, la formula della potenza media dissipata riacquista un aspetto del tutto simile a quella utilizzata in precedenza per le correnti costanti nel tempo. Lo stesso concetto vale per tutte le altre grandezze dipendenti dal tempo; ad esempio, definiamo f.e.m. e d.d.p. quadratica media: qm E m / Si ha che la potenza media erogata dal generatore è: P E I V I qm qm qm qm Se si considerano valori quadratici medi, le relazioni fondamentali tra le grandezze di un circuito AC hanno la stessa forma di quelle di un circuito DC; i valori tipici di tensione e corrente negli AC sono sempre riferiti a valori qm; per esempio, nelle abitazioni V qm =0 V; I qm = 16 A

19 Trasmissione di Energia Si è visto che, nei circuiti AC (in seguito omettiamo il pedice qm, dando per scontato che correnti e tensioni siano valori qm): P V I Ovviamente la stessa potenza media può essere erogata da correnti elevate a basso voltaggio, oppure basse correnti ad alta tensione. Per ragioni di sicurezza ed efficienza, è preferibile avere, sia nell impianto di produzione (la centrale termoelettrica o idroelettrica), sia nel luogo di utilizzo (l abitazione o l ufficio), basse differenze di potenziale e alte correnti. Di contro, se l energia deve essere trasportata attraverso grandi distanze, per la legge di Joule è molto sconveniente avere alte correnti, poiché la potenza dissipata lungo il cavo dipende dal quadrato della corrente. Si preferisce dunque trasportare piccole correnti ad alta tensione (fino a 500 KV!). Il problema è risolto mediante l uso del trasformatore, uno strumento in grado di trasformare potenze elettriche di alta tensione e basso voltaggio in bassa tensione ed alto voltaggio, e viceversa.

20 Il trasformatore Il funzionamento del trasformatore si basa sull induzione magnetica e funziona soltanto per correnti alternate (AC); di contro, trasformare correnti continue (DC) richiede metodi molto più complessi Il trasformatore è costituito da bobine avvolte attorno ad un nucleo di ferro; la bobina primaria ha N p spire, quella secondaria N s spire. La primaria è connessa con un generatore di corrente alternata, la secondaria è chiusa su un carico resistivo. La corrente alternata nel circuito primario produce un campo magnetico ed un flusso variabile F B nella bobina primaria; poiché il ferro è un materiale ferromagnetico, il flusso F B si trasmette uniformemente in tutto il nucleo di ferro; dunque nella regione della bobina secondaria è presente lo stesso flusso F B ; ne deriva che su ogni singola spira delle due bobine agisce la stessa f.e.m.

21 Il trasformatore: trasformazione della tensione Dall uguaglianza del flusso magnetico attraverso ciascuna spira delle due bobine, segue che le d.d.p. ai capi della bobina nel circuito primario (V p ) e secondario (V s ) sono: df df B B Vp N V p s Ns dt dt Vp V s N s Vs Vp N p N s N p Legge di trasformazione della tensione V p è fissato dal generatore, per cui possiamo considerarla la tensione di input; V s è la tensione di output ottenuta dalla trasformazione, e dipende dal rapporto tra le spire delle bobine; per N s > N p il trasformatore è detto elevatore, poiché eleva la tensione d ingresso V p ad un valore più alto; se invece N p > N s il trasformatore riduce la tensione d ingresso ed è detto riduttore. Nel disegno è chiaramente riportato lo schema di un elevatore.

22 Il trasformatore: trasformazione della corrente Determiniamo le correnti nel circuito primario (I p ) e secondario (I s ) utilizzando il principio di conservazione dell energia. Sappiamo che le induttanze non dissipano energia se supponiamo trascurabili le loro resistenze interne rispetto al carico R; dunque, tutta la potenza erogata dal generatore nel circuito primario deve essere dissipata sulla resistenza del circuito secondario. potenza erogata nel primario: P I V g p p V N I I I p p s p p Vs Ns potenza dissipata nel secondario: P I R I V d s s s conservazione dell energia: I pvp IsVs Legge di trasformazione della corrente

Vantaggi della corrente alternata

Vantaggi della corrente alternata Corrente alternata La corrente si dice alternata (AC, alternate current ); se il suo verso di percorrenza nel circuito cambia periodicamente nel tempo dunque a differenza della corrente continua (DC, direct

Dettagli

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 14/6/2018. b) 26.9

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 14/6/2018. b) 26.9 Fisica II - Ingegneria iomedica - A.A. 07/08 - Appello del 4/6/08 ) onsideriamo le 3 cariche in figura con q = -q, q = -q, q3 = -q, q = ; le loro distanze dall origine sono r = 3 cm, r = r3 = cm, e l angolo

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

INDUZIONE E AUTOINDUZIONE

INDUZIONE E AUTOINDUZIONE E possibile avere un effetto analogo anche in un singolo circuito Un circuito percorso da una corrente variabile può indurre una f.e.m., e quindi una corrente indotta su se stesso, in questo caso il fenomeno

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE Il trasformatore è costituito essenzialmente da un nucleo di lamierini ferromagnetici su cui sono avvolti due avvolgimenti in rame con diverso numero di spire

Dettagli

Applicazioni delle derivate alla Fisica

Applicazioni delle derivate alla Fisica Liceo Scientifico Statale S. Cannizzaro Applicazioni delle derivate alla Fisica erasmo@galois.it Indice 1 Intensità di corrente elettrica 1 2 Tensione e corrente ai capi di un condensatore 2 3 Forza elettromotrice

Dettagli

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica Lavoro meccanico ed energia elettrica -trattazione qualitativa

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza Esperienza di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo:

La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo: tibo5794_em11_test1 Nome Classe Data 1 - Scelta multipla La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo: esiste una forza esterna

Dettagli

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e:

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e: Oscillazioni Applicando la legge di Faraday: E d l d ma Φ B con d l in direzione d E dl ovvero ovvero d + q / n base alla nostra scelta di polarizzazione di pero', si ha' che: dq Segue che: A d d q Allora,

Dettagli

Sistemi Elettrici. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Sistemi Elettrici. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Sistemi Elettrici ALTAIR http://metropolis.sci.univr.it Argomenti Osservazioni generali Argomenti Argomenti Osservazioni generali Componenti di base: resistenze, sorgenti elettriche (fem), condensatori,

Dettagli

Fisica Rapid Training. Principi di Kirchhoff e Induzione Elettromagnetica

Fisica Rapid Training. Principi di Kirchhoff e Induzione Elettromagnetica Fisica Rapid Training Principi di Kirchhoff e Induzione Elettromagnetica Introduzione alle Leggi di Kirchhoff Nello schema di un circuito elettrico si possono identificare: Maglie: percorsi chiusi che

Dettagli

Potenza elettrica circuito elettrico effetto Joule

Potenza elettrica circuito elettrico effetto Joule Potenza elettrica Si chiama circuito elettrico un generico percorso chiuso in cui le cariche possono muoversi con continuità, costituito da un insieme di componenti collegati tra loro mediante fili conduttori.

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Modellistica dei Sistemi Elettro-Meccanici

Modellistica dei Sistemi Elettro-Meccanici 1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 2016/17 Corso di Fondamenti di Automatica A.A. 2016/17 Modellistica dei Sistemi Elettro-Meccanici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale

Dettagli

Generatori di tensione

Generatori di tensione Correnti alternate Generatori di tensione Sinora come generatore di forza elettromotrice abbiamo preso in considerazione soltanto la pila elettrica. Questo generatore ha la caratteristica di fornire sempre

Dettagli

Cosa è la dinamo? dinamo

Cosa è la dinamo? dinamo La dinamo Cosa è la dinamo? La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua (DC, per gli inglesi, direct current).

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1 Induzione La legge dell induzione di Faraday combina gli effetti dei campi elettrici e delle correnti, infatti sappiamo che Corrente + campo magnetico momento torcente motore elettrico Momento torcente

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

TRASFORMATORE. Struttura generale dei trasformatori

TRASFORMATORE. Struttura generale dei trasformatori TRASFORMATORE Il trasformatore è una macchina elettrica statica(priva di parti in movimento), trasforma l energia elettrica che riceve dalla rete di alimentazione ancora in energia elettrica data al carico,

Dettagli

ELETTROTECNICA. La corrente alternata. Livello 15. Andrea Ros sdb

ELETTROTECNICA. La corrente alternata. Livello 15. Andrea Ros sdb ELETTROTECNICA Livello 15 La corrente alternata Andrea Ros sdb Livello 15 La corrente alternata Sezione 1 Grandezze alternate La tensione ai capi di una batteria viene detta continua : il polo negativo

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Possiamo combinare molti oggetti già studiati per fare circolare corrente nel modo che ci conviene Possiamo usare condensatori e solenoidi Introdurremo anche generatori (i motori delle

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA Commento ai problemi proposti nell incontro del 17 febbraio 2016 Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 I problemi proposti TRACCE

Dettagli

Circuiti in corrente continua

Circuiti in corrente continua Domanda Le lampadine mostrate in figura sono le stesse. Con quali collegamenti si ha maggiore luce? Circuiti in corrente continua Ingegneria Energetica Docente: Angelo Carbone Circuito 1 Circuito 2 La

Dettagli

GENERATORI MECCANICI DI CORRENTE

GENERATORI MECCANICI DI CORRENTE GENERATORI MECCANICI DI CORRENTE IL MAGNETISMO Il termine deriva da un minerale del ferro: la magnetite (o calamita naturale), che ha la proprietà di attrarre alcuni metalli. Il campo magnetico è lo spazio

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Matematica Seconda prova in itinere di Fisica (Prof. E. Santovetti) 13 gennaio 016 Nome: La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli

Dettagli

Compito di prova - risolti

Compito di prova - risolti Compito di prova - risolti A P B q A q P q B 1. La carica positiva mobile q P si trova tra le cariche positive fisse q A, q B dove AB = 1 m. Se q A = 2 C e all equilibrio AP = 0.333 m, la carica q B vale

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE CIRCUITI IN REGIME SINUSOIDALE CIRCUITO PURAMENTE OHMICO Esaminiamo il comportamento dei circuiti in regime sinusoidale iniziando da un circuito puramente ohmico. Si consideri (figura 1) un circuito costituito

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

LA CORRENTE ALTERNATA

LA CORRENTE ALTERNATA CAPITOLO 39 LA COENTE ALTENATA L ALTENATOE È la legge di Faraday-Neumann, perché in linea di principio l alternatore è costituito da una spira che viene fatta ruotare all interno di un campo magnetico.

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) III a Esperienza del Laboratorio di Fisica Generale II Oscillazioni libere e risonanza di un circuito LC-serie (Trattazione analitica del circuito LC-serie) Con questa breve nota si vuole fornire la trattazione

Dettagli

Motore asincrono trifase

Motore asincrono trifase Motore asincrono trifase Il motore asincrono trifase viene alimentato da un sistema di tensioni trifasi cioè tre tensioni che sono sfasate tra di loro di 120. stella di tensioni del sistema trifase La

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 PRIMA PARTE: Elettrostatica A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il

Dettagli

PROBLEMA N.2 Il motorino elettrico

PROBLEMA N.2 Il motorino elettrico PROBLEMA N.2 Il motorino elettrico Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della dinamica in presenza

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova di esame del 15/6/ NOME, n. matricola

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova di esame del 15/6/ NOME, n. matricola Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15 Prova di esame del 15/6/2015 - NOME, n. matricola 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina

Dettagli

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso CARICA E SCARICA DEL CONDENSATORE 5.1. Studiare la scarica del condensatore della figura che è connesso I(t) alla resistenza al tempo t = 0 quando porta una carica Q(0) = Q 0. C R V(t) SOLUZIONE. A interruttore

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica:

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica: SISTEMI TRIFASE 3_FASE I sistemi 3fase hanno fondamentale importanza nella produzione, trasformazione e trasmissione dell energia elettrica. Il sistema trifase è applicato in campo industriale o comunque

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova di esame del 17/6/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova di esame del 17/6/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13 Prova di esame del 17/6/2013 - NOME 1) Due moli di un gas ideale hanno inizialmente P= 0.2 atm e V = 0.2 m 3. Il gas si espande

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Per muovere una carica tra due punti ci vuole un campo elettrico, quindi una differenza di potenziale (ddp) Se la carica si muove in un percorso chiuso (circuito) ho bisogno di un congegno

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

INDUTTANZA ENERGIA MAGNETICA

INDUTTANZA ENERGIA MAGNETICA INDUTTANZA E ENEGIA MAGNETICA Una corrente variabile in una bobina induce una f.e.m. in un altra bobina: è possibile avere lo stesso fenomeno in una sola bobina quando la corrente i varia nel tempo? Fenomenologia

Dettagli

A.R.I. - Sezione di Parma. Corso di preparazione esame patente radioamatore Induzione e filtri. Carlo Vignali, I4VIL

A.R.I. - Sezione di Parma. Corso di preparazione esame patente radioamatore Induzione e filtri. Carlo Vignali, I4VIL A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2018 Induzione e filtri Carlo Vignali, I4VIL Regola della mano destra - MOTORE ELETTRICO Regola della mano destra - GENERATORE

Dettagli

I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E V E R O N A

I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E V E R O N A I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E G U G L I E L M O M A R C O N I V E R O N A PROGRAMMA PREVENTIVO A.S. 2015/2016 CLASSE 4Ac MATERIA: Elettrotecnica, elettronica e automazione

Dettagli

Lezione 19 - Induzione elettromagnetica

Lezione 19 - Induzione elettromagnetica Lezione 19 - Induzione elettromagnetica Una spira percorsa da corrente è equivalente ad un momento magnetico: se si pone questa spira in un campo magnetico esterno essa subisce un momento torcente Si verifica

Dettagli

Cosa è un alternatore?

Cosa è un alternatore? L alternatore Cosa è un alternatore? L alternatore è una macchina elettrica rotante il cui funzionamento è basato sul fenomeno dell'induzione elettromagnetica. L alternatore trasforma energia meccanica

Dettagli

Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti. Gianluca Susi

Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti. Gianluca Susi Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti Gianluca Susi Carica E indicata con q e si misura in Coulomb [C] Principio di conservazione della carica elettrica:

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Lez.27 La macchina in corrente continua. Cenni.

Lez.27 La macchina in corrente continua. Cenni. Lez.27 La macchina in corrente continua. Cenni. Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 27 Pagina 1 Conduttore in moto in un campo magnetico Supponiamo

Dettagli

LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A PRIMA PARTE: Elettrostatica LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il principio di

Dettagli

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni: Circuiti L/LC Circuiti L La trattazione di un circuito L nel caso in cui venga utilizzato un generatore di tensione indipendente dal tempo é del tutto analoga alla trattazione di un circuito C, nelle stesse

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

TEST DI ELETTROTECNICA - 2

TEST DI ELETTROTECNICA - 2 Zeno Martini (admin) TEST DI ELETTROTECNICA - 2 10 September 2012 Potenza ed energia 1 La potenza elettrica in continua è data da: A - Il rapporto tra la tensione ai capi di un bipolo e l'intensità di

Dettagli

Leggi e principi fondamentali

Leggi e principi fondamentali Legge di Ohm per i conduttori filiformi Leggi e principi fondamentali La resistenza elettrica R [Ω] di un conduttore metallico filiforme dipende dalla natura del conduttore e dalle sue dimensioni secondo

Dettagli

Lez.23 Accoppiamento mutuo. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 23 Pagina 1

Lez.23 Accoppiamento mutuo. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 23 Pagina 1 Lez.3 Accoppiamento mutuo Università di Napoli Federico, CdL ng. Meccanica, A.A. 07-08, Elettrotecnica. Lezione 3 Pagina Doppio bipolo Trasformatore deale È un doppio bipolo caratterizzato da un solo parametro

Dettagli

Esame Scritto Fisica Generale T-B/T-2

Esame Scritto Fisica Generale T-B/T-2 Esame Scritto Fisica Generale T-B/T- (CdL Ingegneria Civile e Informatica [A-K] Prof. M. Sioli II Appello A.A. 013-01 - 9/01/01 Soluzioni Esercizi Ex. 1 Sulla superficie della Terra, in condizioni di bel

Dettagli

INTENSITÀ DI CORRENTE E LEGGI DI OHM

INTENSITÀ DI CORRENTE E LEGGI DI OHM QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Fondamenti di Elettronica, Sez.1

Fondamenti di Elettronica, Sez.1 Fondamenti di Elettronica, Sez.1 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

TEST DI ELETTROTECNICA

TEST DI ELETTROTECNICA Zeno Martini (admin) TEST DI ELETTROTECNICA 4 September 2012 Undici anni fa, agli albori di questo sito, che allora si chiamava Electroportal.net, c'erano alcune pagine di test interattivi. Nelle release

Dettagli

1. Circuito RLC serie Studiamo la configurazione mostrata in figura 1.1. Figura 1.1.

1. Circuito RLC serie Studiamo la configurazione mostrata in figura 1.1. Figura 1.1. CIRCUITI RLC ED EQUAZIONI DIFFERENZIALI Sommario. In queste pagine studiamo alcune configurazioni elementari di resistori, condensatori e bobine. Vedremo come si possono dedurre le equazioni differenziali

Dettagli

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti N.Giglietto A.A. 2002/03-31.2 Due esperimenti - 1 Cap 31 - Induzione e induttanza Sappiamo che una spira percorsa da corrente e immersa in un campo magnetico è soggetta ad un momento torcente. Proviamo

Dettagli

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: - Proprietà generali delle cariche elettriche - Cariche puntiformi e distribuzioni continue di

Dettagli

Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22, L 1 = 16 mh, L 2 = 13 mh.

Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22, L 1 = 16 mh, L 2 = 13 mh. 1 2 3 I U 1 2 Un utilizzatore trifase (U) è costituito da tre impedenze uguali, ciascuna delle quali è mostrata nella figura 2, collegate a triangolo ed è alimentato da una linea trifase caratterizzata

Dettagli

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:. POR FSE 04-00 PARTE : LEGGI I SEGUENTI CAPITOLI DEL LIBRO DEL LIBRO L ENERGIA ELETTRICA, E RISPONDI ALLE DOMANDE. Capitoli 0- del libro L energia elettrica.. Che cosa è il magnetismo?e cosa si intende

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz Ver. 1. del 7/1/9 L induzione elettromagnetica - Legge di Faraday-Lentz i osservano alcuni fatti sperimentali. 1 ) Consideriamo un filo metallico chiuso su se stesso (spira) tramite un misuratore di corrente

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica Una corrente elettrica produce un campo magnetico Un campo magnetico esercita una forza sui circuiti percorsi da corrente È possibile generare correnti per mezzo di campi magnetici?

Dettagli

Esame di Stato 2006 tema n. 2 1 M.Vincoli

Esame di Stato 2006 tema n. 2 1 M.Vincoli Esame di Stato 6 tema n. 1 M.Vincoli 1. L effetto Joule consiste nella dissipazione termica di energia a seguito del passaggio di corrente in un elemento resistivo. Supponiamo di avere un circuito costituito

Dettagli

Il trasformatore Principio di funzionamento

Il trasformatore Principio di funzionamento Il trasformatore Principio di funzionamento Il trasformatore è una macchina elettrica statica reversibile, che funziona sul principio della mutua induzione. È formato da un nucleo in lamierino ferromagnetico

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6 Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW 27.1-27.4, 27.6 1 1. L esperimento di Faraday Una corrente elettrica produce un campo magnetico. Vale anche per l opposto!

Dettagli

Fig. 1: rotore e statore di una dinamo

Fig. 1: rotore e statore di una dinamo La dinamo La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua. Costruttivamente è costituita da un sistema induttore

Dettagli

Tre resistenze in serie

Tre resistenze in serie Tre resistenze in serie Un circuito è formato da tre resistenze collegate in serie a una batteria da 24,0 V. La corrente nel circuito è di 0,0320 A. Sapendo che R 1 = 250,0 Ω e R 2 = 150,0 Ω, calcola a)il

Dettagli

7.13 Appendice 7b: Esempi di analisi di Fourier 175

7.13 Appendice 7b: Esempi di analisi di Fourier 175 7.13 Appendice 7b: Esempi di analisi di Fourier 175 Figura 7.20: Scomposizione in serie di Fourier di un onda quadra bipolare all aumentare delle componenti prese in considerazione (dall alto verso il

Dettagli

Componenti di un circuito elettrico in regime sinusoidale

Componenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale Introduzione: a corrente elettrica, nel suo passaggio all interno di un conduttore, produce

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13 Prova Scritta del 11/11/2013 - NOME 1) Un commerciante prepara palloncini colorati all interno di un magazzino di volume di

Dettagli

Fisica II - CdL Chimica

Fisica II - CdL Chimica x z y Corrente di spostamento Applichiamo il teorema di Ampere nel caso di un condensatore, considerando le sup. S 1 ed S 2 : L integrale di linea è esteso a qualsiasi percorso chiuso concatenato con la

Dettagli

CAPITOLO 8 LEGGE DI FARADAY

CAPITOLO 8 LEGGE DI FARADAY CAPITOLO 8 8.1 Induzione elettromagnetica Abbiamo visto nei precedenti come le cariche siano origine sia di campi elettrici che di campi magnetici. A parte questa connessione tra i due campi a livello

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

PERDITE NEI NUCLEI MAGNETICI

PERDITE NEI NUCLEI MAGNETICI PERDITE NEI NUCLEI MAGNETICI Nei nuclei magnetici delle macchine elettriche si hanno perdite di potenza attiva dovute a: 1) Isteresi magnetica 2) Correnti parassite PERDITE NEL FERRO Entrambi i fenomeni

Dettagli

Il condensatore. 14/10/2002 Isidoro Ferrante A.A. 2002/2003 1

Il condensatore. 14/10/2002 Isidoro Ferrante A.A. 2002/2003 1 Il condensatore Un condensatore è costituito in linea di principio da due conduttori isolati e posti a distanza finita, detti armature. aricando i due conduttori con carica opposta, si forma tra di essi

Dettagli

Corrente indotta f.e.m. indotta

Corrente indotta f.e.m. indotta Induzione elettromagnetica Una corrente elettrica stabilisce un campo magnetico Un campo magnetico può generare una corrente elettrica (Legge di Faraday sull induzione, 1831) I esperimento Si muove un

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli II Appello - 30/01/2013 Soluzioni Esercizi - Compito B Ex. 1 Due condensatori di capacità C 1 = 20 µf e C 2

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli