Università degli Studi di Milano / Bicocca Facoltà di Economia. Prova scritta del 12 luglio 2011 SOLUZIONI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università degli Studi di Milano / Bicocca Facoltà di Economia. Prova scritta del 12 luglio 2011 SOLUZIONI"

Transcript

1 Università degli Studi di Milano / Bicocca Facoltà di Economia MATEMATICA FINANZIARIA EcoCom A-Le / Li-Z Prova scritta del luglio SOLUZIONI Per gli studenti immatricolati entro il 7/8 (45cfu): L operazione finanziaria A = [(, 55, 65); (,, ) ha un unico tasso implicito, ed esso è compreso tra e ; b ha almeno tre tassi impliciti; c d (Profssa GCarcano) non ha tassi impliciti positivi, e non si può dire nulla su eventuali tassi impliciti negativi; ha un unico tasso implicito, ed esso è positivo Per gli studenti immatricolati nel 8/9 o 9/ (5cfu): Sono noti i seguenti tassi spot: R = 5%, R = %; allora, il tir di una obbligazione, scadente tra anni, cedola annua del 4% e rimborso, è tra 9% e %; b tra 7% e 8%; c tra % e %; d nessuna delle altre tre risposte è giusta Per gli studenti immatricolati entro il 7/8 (45cfu): Sull argomento tassi impliciti, si veda, ad esempio, dispensa Matematica Finanziaria, Datanova, pag 6 e seguenti A è un investimento in senso stretto (del tipo PICO), con somma dei ricavi (75) minore della somma dei costi (), pertanto, da ben noti fatti teorici, e senza bisogno di fare conti, ne deduciamo che A ha uno ed un solo tasso implicito, e tale tasso è negativo ( < i < ) Per gli studenti immatricolati nel 8/9 o 9/ (5cfu): P = () = = 4( + i) + 4( + i) = 4v + 4v v = 9847 i = tir = 99% Si consideri la forza d interesse δ(t) = t e la legge di capitalizzazione ad essa associata Allora a i = 47%; i = 53%; c f(t) = e t ; d f(t) = e t t f(t) = e δ(s)ds = e 5t i = f() = e 5 = 57 3 Nelle operazioni finanziarie del tipo investimento in senso stretto, il rea a nessuna delle altre tre risposte è giusta; b è sempre negativo; è positivo per i < i e negativo per i > i, ove i = tir; d è sempre positivo Si veda il materiale didattico (dispensa Matematica Finanziaria, Datanova, 4) 4 Se A = [P; t = [(P, P,, P n ); (t, t, {, t n ) è la generica operazione finanziaria, e I(P, t) un I t indice di preferenza, allora, la condizione k > se P k < I, k =,,, n, significa t k < se P k > meglio incassare prima, meglio pagare dopo; b meglio una posta maggiore, di una posta minore; c meglio pagare prima, meglio incassare dopo; d meglio una posta minore, di una posta maggiore

2 Si veda il materiale didattico 5 Quale delle seguenti relazioni non è corretta? (Attenzione: non fate conti, ma ragionate finanziariamente!) ( ) a s n i = us n i b pä n i = v p ä ) n i c pä n i = u (pa n i nessuna delle altre tre risposte è giusta Ragionate! 6(i) Si ricordi la definizione di scadenza media ( punto) e si dimostri che, nel regime commerciale, la scadenza media coincide con la scadenza media aritmetica ( punto) Dalla definizione di scadenza media (v materiale didattico) e dalla forma del fattore di sconto commerciale, si ha: Ck ( dt k ) = ( dz) C k z = tk C k C k = t (ii) Devo restituire un prestito di euro, con metodo francese, in 4 rate annue, tasso annuo di remunerazione del 4% Determinare l importo della rata R e delle quote capitali C k Attenzione: NON determinare tutto il piano di ammortamento, ma calcolare solo R e C k facendo il minor numero di conti possibili!! ( punti) Subito dopo il pagamento della seconda rata, mi aumentano il tasso di due punti; determinare la nuova rata ( punto) Si verifichino: la condizioni di equità elementare per l ammortamento nella versione iniziale e le condizioni di equità finanziarie per l ammortamento effettivamente realizzato ( punti) R = α 4 4 = C = Rv n = 5598(4) 4 = 4798 C = C u = 4798(4) = 4898 C 3 = C u = 4898(4) = 594 C 4 = C 3 u = 594(4) = = 5598 (4) 4 D = = 39 6 R = R 3 = R 4 = 39α 6 = 39 = (6)

