ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI"

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI""

Transcript

1 ISTITUTO TECNICO INDUSTIALE STATALE "EMI" TEVISO GAA NAZIONALE DI MECCANICA 212 ropost di soluzione rim rov cur di Benetton rncesco (vincitore edizione 211 unzionmento: L gru bndier girevole sopr riportt è costituit d un trve principle di tipo IE, su cui scorre un crrello provvisto di prnco elettrico dove verrnno ggnciti dei crici. Il crrello scorrevole è posizionto mnulmente dll'opertore ed un lungezz utile di movimentzione pri 3 metri. L trve viene sldt su un tubo senz sldtur ce permette così l rotzione dell trve. ed è sostenut d un tirnte sezione cv qudrt. A permettere l rotzione ed supportre il crico, nel tubo ce funge d supporto vengono montti due cuscinetti rulli conici disposti d O. In quest configurzione l trve è sottopost flessione e compressione, mentre il tirnte lvor sol trzione, ed oltre ridurre le sollecitzioni sull trve, l mntiene vincolt limitndo l deformzione dell stess. L gru viene instllt medinte giunzione bullont ll prete portnte di un cpnnone industrile. ITIS "EMI" Treviso 1

2 Dti di rogetto: Crico nominle m = 4 kg Sovrccrico mssimo s = 25 % Cors mmess del crico L = 3 mm Distnz del crico dll'sse di rotzione = 5 mm Lungezz totle Lt = 35 mm osizione fissggio tirnte l = 28 mm Arco di rotzione Θ = 16 Angolo inclinzione tirnte α = 12 Velocità di sollevmento crico v = 1 m/min Tempo di sollevmento t = 2 s Dti e formule utilizzte sono stte ricvte dl "Mnule di Meccnic" HOELI, sezioni H ed I. Il crico d sollevre srà ugule l peso dell mss d sollevre sommto ll forz di inerzi dovut ll'ccelerzione nel sollevmento e l sovvrccrico mssimo. Clcolo l'ccelerzione nel sollevmento stndo ttento usre le unità di misur secondo il Sistem Internzionle: l velocità ndrà trsformt d m/min m/s v t Accelerzione =,83 m/s 2 Clcolo or l forz totle ce solleciterà l struttur ( m g ( m 25% orz = 4946,67 N L gru in esme viene scemtizzt come in figur ed nlizzt in 2 csi: 1 Crico in prossimità del supporto. 2 Crico posto ll'estremo dell trve; ITIS "EMI" Treviso 2

3 1 o cso: orz totle = 4946,67 N osizione suggerit fissggio tirnte l = 28 mm Distnz del crico dll'sse di rotzione = 5 mm Angolo inclinzione tirnte α = 12 Distnz tr gli ppoggi l tn = 594,85 mm er i successivi clcoli ssumo = 595 mm Clcolo le rezioni sugli ppoggi A e B utilizzndo l'equilibrio dei momenti: x d cui si ricv x ezione vincolre punto A x = 4156,86 N Come si può cpire dllo scem, x= = 4156,86 N L trve BD è soggett lle forze secondo il seguente scem: Equilibrio sse x Equilibrio sse y Equilibrio punto B by l ezione = 4156,86 N ezione = 883,33 N l ezione punto B by = -463,33 N by Momento flettente punto E M M fd = -231,67 Nm fd by I digrmmi delle sollecitzioni srnno i seguenti: ITIS "EMI" Treviso 3

4 Il tirnte, AC, srà soggetto lle forze qui rppresentte, già clcolte in precedenz: Le componenti mssime dell forz di trzione T gente sul tirnte vlgono rispettivmente: ezione = 4156,86 N ezione = 883,33 N Clcolo l forz di trzione T T 2 2 T = 4249,68 N Si rppresent or il digrmm delle sollecitzioni di sforzo normle, unic sollecitzione presente nel tirnte: ITIS "EMI" Treviso 4

5 Clcolo or le rezioni vincolri nei punti E e : orze genti: x = 4156,86 N = 4156,86 N Lungezze: = 15 mm = 595 mm c = 15 mm Equilibrio sse x: fx x Equilibrio sse y: ey Equilibrio punto : x ( ( c ezione punto E x ( ( c = 2763,5 N ezione punto fx = -2763,5 N fx x ezione punto E ey ey = 4946,67 N (l rezione verticle nel punto E equivle l crico pplicto, nce se non è riportt nello scem Clcolo or i momenti flettenti nei punti A e B per trccire i digrmmi delle sollecitzioni: Momento flettente punto A M f = -414,53 Nm M M f fb fx Momento flettente punto B M fb = 414,53 Nm c Di clcoli risultno i seguenti digrmmi delle sollecitzioni per l componente E: ITIS "EMI" Treviso 5