3 C + C + C 3 + C 4 = = = S condizione equità elementare soddisfatta R(4) + R(4) + R(4) (6) + R(4) (6) = = 5598(4) (4) (4) (6) (4) (6) = = condizione equità finanziaria soddisfatta È sufficiente verificare solo una delle due condizioni di equità finanziaria (in questo caso, quella iniziale), perché, come noto, in cc/ce, esse sono tra loro equivalenti 7 (i) Si determini, sia analiticamente, sia graficamente, l insieme S, chiusura convessa dei punti A = (, ), B = (, ) e C = (, ) ( punti) Si dia un esempio di funzione obiettivo lineare, per la quale C è l unica soluzione ottimale per il problema di minimizzazione vincolata nella regione ammissibile S, ed i punti del segmento di estremi A e B sono invece tutte le soluzioni ottimali del problema di massimizzazione ( punti) Per le definizioni coinvolte, si veda Programmazione Lineare, Datanova, Cap La chiusura convessa di un insieme X è il più piccolo insieme chiuso e convesso che contenga X; in questo caso, è l insieme di tutte le combinazioni convesse dei tre punti dati, che ne costituiscono i punti estremi (ricordare il Teorema di Minkowski): S = { (x, x ) IR : x, x + x, x x } S = { (x, x ) IR : α [ + β [ + γ [, α, β, γ, α + β + γ = } x y S A B C Basta considerare le rette di livello e si capisce che la funzione obiettivo soddisfacente le richieste è z = x x (vedi disegno)

4 x y S A B C (iii) Si risolva il seguente problema di programmazione lineare, senza utilizzare né il metodo delle rette di livello, né il metodo del simplesso: (4 punti) max z = x + x sub x x x x x j j =, La regione ammissibile del problema dato è 3 x x La regione ammissibile è non vuota e limitata, pertanto, dal Teorema fondamentale della programmazione lineare, per determinare la/le soluzione/i ottimali basta valutare l obiettivo sui vertici/punti estremi: z ([ =, z ([ =, z ([ = 4, z ([ 3 = 5

5 pertanto l unica soluzione ottimale è x = [ e l ottimo è z = 4 (iv) Si scriva e si risolva il problema duale del problema in (iii) (3 punti) Il problema duale del problema in (iii) è (D) min w = π + π π 3 sub π π + π π 3 π i i =,, 3 Dai risultati ottenuti su (P), e utilizzando il teorema di scarto complementare, si ha: x = > π = x = > π + π π3 = s 3 = > π3 = si ottiene quindi l unica soluzione ottimale π = 3, con ottimo w = 4 (= z )

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

Esercitazione 24 marzo

Esercitazione 24 marzo Esercitazione 24 marzo Esercizio 1 Una persona contrae un prestito di 25000 e, che estinguerà pagando le seguenti quote capitale: 3000 e fra 6 mesi, 5000 e fra un anno, 8000 e fra 18 mesi, 4000 e fra 2

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Questo materiale è reso disponibile sul web, esclusivamente nella pagina personale

Questo materiale è reso disponibile sul web, esclusivamente nella pagina personale Università degli studi di Milano Bicocca Scuola di Economia e Statistica Metodi Matematici (parte di Finanziaria) Esercizi con risoluzione dettagliata Autrice: Prof.ssa G.Carcano Questo materiale è reso

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12 Esercizi di matematica finanziaria 1 Leggi finanziarie in una variabile Esercizio 1.1. Un soggetto può impiegare C o a interessi semplici con tasso annuo i oppure a interessi semplici anticipati con tasso

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 18 febbraio 2015 Appunti di didattica della Matematica

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo)

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo) MATEMATICA FINANZIARIA ISTITUZIONI L - Z) Pavia 11/ 11/004 COGNOME e NOME:... n.dimatricola:... CODICE ESAME:... Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere

Dettagli

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

Fondamenti e didattica di Matematica Finanziaria. Unità 2. Regime finanziario della capitalizzazione semplice

Fondamenti e didattica di Matematica Finanziaria. Unità 2. Regime finanziario della capitalizzazione semplice Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo - 6 MILANO U6-368 silvana.stefani@unimib.it SILSIS Unità Capitalizzazione semplice Capitalizzazione composta in

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Sommario. Alcuni esercizi. Stefania Ragni. Dipartimento di Economia & Management - Università di Ferrara

Sommario. Alcuni esercizi. Stefania Ragni. Dipartimento di Economia & Management - Università di Ferrara Sommario Dipartimento di Economia & Management - Università di Ferrara Sommario Parte I: Capitalizzazione semplice e composta Parte II: Capitalizzazione mista Parte III: Capitalizzazione frazionata e tassi

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

Metodi matematici II 15 luglio 2003

Metodi matematici II 15 luglio 2003 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 8 Ammortamenti a tasso costante Classificazione Ammortamento

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

APPUNTI DI MATEMATICA FINANZIARIA

APPUNTI DI MATEMATICA FINANZIARIA APPUNTI DI MATEMATICA FINANZIARIA 15 gennaio 2015 Sommario Introduzione per lo studente: Questa dispensa è stata creata appositamente per tutti gli studenti che per fortuna o sfortuna si sono imbattuti

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Prova di ammissione alla Scuola di Specializzazione per l Insegnamento Secondario. Fisico Informatico Matematico. Indirizzo. Mat C. Modulo.

Prova di ammissione alla Scuola di Specializzazione per l Insegnamento Secondario. Fisico Informatico Matematico. Indirizzo. Mat C. Modulo. Prova di ammissione alla Scuola di Specializzazione per l Insegnamento Secondario Indirizzo Fisico Informatico Matematico Modulo Mat C 15 domande giovedì 15 Settembre 005 1. Sia D l'insieme rappresentato

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE PRGRMMZIN LINR Problemi di P.L. in due variabili metodo grafico efinizione: la programmazione lineare serve per determinare l allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 25 febbraio 2015 Appunti di didattica della Matematica

Dettagli

3. Determinare il rendimento effettivo di un BTP triennale con cedole al 5,2% acquistato a 100,35 e venduto a 99,95.

3. Determinare il rendimento effettivo di un BTP triennale con cedole al 5,2% acquistato a 100,35 e venduto a 99,95. Matematica finanziaria CLAMM 20/202, giugno 202 Secondo parziale. 20 000 d sono rimborsati con 72 rate mensili in progressione geometrica di ragione 0, 99 al tasso i 2 = 0, 0032. Determinare la somma degli

Dettagli

Regimi finanziari: interesse semplice. S. Corsaro Matematica Finanziaria a.a. 2007/08 1

Regimi finanziari: interesse semplice. S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Regimi finanziari: interesse semplice S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Legge finanziaria TASSO PERIODALE tasso riferito all unità di tempo interesse i(1), oppure sconto d(1) REGIME FINANZIARIO

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007 Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 27. Bobo e Bubi affrontano la loro prima crisi familiare a causa della mancanza di una lavastoviglie. Decidono pertanto di acquistarne

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS V ERSA RI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo LICEO TECNICO MATERIA M ATEMATICA APPLICATA ANNO SCOLASTICO 2011-2012 PROF PIZZILEO

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS SDA Bocconi School of Management Danilo

unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS SDA Bocconi School of Management Danilo Danilo unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS Definizione Modalità di utilizzo Elementi di valutazione: valore minimo e valore temporale Relazione di parità Copyright SDA

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1 Matematica finanziaria: svolgimento della prova di esame del 4 settembre. Calcolare il montante che si ottiene dopo anni con un investimento di e in regime nominale al tasso annuale del % pagabile due

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 7 Costituzione di un capitale Classificazione Fondo di

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A Novembre 2011 A f (x) = ( 6 + 8 x ) x + 4. (2) Sia f definita in [0,5] come segue (x 2) 2 + 1 se 0 x x + 5 se < x 5 (c) Enunciate il teorema di Weierstrass. () Sia f (x) = log(2 + e x 4 ). (a) Calcolate

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

Regime finanziario dell interesse semplice: formule inverse

Regime finanziario dell interesse semplice: formule inverse Regime finanziario dell interesse semplice: formule inverse Il valore attuale di K è il prodotto del capitale M disponibile al tempo t per il fattore di sconto 1/(1+it). 20 Regime finanziario dell interesse

Dettagli

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005 Matematica finanziaria: svolgimento prova di esame del 5 luglio 5. [5 punti cleai, 5 punti altri] Prestiamo e a un amico. Ci si accorda per un tasso di remunerazione del 6% annuale (posticipato), per un

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria Indice 1 Leggi di capitalizzazione 5 1.1 Introduzione............................ 5 1.2 Richiami di teoria......................... 5 1.2.1 Regimi notevoli...................... 6 1.2.2 Tassi equivalenti.....................

Dettagli

1 MATEMATICA FINANZIARIA

1 MATEMATICA FINANZIARIA 1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI

PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI PERCORSI ABILITANTI SPECIALI 014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI A cura Dott.ssa Federica Miglietta ESERCITAZIONE CALCOLO FINANZIARIO: Nel caso degli investimenti si parla genericamente

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università

Dettagli

5 Risparmio e investimento nel lungo periodo

5 Risparmio e investimento nel lungo periodo 5 Risparmio e investimento nel lungo periodo 5.1 Il ruolo del mercato finanziario Il ruolo macroeconomico del sistema finanziario è quello di far affluire i fondi risparmiati ai soggetti che li spendono.

Dettagli

COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni?

COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni? UNIVERSITA DEGLI STUDI DI URBINO (Sede di Fano) COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013 1) L'impresa Gamma emette 250 obbligazioni il cui VN unitario è pari a 100. Il rimborso avverrà tramite

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Confronto tra i regimi finanziari

Confronto tra i regimi finanziari Confronto tra i regimi finanziari Consideriamo i tre regimi finanziari Quale è il regime più conveniente? Per misurare la convenienza, paragoniamo i fattori di capitalizzazione: r s (t) = f. cap. interesse

Dettagli

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine:

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine: 1.1 Pianificazione degli investimenti. Una banca deve investire C milioni di Euro, e dispone di due tipi di investimento: (a) con interesse annuo del 15%; (b) con interesse annuo del 25%. Almeno 1 di C

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 27 maggio 2010 Cognome Nome e matr..................................................................................

Dettagli

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

3 Le operazioni finanziarie 21 3.1 Criteri di scelta in condizioni di certezza... 22 3.1.1 Il criterio del VAN... 22 3.1.2 Il criterio del TIR...

3 Le operazioni finanziarie 21 3.1 Criteri di scelta in condizioni di certezza... 22 3.1.1 Il criterio del VAN... 22 3.1.2 Il criterio del TIR... Indice 1 I tassi di interesse 1 1.1 Tasso di interesse Semplice.................... 2 1.2 Tasso di interesse Composto................... 3 1.3 Esempi tasso semplice...................... 4 1.4 Esempi tasso

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione

Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione Prestiti divisi 1 I prestiti obbligazionari 1.1 Introduzione Finora ci siamo occupati di prestiti indivisi (mutui in cui un unico soggetto (creditore o mutuante presta denaro ad un unico soggetto debitore

Dettagli

Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale. L. De Giovanni, V. Dal Sasso

Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale. L. De Giovanni, V. Dal Sasso Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale L. De Giovanni, V. Dal Sasso 1 Esercizio 1. Dato il problema min 2x 1 x 2 s.t. x 1 + 2x 2 7 2x 1 x 2 6 3x 1 + 2x 2

Dettagli

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore Lezione 5 Argomenti Premessa Vincolo di bilancio La scelta ottima del consumatore 5.1 PREESSA Nonostante le preferenze portino a desiderare quantità crescenti di beni, nella realtà gli individui non sono

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

COMPLEMENTI SULLE LEGGI FINANZIARIE

COMPLEMENTI SULLE LEGGI FINANZIARIE COMPLEMENI SULLE LEGGI FINANZIARIE asso di rendimento di operazioni finanziarie in valuta estera La normativa vigente consente di effettuare operazioni finanziarie, sia di investimento che di finanziamento,

Dettagli

OPERAZIONI DI PRESTITO

OPERAZIONI DI PRESTITO APPUNTI DI ESTIMO La matematica finanziaria si occupa delle operazioni finanziarie, delle loro valutazioni, nonché del loro confronto. Si definisce operazione finanziaria, qualsiasi operazione che prevede

Dettagli