6 2 o cso: orz totle = 4946,67 N Lungezz totle L = 35 mm osizione fissggio tirnte l = 28 mm Angolo inclinzione tirnte α = 12 Distnz tr gli ppoggi = 595 mm er trovre le rezioni sugli ppoggi A e B utilizzo l'equilibrio dei momenti: L x L d cui si ricv x ezione punto A x = 2998,39 N Come si può cpire dllo scem, x= = 2998,39 N L trve BD è soggett lle forze secondo il seguente scem: Equilibrio sse x Equilibrio sse y by Equilibrio punto B L l L l ezione = 2998,39 N ezione = 6183,33 N by ezione punto B by = 1236,67 N M fc Momento flettente punto C M fc = 3462,67 Nm by l I digrmmi delle sollecitzioni srnno i seguenti: ITIS "EMI" Treviso 6

7 Il tirnte, AC, srà soggetto lle forze qui rppresentte, già clcolte in precedenz: Le componenti mssime dell forz di trzione T gente sul tirnte vlgono rispettivmente: ezione = 2998,39 N ezione = 6183,33 N Clcolo l forz di trzione T T 2 2 T = 29747,765 N Si rppresent or il digrmm delle sollecitzioni di sforzo normle, unic sollecitzione presente nel tirnte: ITIS "EMI" Treviso 7

8 Clcolo or le rezioni vincolri nei punti E e : orze genti: x = 2998,39 N = 2998,39 N Lungezze: = 15 mm = 595 mm c = 15 mm Equilibrio sse x: Equilibrio sse y: Equilibrio punto : fx ey x x ( ( c ezione punto E x ( ( c = 19344,51 N ezione punto fx = ,51 N fx ey x ezione punto E ey = 4946,67 N Clcolo or i momenti flettenti nei punti A e B per trccire i digrmmi delle sollecitzioni: M Momento flettente punto A M f = -291,68 Nm M f fb fx Momento flettente punto B M fb = 291,68 Nm Di clcoli ottengo i seguenti digrmmi delle sollecitzioni per l componente E: c ITIS "EMI" Treviso 8

9 Dimensionmento trve BD L trve principle viene dimensiont compressione e crico critico di punt poicé è sottopost un elevt forz di compressione ed è molto snell. Seguirà un verific di resistenz flessione. Si frà riferimento llo scem del 2 cso studito in precedenz in qunto risult più critico. Mterile trve: Acciio S355 J - UNI127/1 Crico unitrio di snervmento e = 355 N/mm 2 Coefficiente di sicurezz n = 2 dm Tensione normle mmissibile σ dm = 177,5 N/mm 2 n L trve è soggett simultnemente llo sforzo di compressione e flessione nel pino verticle, mentre nel pino orizzontle è soggett solmente llo sforzo di compressione. Si ndrnno pertnto d nlizzre le due situzioni, e nel pino verticle si clcolernno le singole tensioni ce verrnno sommte e confrontte con l tensione mmissibile. re-dimensionmento compressione: e orz di compressione = 2998,39 N Tensione normle mmissibile σ dm = 177,5 N/mm 2 c A dm d cui ricvo A A min = 163,93 mm 2 min dm In bse ll sezione minim clcolt nel precedente pssggio, ssumo come trve principle un trve IE 2. Se si nlizz lo scem si vede ce nel pino di inflessione verticle l'st è incerniert in entrmbi gli estremi. Nel pino di inflessione orizzontle risult invece incstrt un estremo e liber nell'ltro. Verific crico critico di punt: (pino orizzontle di sollecitzione ITIS "EMI" Treviso 9

10 Trve IE 2 - UNI 5398 Are A = 285 mm 2 Lungezz trtto interessto l = 28 mm Lungezz liber di inflessione l 2 l l = 56 mm ggio d'inerzi minimo ρ y = 22,4 mm Modulo di resistenz flessione W x = 194 mm 3 l Snellezz λ y = 25 y y In bse l vlore dell snellezz clcolto, del mterile scelto e del tipo di trve, ricvo dll tb. H42 pg. H152 il vlore del coefficiente correttivo ω. Coefficiente correttivo ω = 12,4 L tensione l crico critico di punt si clcol con l seguente relzione: A p orz di compressione = 2998,39 N Are A = 285 mm 2 Tensione crico critico di punt σ p = 126,6 N/mm 2 A p Tensione normle mmissibile σ dm = 177,5 N/mm 2 L trve resiste l crico critico di punt percé σ p < σ dm Verific crico critico di punt: (pino verticle di sollecitzione Trve IE 2 - UNI 5398 Are A = 285 mm 2 Lungezz trtto interessto l = 28 mm l x x A p orz di compressione = 2998,39 N Are A = 285 mm 2 Tensione crico critico di punt σ p = 11,23 N/mm 2 A p l l Lungezz liber di inflessione l = 28 mm ggio d'inerzi minimo ρ x = 82,6 mm Modulo di resistenz flessione W x = 194 mm 3 Snellezz λ x = 33,9 In bse l vlore dell snellezz clcolto, del mterile scelto e del tipo di trve, ricvo dll tb. H42 pg. H152 il vlore del coefficiente correttivo ω. Coefficiente correttivo ω = 1,1 L tensione l crico critico di punt si clcol con l seguente relzione: ITIS "EMI" Treviso 1

11 Clcolo tensione di flessione: L tensione di flessione si clcol come: f Wx Momento flettente mssimo M fmx = 3462,67 Nm Modulo di resistenz flessione trve W x = 194 N/mm 2 f Tensione mssim di flessione σ f = 17,85 N/mm 2 f W Verific tensione risultnte M mx er effetture l verific si sommno le tensioni clcolte in precedenz e si confrontno con l tensione mmissibile del mterile dell trve. Tensione normle totle σ tot = tot p f 29,8 N/mm 2 Tensione normle mmissibile σ dm = 177,5 N/mm 2 Ho verificto ce l trve resiste lle tensioni normli cui è sottopost in qunto risult σ tot < σ dm x M f mx ITIS "EMI" Treviso 11

12 Dimensionmento tirnte AC Il tirnte in oggetto viene dimensionto trzione. Srà costituito d un profilto cvo qudrto UNI Mterile tirnte: Acciio S275 J - UNI127/1 Crico unitrio di snervmento e = 275 N/mm 2 Coefficiente di sicurezz n = 2 dm e Tensione normle mmissibile σ n dm = 137,5 N/mm 2 orz di trzione N = 29747,765 N N Dll relzione ricvo l formul per clcolre l sezione minim t dm A ce resist ll forz di trzione pplict N Are minim A A min = 216,35 mm 2 mi n dm Assumo un profilto cvo qudrto UNI7812-4x4x3,2 con un sezione pri 435,9 mm 2 Tenendo conto ce nell sezione in cui vverrà il fissggio ndrà sldto un cilindro di dimetro esterno 28 mm verifico ce l're effettiv del profilto si mggiore di quell minim clcolt. Sezione profilto A = 435,9 mm 2 Spessore s = 3,2 mm Dimetro cilindro d = 28 mm Are effettiv A A ( 2 d s A eff = 256,7 mm 2 eff Il profilto ssunto resiste nce con il foro per lloggire il cilindretto, inftti di clcoli risult A eff > A ITIS "EMI" Treviso 12

13 Dimensionmento perno di supporto E Il perno di supporto, fissto sui supporti muro, colleg l prte fiss dell gru quell mobile e permette l rotzione dell mensol ttorno ll'sse del perno. Viene dimensionto flessione secondo lo scem del primo cso ce risult più critico Mterile perno: C4 UNI EN183 Bonificto Crico minimo di rottur m = 8 N/mm 2 Coefficiente di sicurezz n = 3 Tensione normle mmissibile σ dm = 266,67 N/mm 2 dm n dm Tensione tngenzile mmissibile τ dm = 153,96 N/mm 2 dm 3 Si effettu un dimensionmento flessione e un successiv verific tglio. Momento flettente mssimo M f = 291,68 Nm Dimetro perno 3 32 M f 1 d 3 dm d = 48,4 mm Assumo d = 55 mm e procedo con l verific tglio: orz di tglio T = 2998,39 N Are perno 2 d A A = 2374,625 mm T Tglio mssimo τ = 16,34 N/mm 2 3 A Tensione tngenzile mmissibile τ dm = 153,96 N/mm 2 Il perno resiste nce llo sforzo di tglio in qunto viene soddisftt l relzione τ < τ dm. Effettuo nce un verific compressione: orz di compressione N = 6183,33 N 2 Are perno d A A = 2374,63 mm 2 4 N Tensione compressione mssim σ = 2,6 N/mm 2 A Tensione normle mmissibile σ dm = 266,67 N/mm 2 Ho verificto ce il perno resiste llo sforzo di compressione in qunto viene soddisftt l relzione σ < σ dm m ITIS "EMI" Treviso 13

14 ezioni vincolri con gru ruott Nel cso in cui l gru si ruott, le risultnti sono le stesse già clcolte in precedenz nel secondo cso, devono però essere scomposte nelle componenti prllele e perpendicolri l pino di ncorggio. Le risultnti delle forze con il crico ll'estremità vlgono: ezione punto f = 19344,51 N ezione punto E e = ,51 N Angolo di rotzione β = 8 Le rezioni scomposte nelle componenti prllele e perpendicolri vengono clcolte nel seguente modo: ezione perpendicolre punto fx = 3372,62 N ezione prllel punto fz = 1948,24 N ezione perpendicolre punto E = -3372,62 N ezione prllel punto E ez = -1948,24 N ITIS "EMI" Treviso 14

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate Lezione n. 7 Le strutture in cciio Le unioni bullonte Le unioni sldte Unioni Le unioni nelle strutture in cciio devono grntire un buon funzionmento dell struttur e l derenz dell stess llo schem sttico

Dettagli

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro)

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro) 0.0 Scle di legno 9 0.0 Scle di legno Le scle servono superre le differenze di ltezz. Nelle cse unifmiliri sono sovente costruite in legno. Un scl è definit tle se formt d lmeno tre sclini consecutivi,

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

N.B.: E consentito, se ritenuto opportuno, mantenere il numero dei bulloni indicato nel disegno e le dimensioni delle squadrette.

N.B.: E consentito, se ritenuto opportuno, mantenere il numero dei bulloni indicato nel disegno e le dimensioni delle squadrette. ESONERO DI TECNICA DELLE COSTRUZIONI DEL 6/0/007 Esercizio n Si dt un trve di cciio HEA 600 sull qule ppoggi, con un vincolo cernier, un trve secondri del tipo IPE. Sull trve secondri è pplicto un crico

Dettagli

Travi soggette a taglio e momento flettente

Travi soggette a taglio e momento flettente Trvi soggette tglio e momento flettente Qundo i crichi o i momenti hnno vettori perpendicolri ll sse si prl di sollecitzioni su trvi o bems Il pino di inflessione è quello ove giscono i crichi e che contiene

Dettagli

Scala di sicurezza, Palazzo della Ragione, Milano

Scala di sicurezza, Palazzo della Ragione, Milano Scl di sicurezz, Plzzo dell Rgione, Milno Er importnte che l scl fosse progettt in modo d essere legger, trsprente e visivmente utonom rispetto l contesto storico. In seguito ll intervento di conservzione

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

NORME APPLICABILI ALLE ARMATURE 9

NORME APPLICABILI ALLE ARMATURE 9 QUADERNO III Strutture in clcestruzzo rmto e legno CALCESTRUZZO ARMATO Sched N : NORME APPLICABILI ALLE ARMATURE 9 Not generle: le indiczioni nel seguito riportte sono trtte dlle norme frncesi BAEL 91

Dettagli

Movimentazioni lineari

Movimentazioni lineari Sistemi lineri I sistemi lineri ACK sono costituiti d 2 brre d cciio sezione circolre temprte e rettificte in tollernz h e nche cromte nei dimetri. A richiest in ccioi inox. Sono montte rigide e prllele

Dettagli

La saldatura: Pregi e difetti dei collegamenti saldati:

La saldatura: Pregi e difetti dei collegamenti saldati: L sldtur: Pregi e difetti dei collegmenti sldti: Vntggi: sono di rpid esecuzione permettono strutture più leggere consentono l perfett tenut richiedono poche lvorzioni meccniche hnno un bsso costo complessivo

Dettagli

Attuatori pneumatici fino 700 cm 2 Tipo 3271 e Tipo 3277 per montaggio integrato del posizionatore

Attuatori pneumatici fino 700 cm 2 Tipo 3271 e Tipo 3277 per montaggio integrato del posizionatore Attutori pneumtici fino cm Tipo e Tipo per montggio integrto del posiziontore Appliczione Attutore linere per il montggio su vlvole di regolzione, soprttutto per l Serie,, e vlvol microflusso Tipo dimensione

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE Esercizio B. Anlisi del processo di fonderi Si deve fricre un getto in ghis del peso di 50 kg e densità pri 7, kg/dm. Dimensionre il dimetro del cnle di colt spendo che il dislivello fr il cino e gli ttcchi

Dettagli

COMPENDIO DI COSTRUZIONI

COMPENDIO DI COSTRUZIONI ISTITUTO TECNICO STATALE PER GEOETRI "G. ARTINO" ROA COPENDIO DI COSTRUZIONI * * * Prof. Arch. Domenico Ntle * II * 993-94 rev 003 INDICE SCHEDE Unità di misur.0 Sttic: le forze. Corpi rigidi vincolti.3

Dettagli

ANCORANTI CHIMICI EV II TASSELLO CHIMICO STRUTTURALE. Scheda tecnica rev. 1

ANCORANTI CHIMICI EV II TASSELLO CHIMICO STRUTTURALE. Scheda tecnica rev. 1 Sched tecnic rev. 1 EV II TASSELLO CHIMICO STRUTTURALE ncornte chimico d iniezione in resin epossicrilto/vinilestere bicomponente d ltissim resistenz Che cos'è È un ncornte chimico d iniezione composto

Dettagli

Installazione e manutenzione

Installazione e manutenzione Instllzione e mnutenzione per ttrezztur con tubo guid singolo 893008/04 2 INDICE Questo "mnule di instllzione e mnutenzione" rigurd l'ttrezztur con singolo tubo guid per mixer serie 400, 430-480 Introduzione

Dettagli

Gioco Interno Tipologie e Norme

Gioco Interno Tipologie e Norme Gioco Interno Tipologie e Norme Per gioco interno si intende l misur complessiv di cui un nello si può spostre rispetto ll ltro in direzione oppost. E necessrio distinguere fr gioco rdile e gioco ssile.

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE LEZIONI N 26, 27 E 28 STUDIO SISTEATICO DELLE GIUNZIONI BULLONATE Adottimo un criterio di clssificzione bsto sulle crtteristiche di sollecitzioni trsmesse dlle ste collegte. Per qunto rigurd le unioni

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

Reazioni vincolari in. Strutture isostatiche

Reazioni vincolari in. Strutture isostatiche ezioni vincolri in Strutture isosttiche ezioni trsmesse di vincoli terr I vincoli terr trmettono ll struttur rezioni corrispondenti i gdl impediti F Il crrello trsmette un forz dirett come l'sse del crrello

Dettagli

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA Freni e frizioni ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA 1. forz di ttuzione del meccnismo. coppi trsmess 3. perdit di energi 4. incremento di tempertur 1

Dettagli

COMPORTAMENTO MECCANICO DEI MATERIALI

COMPORTAMENTO MECCANICO DEI MATERIALI Diprtimento di eccnic Politecnico di Torino COPORTETO ECCICO DEI TERILI esercizi di sttic ferio 00 degli esercizi proposti Esercizio - Dto lo stto di tensione in un punto di un componente in Fe40 xx 0

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Corsi di Laurea in Ingegneria Meccanica e Informatica e corsi V.O. Anno Accademico 2014/2015 Meccanica Razionale, Fisica Matematica

Corsi di Laurea in Ingegneria Meccanica e Informatica e corsi V.O. Anno Accademico 2014/2015 Meccanica Razionale, Fisica Matematica orsi di Lure in Ingegneri Meccnic e Informtic e corsi V.. nno ccdemico 2014/2015 Meccnic Rzionle, Fisic Mtemtic Nome... N. Mtricol... ncon, 15 gennio 2015 1. Un lmin pin omogene qudrt D di mss m e lto

Dettagli

DUOSTEEL 25. Canne Fumarie Doppia Parete Coibentazione 25 mm. Canne fumarie in acciaio Inox

DUOSTEEL 25. Canne Fumarie Doppia Parete Coibentazione 25 mm. Canne fumarie in acciaio Inox Cnne Fumrie Doppi Prete Coibentzione 25 mm Cnne fumrie in cciio Inox CERTIFICAZIONI Cnne fumrie Doppi Prete INDICE 1 Elemento diritto mm 250... pg. 4 2 Elemento diritto mm 500... pg. 4 3 Elemento dritto

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

Espansione del sistema. Sistema di controllo configurabile PNOZmulti. Istruzioni per l'uso-1002217-it-06

Espansione del sistema. Sistema di controllo configurabile PNOZmulti. Istruzioni per l'uso-1002217-it-06 Espnsione del sistem Sistem di controllo configurbile multi Istruzioni per l'uso- Prefzione Questo è un documento originle. Tutti i diritti di questo documento sono riservti Pilz GmbH & Co. KG. E' possibile

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale Regime di sconto commercile Formule d usre : S = sconto ; K = somm d scontre ; s = tsso di sconto unitrio V = vlore ttule ; I = interesse ; C = cpitle s t = st i t st = st S t Kst V K st () () ; () ( )

Dettagli

10 Progetto con modelli tirante-puntone

10 Progetto con modelli tirante-puntone 0 Progetto con modelli tirnte-puntone 0. Introduzione I modelli tirnte-puntone (S&T Strut nd Tie) sono utilizzti per l progettzione delle membrture in c.. che non possono essere schemtizzte come solidi

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

(n r numero di registro) n r numero di registro =17

(n r numero di registro) n r numero di registro =17 Clcolo dell riprtizione dell portnz tr superficie lre e impennggio orizzontle di cod per lcun punti crtteristici del digrmm d inviluppo in diverse condizioni di peso. Punti: A- C- D- E- F- G- K- H- C -

Dettagli

σ a σ R σ S σ N σ LF Calcolo a fatica oligociclica di componenti meccanici Tensione alterna La Curva di Wöhler N Numero di cicli lg N

σ a σ R σ S σ N σ LF Calcolo a fatica oligociclica di componenti meccanici Tensione alterna La Curva di Wöhler N Numero di cicli lg N Clcolo tic oligociclic di componenti meccnici Ftic oligociclic Tensione ltern R S N Zon di progettzione tempo (tic d lto numero di cicli) LF L Curv di Wöhler Vit ininit 10 4 N Numero di cicli 10 7 10 8

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

3 Esercizi. disegno in scala

3 Esercizi. disegno in scala olitecnico di orino eem ispositivi e istemi Meccnici Esercizio 3 Un utocrro con cmio "in olle" viene rento su tutte le ruote l limite dell'derenz in rettilineo orizzontle. oto il peso totle e l posizione

Dettagli

ELEMENTI DI STABILITA

ELEMENTI DI STABILITA tbilità Per stbilità di un nve si intende, in generle, l fcoltà di conservre l su posizione di equilibrio, cioè l su ttitudine resistere lle forze che tendono inclinrl e l cpcità di rddrizzrsi spontnemente

Dettagli

DUOSTEEL GD. Canne Fumarie Doppia Parete Grandi Diametri Coibentazione 50 mm. Canne fumarie in acciaio Inox

DUOSTEEL GD. Canne Fumarie Doppia Parete Grandi Diametri Coibentazione 50 mm. Canne fumarie in acciaio Inox Cnne Fumrie Doppi Prete Grndi Dimetri Coientzione 50 mm Cnne fumrie in cciio Inox Cnne fumrie Doppi Prete Grndi Dimetri INDICE 1 Elemento diritto mm 500... pg. 3 2 Elemento diritto mm 1000... pg. 3 3 Elemento

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

FLESSIONE E TAGLIO (prof. Elio Sacco)

FLESSIONE E TAGLIO (prof. Elio Sacco) Cpitolo FLESSIONE E TALIO (prof. Elio Scco). Sollecitzione di flessione e tglio Si esmin il cso in cui l risultnte delle tensioni genti sull bse dell trve x = L consist in un forz tglinte V, tlechev e

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Progetto LO 100 di Andrea Sacchetti andreasacchetti1965@gmail.com scala 1:4 Tavola 4 S 6061 sp 9% al 31% 1b

Progetto LO 100 di Andrea Sacchetti andreasacchetti1965@gmail.com scala 1:4 Tavola 4 S 6061 sp 9% al 31% 1b tgli d effetture per fcilitre l'sportzione prim del rivestimento del dorso e crere lo spzio per i portionett 1 1 le centine d 1 4 sono di compensto di etull d 4 mm, per le centine d 5 15 si può usre compensto

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

Legno Lamellare D10. Guida dell'utente. Friedrich + Lochner GmbH 2006. F+L im Internet www.frilo.de E-Mail: info@frilo.de

Legno Lamellare D10. Guida dell'utente. Friedrich + Lochner GmbH 2006. F+L im Internet www.frilo.de E-Mail: info@frilo.de Legno Lmellre D10 Guid dell'utente Friedrich + Lochner GmbH 006 F+L im Internet www.frilo.de E-Mil: info@frilo.de D10 Guid dell'utente, Versione 1/006 Progrmm D10 1 F+L- Progrmm: D10 Questo mnule inform

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche.

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche. Prestzioni PONTI TERMICI Normlmente il clcolo delle dispersioni termiche di un edificio viene svolto considerndo che le temperture interne ed esterne sino costnti (Regime Termico tzionrio). Questo signific

Dettagli

TECNOLOGIE PER L ACQUACOLTURA

TECNOLOGIE PER L ACQUACOLTURA Scuol di specilizzzione in: Allevmento, igiene, ptologi delle specie cqutiche e controllo dei prodotti derivti TECNOLOGIE PER L ACUACOLTURA PROF. MASSIMO LAZZARI Anno ccdemico 007-008 L movimentzione meccnic

Dettagli

Sistema d'ancoraggio Monotec Cassaforma a telaio Framax Xlife

Sistema d'ancoraggio Monotec Cassaforma a telaio Framax Xlife 999805705-03/2014 it I tecnici delle csseforme. Sistem d'ncorggio Monotec ssform telio rmx Xlife Informzioni prodotto Istruzioni di montggio e d'uso 9764-445-01 Introduzione Informzioni prodotto Sistem

Dettagli

a cura di: ing. Ernesto Grande e.grande@unicas.it http://www.docente.unicas.it/ernesto_grande

a cura di: ing. Ernesto Grande e.grande@unicas.it http://www.docente.unicas.it/ernesto_grande Università degli Studi di Cssino Progetto di Strutture Costruzioni i in Acciio i cur di: ing. Ernesto Grnde e.grnde@unics.it http://www.docente.unics.it/ernesto_grnde t it/ t d Testi consigliti 1. G. Bllio,

Dettagli

ISTRUZIONI DI MONTAGGIO

ISTRUZIONI DI MONTAGGIO Gruppo Imr ISTRUZIONI DI MONTAGGIO collettori sul tetto Figur 1 - I collettori DB possono essere montti fcilmente con il sistem di montggio per l sovrpposizione ll fld d due persone, senz necessità di

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

L EVOLUZIONE DELLA PORTA TAGLIAFUOCO IN LEGNO! TANGANICA BIANCO CILIEGIO ROVERE WENGÉ VERT.

L EVOLUZIONE DELLA PORTA TAGLIAFUOCO IN LEGNO! TANGANICA BIANCO CILIEGIO ROVERE WENGÉ VERT. MODELLI/FINITURE L EVOLUZIONE DELLA PORTA TAGLIAFUOCO IN LEGNO! Porte tglifuoco serie ECONOM in legno rivestite in CPL e certificte secondo l norm Europe UNI EN 1634-1. Estetic superiore ll medi d un prezzo

Dettagli

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273 Attutori pneumtici 00, 00 e x 00 cm² Tipo Comndo mnule Tipo Appliczione Attutore linere per il montggio su vlvole di regolzione Serie 0, 0 e 0 Dimensione: 00 e 00 cm² Cors: fino 0 mm Gli ttutori pneumtici

Dettagli

LE SOLLECITAZIONI. Gli ingranaggi face gear, o a denti frontali (figura DEGLI INGRANAGGI A DENTI FRONTALI

LE SOLLECITAZIONI. Gli ingranaggi face gear, o a denti frontali (figura DEGLI INGRANAGGI A DENTI FRONTALI SANDRO BARONE, PAOLA FORTE LE SOLLECITAZIONI DEGLI INGRANAGGI A DENTI FRONTALI Un ingrnggio denti frontli (Fce Ger) offre vntggi si in termini di peso si in termini di riprtizione dei crichi sui denti,

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

Linea di mobili in metallo per la realizzazione di postazioni di lavoro complete

Linea di mobili in metallo per la realizzazione di postazioni di lavoro complete Line di mobili in metllo per l relizzzione di postzioni di lvoro complete NEW Nuovi cssetti Cssetti con mniglie in lluminio. Nuovo sistem di guide Guide telescopiche con ortizzmento in fse di chiusur.

Dettagli

tubi corrugati in polietilene

tubi corrugati in polietilene tubi corrugti in polietilene Sistemi integrli per trsporto ed il trttmento dei fluidi tubi corrugti in polietilene istino cvidotti e drenggi PERETE INTERNA PRODOTTA CON PE ADDITIVATO PER FACIITARE O SCORRIMENTO

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

DSA* VALVOLA DIREZIONALE A COMANDO PNEUMATICO

DSA* VALVOLA DIREZIONALE A COMANDO PNEUMATICO 60/ ID DS* VLVOL DIREZIONLE COMNDO NEUMICO CCHI REE DS ISO 0-0 (CEO 0) DS5 ISO 0-05 (CEO R05) p mx (vedi tell prestzioni) Q nom (vedi tell prestzioni) RINCIIO DI FUNZIONMENO Le vlvole tipo DS* sono distriutori

Dettagli

La saldatura: Pregi e difetti dei collegamenti saldati:

La saldatura: Pregi e difetti dei collegamenti saldati: L sldtur: Pregi e difetti dei collegmenti sldti: Vntggi: sono di rpid esecuzione permettono strutture più leggere consentono l perfett tenut richiedono poche lvorzioni meccniche hnno un bsso costo complessivo

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

disegno in scala Innanzitutto di valutare a dinamica del moto di arresto del pericolo. Si individua il diagramma di corpo libero del sistema globale:

disegno in scala Innanzitutto di valutare a dinamica del moto di arresto del pericolo. Si individua il diagramma di corpo libero del sistema globale: olitecnico di orino eem ispositivi e istemi Meccnici Esercizio 3 Un utocrro con cmio "in olle" viene rento su tutte le ruote l limite dell'derenz in rettilineo orizzontle. oto il peso totle e l posizione

Dettagli

Direttive concernenti l impiego di gru e macchine edili e del genio civile in prossimità di linee elettriche

Direttive concernenti l impiego di gru e macchine edili e del genio civile in prossimità di linee elettriche Direttive concernenti l impiego di gru e mcchine edili e del genio civile in prossimità di linee elettriche 1 Cmpo di ppliczione Cmpo di ppliczione Le presenti direttive si pplicno i lvori con mezzi di

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2010/2011 Meccanica Razionale

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2010/2011 Meccanica Razionale Corso di Lure in Ingegneri Meccnic nno ccdemico 2010/2011 Meccnic Rzionle Nome... N. Mtricol... ncon, 25 febbrio 2011 1. Un st mterile pesnte di mss m elunghezzl si muove nel pino verticle (, ), con l

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Corso di Componenti e Impianti termotecnici IL PROGETTO TERMOTECNICO PARTE SECONDA

Corso di Componenti e Impianti termotecnici IL PROGETTO TERMOTECNICO PARTE SECONDA IL PROGETTO TERMOTECNICO PARTE ECONDA 1 I ponti termici Il ponte termico può essere definito come: un elemento di elevt conduttività inserito in un prete o elemento di prete di minore conduttività. I ponti

Dettagli

PORTE PROGET MULTIUSO REI 30 REI 60 - REI 120

PORTE PROGET MULTIUSO REI 30 REI 60 - REI 120 PORTE PROGET MULTIUSO REI 30 REI 60 - REI 120 14 15 INDICE PORTE PROGET PAGINA INDICE PORTE PROGET 16 ILLUSTRAZIONI PORTE PROGET 17 18 TIPOLOGIE/CERTIFICATI PORTE PROGET REI 30 E REI 60 AD UNA ANTA 19

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Capitolo 12. Dinamica relativa

Capitolo 12. Dinamica relativa Cpitolo 12 Dinmic reltiv 12.1 Le forze pprenti 1. Sppimo dll cinemtic reltiv che l ccelerzione di un punto P in un riferimento K e l ccelerzione ' di P in un riferimento K ' sono legte l un ll ltr dll

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Soluzione. Si consideri la figura sottostante che raffigura la geometria del problema: = =

Soluzione. Si consideri la figura sottostante che raffigura la geometria del problema: = = Sessione suppletiv LS_ORD 00 di De Ros Nicol PROBLEMA Del tringolo ABC si nno le seguenti informzioni: ABcm; ACcm; CAB 60. Si trcci l isettrice di CAB e se ne indici con D lintersezione con il lto BC.

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

Tema d esame del 7/11/2002

Tema d esame del 7/11/2002 Tem d esme del 7/11/00 1 Tem d esme del 7/11/00 1. igrmmi delle zioni interne di tutt l struttur nell condizione di orz in L struttur crict dll orz gente nel punto è rppresentt in igur 1: l x z y b N 300

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA Corso di lure in Ingegneri Meccnic Tesin del corso di TRASMISSIONE DEL CALORE Docente Prof. Ing. Gennro Cuccurullo Tesin n.7a Effetti termici del

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

Classe Il candidato risolva uno dei due problemi; il problema da correggere è il numero

Classe Il candidato risolva uno dei due problemi; il problema da correggere è il numero Ministero dell Istruzione, dell Università e dell Ricerc M557 EAME DI TATO DI ITRUZIONE ECONDARIA UPERIORE IMULAZIONE DELLA II PROVA A.. 06-7: Liceo Fermi, 6 mggio 07 Indirizzi: LI0 CIENTIFICO, LI0- CIENTIFICO

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

CAPITOLO 14 OPERE DI SOSTEGNO

CAPITOLO 14 OPERE DI SOSTEGNO Citolo 14 OPEE DI SOSTEGNO CAPITOLO 14 OPEE DI SOSTEGNO 14.1 Introduzione Esiste un grnde vrietà di strutture utilizzte er sostenere il terreno e/o l cqu si er lvori temornei che er oere definitive. In

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli