Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.."

Transcript

1 Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine noto) si chiama equazione lineare in x,, x n Un sistema lineare di m equazioni nelle n incognite x,, x n è un sistema formato da m equazioni lineari in x,, x n, ossia: a x + a x + + a n x n = b a x + a x + + a n x n = b : : : a m x + a m x + + a mn x n = b m (*) Una soluzione di ( ) è una n-pla di numeri reali ( x,, x n ) che sostituita alle incognite soddisfa simultaneamente tutte le equazioni del sistema La matrice di tipo (m, n) : A = (a ij ) j=n i=m si chiama matrice dei coefficienti del sistema Il vettore colonna di tipo (m, ) : b = (b i ) m i= si chiama vettore dei termini noti La matrice di tipo (m, n + ) : (A b) ottenuta accostando alle colonne della matrice A dei coefficienti il vettore (colonna) b dei termini noti si chiama matrice completa del sistema Esempio Dato il sistema di due equazioni in tre incognite { x + y z = 4x + 6y z =, la matrice del sistema, il vettore dei termini noti e la matrice completa sono, rispettivamente: ( ) ( ) ( ) A =, b =, (A b) = Detto x = (x j ) n j= il vettore colonna di tipo (n, ) delle incognite il sistema ( ) si può trascrivere in forma matriciale Ax = b Una sua soluzione è quindi un vettore colonna di tipo (n, ) x = ( x j ) n j= di numeri reali che soddisfa la relazione matriciale A x = b Un sistema si dice possibile (o risolubile) se ammette almeno una soluzione In tal caso le equazioni si dicono compatibili Un sistema si dice impossibile se non ammette alcuna soluzione In tal caso le equazioni si dicono incompatibili NOTA Un sistema possibile può avere una sola soluzione (sistema determinato) oppure infinite soluzioni (sistema indeterminato), ma mai un numero finito di soluzioni

2 Due sistemi si dicono equivalenti quando ammettono le stesse soluzioni Trasformazioni elementari Le seguenti trasformazioni, applicate ad un dato sistema, portano a un sistema equivalente: I) scambiare due equazioni tra loro; II) moltiplicare i due membri di un equazione per lo stesso numero k ( ); III) sommare ad un equazione un altra equazione moltiplicata per k Esempio Il sistema dell Esempio è impossibile Infatti, sommando alla seconda equazione la prima moltiplicata per, si ottiene il sistema, equivalente a quello iniziale, { x + y z = ma la seconda equazione è impossibile = x + y = Esempio Dato il sistema x y = x + y = la matrice del sistema, il vettore dei termini noti e la matrice completa sono: A =, b =, (A b) = Il sistema ha una sola soluzione Infatti, sottraendo alla terza equazione la seconda si ottiene il sistema, equivalente a quello dato: x + y = x y = 4y = che ha come unica soluzione il vettore (x, y) = (, ) (Verificarlo) ( ) ( ) Esempio 4 Dati A =, e b =, il sistema Ax = b è il sistema di due equazioni in due incognite { x y = x + y = Sommando alla seconda equazione la prima moltiplicata per si ottiene il sistema equivalente: { x y = = Il sistema ammette quindi le infinite soluzioni della forma (t, t ), al variare del numero reale t

3 Soluzione dei sistemi lineari: Gauss il metodo di eliminazione di Questo metodo si basa sulle ripetute applicazioni delle trasformazioni che permettono di passare a sistemi equivalenti Si opera in modo da ricondursi ad un sistema equivalente a quello dato, di cui però è immediato vedere la eventuale risolubilità e, in tal caso, procedere in modo standard per determinare le soluzioni Questo sistema equivalente ha una matrice dei coefficienti che è della forma a scalini Metodo di eliminazione di Gauss Consideriamo il sistema: a x + a x + + a n x n = b a x + a x + + a n x n = b : : : a m x + a m x + + a mn x n = b m Possiamo supporre che a (in caso contrario scambiamo la a equazione con un altra in cui il coefficiente di x sia ) Dividendo la prima equazione per a, otteniamo: x + a a x + + a n a x n = b a a x + a x + + a n x n = b : : : a m x + a m x + + a mn x n = b m Sottraiamo poi dalla seconda equazione la prima moltiplicata per a, dalla terza la prima moltiplicata per a e così via Otteniamo: x + a x + + a nx n = b a x + + a nx n = b : : a mx + + a mnx n = b m Tale sistema contiene un sottosistema di m equazioni e n incognite (basta escludere la prima equazione) Allora possiamo procedere in modo iterativo: ripetiamo quanto fatto precedentemente a questo sistema Se a =, scambiamo la a equazione con un altra in cui il coefficiente di x sia (se c è) (Se in tutte le equazioni il coefficiente di x è nullo tranne che nella prima, vuol dire che x non compare come variabile effettiva nel sottosistema ottenuto dopo il primo passo Possiamo quindi cambiare nome alla variabile x e spostarla in fondo) A questo punto possiamo dividere la seconda equazione per il coefficiente di x e procedere come prima In questo modo x comparirà con coefficiente nella a equazione e nelle successive Iterando alle equazioni successive otterremo un sistema in forma a scalini : x + c x + + c k x k + + c n x n = d x + + c k x k + + c n x n = d x k + + c kn x n = d k = d k+ = d m Si possono presentare i seguenti due casi:

4 a) Si ha un sistema a scalini del tipo: x + c x + + c k x k + + c n x n = d x + + c k x k + + c n x n = d x k + + c kn x n = d k = = (dove, se m = k, le ultime m k equazioni non compaiono) k equazioni (m k) equazioni In questo caso siamo nell ambito dei sistemi risolubili, in cui abbiamo k equazioni effettive ed n incognite, con k n Si possono ricavare le incognite a cascata, partendo da x k, fino ad x Se k = n, il sistema ha una sola soluzione Se k < n, le soluzioni saranno infinite ed espresse in funzione delle variabili x k+,, x n, che sono quindi dette variabili libere b) Nel sistema a scalini c è almeno una equazione nella quale si annulla il primo membro, ma il secondo è In questo caso il sistema è ovviamente impossibile In conclusione, quando il sistema è risolubile, per sapere quante soluzioni ha, dobbiamo confrontare il numero k delle equazioni effettive con il numero n delle incognite: Se k = n il sistema è determinato ossia ha una sola soluzione Se k < n il sistema è indeterminato ossia ha infinite soluzioni che dipendono da n k variabili libere (si dice che il sistema ha n k soluzioni) Per applicare questo metodo, conviene rileggere le trasformazioni elementari sulle equazioni come corrispondenti trasformazioni elementari sulle righe della matrice completa (A b), che richiamiamo: Trasformazioni elementari sulle righe di (A b) I) R ij : scambio della riga r i con la riga r j ; II) k R i : prodotto della riga r i per il numero k ( ) ; III) R i + kr j : somma della riga r i con la riga r j moltiplicata per k Esempio x + 4y = x + y = x + y = x + y = y = y = Con trasformazioni elementari sulle equazioni del sistema si ha: R R R x + y = x + y = x + y = x + y = y = = R R R + R { x + = y = x + y = y = y = { x = y = R Sistema con equazioni effettive e incognite: quindi determinato, ossia con una sola soluzione Analogamente, con le stesse trasformazioni elementari sulle righe di (A b) si ha: 4

5 4 R R R R + R R R R Esempio 6 di (A b) si ha: 4 4 Dato il sistema R R R R x y + 4z = x + y + z = x + y + z = R R Quindi il sistema è impossibile , con trasformazioni elementari sulle righe 7 7 R x y + 4z = y z = = Esempio 7 (A b) si ha: Dato il sistema x + y + z = x + z = 6x + y =, con trasformazioni elementari sulle righe di 6 4 R + R R 6R 4 R + 4R 4 4 R { x + y + z = y + z = Il sistema ha equazioni effettive in incognite: quindi il sistema è indeterminato ( soluzioni) Inoltre: { { x + y + z = x + ( y + z = z) + z = { x = y = z z y = z Le soluzioni sono quindi: ( z, z, z)

6 Esempio 8 del sistema Discutere la risolubità al variare del parametro reale k, e trovare le eventuali soluzioni x + y z = x + y + z = x y = x y z = k Con trasformazioni elementari sulle righe di (A b) si ha: k k k R + R R R R 4 R R + R R 4 + R R 4 R k + R k k R x + y z = y + z = z = = k + Quando k + il sistema è impossibile Se invece k =, si tratta di un sistema di equazioni effettive in incognite, quindi determinato Per calcolarne l unica soluzione si risolve il sistema x + y z = y + z =, z = e si trova la soluzione (, 4, ) Esempio 9 Discutere la risolubità e trovare le eventuali soluzioni del sistema: x + y + z w = x + y z =, y + 4z w = 9 x + z + w = 6 Con trasformazioni elementari sulle righe di (A b) si ha: R + R R 4 R 6 6 R 4 + R 6

7 7 7 x + y + z w = y z + w = z + w = 7w = 7 Il sistema è quindi determinato e si trova la soluzione (,,, ) Esempio Discutere la risolubità al variare del parametro reale k, e trovare le eventuali soluzioni del sistema x y w = x y + z + kw = x + 4y + z = Con trasformazioni elementari sulle righe di (A b) si ha: k 4 k + R R R R R x y w = y + z + w = (k + )w = k + R R Quindi per k = il sistema è impossibile, mentre per k, ponendo y = t a parametro, l insieme delle soluzioni è: {( + t +, t, t, ) t R} k+ k+ k+ 7

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.. Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Sistemi Lineari. Elisabetta Colombo. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico

Sistemi Lineari. Elisabetta Colombo. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 200-20 2 a di o.0 4 Capelli Rango o Caratterisca : definizioni a di o.0 Un equazione nelle n incognite x,..., x n della forma dove

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

Matematica II,

Matematica II, Matematica II, 171110 1 processo di triangolarizzazione, esempio I Consideriamo il sistema lineare di tre equazioni nelle incognite x, y, z 2x + 3y + 4z = 8 4x + 9y + 16z = 14 8x + 27y + 64z = 14 Primo

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Istituzioni di Matematiche sesta parte

Istituzioni di Matematiche sesta parte Istituzioni di Matematiche sesta parte anno acc. 2013/2014 Univ. Studi di Milano D.Bambusi, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 27 index Matrici e operazioni tra matrici 1 Matrici

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano Istituzioni di Matematiche 1 / 33 index Generalità sugli insiemi 1 Generalità

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2014/2015 Univ. Studi di Milano E.Frigerio, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 30 index Generalità sugli insiemi 1 Generalità

Dettagli

Matematica II, II parte. 1. Equazioni lineari in n incognite. Nel seguito, considereremo n ple ordinate

Matematica II, II parte. 1. Equazioni lineari in n incognite. Nel seguito, considereremo n ple ordinate Matematica II, 161111 - II parte 1 Equazioni lineari in n incognite Nel seguito, considereremo n ple ordinate (r 1, r 2,, r n ) di numeri reali Per n = 1, 2, 3 una n pla si puo identificare rispettivamente

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma:

Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma: SISTEMI LINEARI Un sistema di equazioni lineari ( o brevemente un sistema lineare) di m equazioni in n incognite, si presenta nella forma: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Dettagli

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe.

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe. Matrici triangolari [Abate, 32] Definizione Una matrice A = a ij ) R m,n si dice triangolare superiore se a ij = 0 per ogni i > j; triangolare inferiore se a ij = 0 per ogni i < j Lezioni 05 e 06 Una matrice

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =...

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =... Algebra/ Algebra Lineare, 230207 1 Un sistema di m equazioni lineari in n incognite x 1, x n aventi tutte termine noto nullo a i1 x 1 + a i2 x 2 + + a in x n = 0, i = 1,, m si dice omogeneo; ponendo x

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Mauro Saita, Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi vettoriali R, IR 2, IR 3 motivando

Mauro Saita,   Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi vettoriali R, IR 2, IR 3 motivando CORSO DI ALGEBRA LINEARE: Esercitazione n.1 del 20/12/2004. Mauro Saita, e-mail: maurosaita@tiscalinet.it 1 Spazi vettoriali. Sottospazi. Esercizio 1.1 Determinare tutti i sottospazi vettoriali degli spazi

Dettagli

Federica Gregorio e Cristian Tacelli

Federica Gregorio e Cristian Tacelli 1 Sistemi lineari Federica Gregorio e Cristian Tacelli Un sistema lineare m n (m equazioni in n incognite) è un insieme di equazioni lineari che devono essere soddisfatte contemporaneamente a 11 x 1 +

Dettagli

Lezione del dove a 1, a n e b sono numeri reali assegnati, detti coefficienti e termine noto dell equazione;

Lezione del dove a 1, a n e b sono numeri reali assegnati, detti coefficienti e termine noto dell equazione; Le lezioni del 60 e 010 si riferiscono al Capitolo 1 Introduzione ai sistemi lineari Di seguito si elencano gli argomenti svolti, descrivendoli sinteticamente dando i riferimenti a tale capitolo, oppure

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

I sistemi lineari di n equazioni in n incognite

I sistemi lineari di n equazioni in n incognite I sistemi lineari I sistemi lineari di n equazioni in n incognite I sistemi lineari di n equazioni in n incognite, sono formati da equazioni di primo grado, in cui le incognite hanno tutte esponente uguale

Dettagli

( 5) 2 = = = +1

( 5) 2 = = = +1 1 IDENTITA ED EQUAZIONI Consideriamo la seguente uguaglianza: ( 2x + 3) 2 = 4x 2 +12x + 9 Diamo alcuni valori arbitrari all incognita x e vediamo se l uguaglianza risulta vera. Per x = 1 si avrà: ( 2 1+

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Matematica II,

Matematica II, Matematica II 181111 1 Matrici a scala Data una riga R = [a 1 a 2 a n ] di numeri reali non tutti nulli il primo elemento non nullo di R si dice pivot di R Cosi il pivot di R compare come j mo elemento

Dettagli

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari 1. Sistemi di equazioni lineari 1.1 Considerazioni preliminari I sistemi lineari sono sistemi di equazioni di primo grado in più incognite. Molti problemi di matematica e fisica portano alla soluzione

Dettagli

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque

Dettagli

Corso introduttivo pluridisciplinare Matrici e sistemi lineari

Corso introduttivo pluridisciplinare Matrici e sistemi lineari Corso introduttivo pluridisciplinare Matrici e sistemi lineari anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano Corso introduttivo pluridisciplinare 1 / 30

Dettagli

Sistemi lineari 1 / 41

Sistemi lineari 1 / 41 Sistemi lineari 1 / 41 Equazioni lineari Una equazione lineare a n incognite, è una equazione del tipo: a 1 x 1 + a 2 x 2 + + a n x n = b, dove a 1,,a n,b sono delle costanti (numeri) reali. I simboli

Dettagli

Equazioni di primo grado ad un incognita

Equazioni di primo grado ad un incognita Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. è un identità. Verificare un identità

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

ALGEBRA LINEARE PARTE III

ALGEBRA LINEARE PARTE III DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI

Dettagli

Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1

Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1 Esercizio 1 Trovare, se esistono, le soluzioni del lineare y + 3z = 3 x y + z = 0 x + y = 1 0 1 3 3 1 1 1 0 1 1 1 0 = 0 1 3 3 = 1 1 0 1 1 1 0 1 = 1 1 1 0 0 1 3 3 0 1 1 = Il di partenza è quindi equivalente

Dettagli

Le equazioni lineari

Le equazioni lineari Perchè bisogna saper risolvere delle equazioni? Perché le equazioni servono a risolvere dei problemi! Le equazioni lineari Un problema è una proposizione che richiede di determinare i valori di alcune

Dettagli

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0 a.a. 5-6 Esercizi. Sistemi lineari. Soluzioni.. Determinare quali delle quaterne, 3,, sono soluzioni del sistema di tre equazioni in 4 incognite { x x + x 3 = x 8x 3 = x x 4 =. Sol. Sostituendo ad x, x,

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij Determinanti Sia data la matrice quadrata a... a n a a n =...... a... a n nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a a... a... a... a n n n... a nn Un generico elemento

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica con pivoting Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 6 - METODI DIRETTI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche con pivoting 1 Introduzione algebrica

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2..

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2.. Matematica II 020304 Ogni sistema di m equazioni lineari in n incognite x 1 x 2 x n si uo raresentare nella forma a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1

Dettagli

Equazioni di primo grado ad un incognita

Equazioni di primo grado ad un incognita Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2 = 2 è un identità =3 2 3=2 3

Dettagli

Sistemi lineari 1 / 12

Sistemi lineari 1 / 12 Sistemi lineari 1 / 12 Sistemi lineari 2 / 12 Ricordiamo che cosa è un sistema lineare con m equazioni in n incognite (m,n N, m,n 1): a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n = b 2, (1).. a m1 x

Dettagli

( 5) 2 = = = +1

( 5) 2 = = = +1 1 IDENTITA ED EQUAZIONI Consideriamo la seguente uguaglianza: ( 2x + 3) 2 = 4x 2 +12x + 9 Diamo alcuni valori arbitrari all incognita x e vediamo se l uguaglianza risulta vera. Per x = 1 si avrà: ( 2 1+

Dettagli

I sistemi lineari Prof. Walter Pugliese

I sistemi lineari Prof. Walter Pugliese I sistemi lineari Prof. Walter Pugliese Le equazioni lineari in due incognite Un equazione nelle incognite x e y del tipo #$ + &' = ) dove *,,, - sono numeri reali è un equazione lineare in due incognite

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite:

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: CORS D LAUREA N MATEMATCA E FSCA FOGLO D ESERCZ # 1 GEOMETRA 1 Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: 2x + y = 4 x 2y = 6 x + 3y =

Dettagli

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni:

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni: Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 5 Operazioni elementari sulle righe di una matrice Sia A una matrice m n. Def. 1. Si chiamano operazioni elementari sulle righe

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

Sistemi lineari (di I grado)

Sistemi lineari (di I grado) Sistemi lineari (di I grado) Un sistema lineare è un insieme di equazioni lineari (di I grado), che devono essere verificate tutte contemporaneamente. Risolvere un sistema di equazioni vuol dire trovare

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

Equazioni di primo grado ad un incognita. Identità

Equazioni di primo grado ad un incognita. Identità Def: Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2a = 2a è un identità a =

Dettagli

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b, Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008 versione ottobre 2008 Lezioni di Algebra Lineare II. Aritmetica delle matrici e eliminazione di Gauss Contenuto. 1. Somma di matrici e prodotto di una matrice per uno scalare 2. Prodotto di matrici righe

Dettagli

ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il

ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come

Dettagli

Sistemi lineari. Un sistema lineare di m equazioni in n incognite è un sistema di m equazioni di primo grado nelle variabili x 1, x 2 x n.

Sistemi lineari. Un sistema lineare di m equazioni in n incognite è un sistema di m equazioni di primo grado nelle variabili x 1, x 2 x n. I sistemi lineari Sistemi lineari Un sistema lineare di m equazioni in n incognite è un sistema di m equazioni di primo grado nelle variabili x 1, x 2 x n. a1,1 x1 a1,2 x2... a1, nxn b1 a2,1x1 a2,2x2...

Dettagli

Lezione Sistemi di equazioni lineari

Lezione Sistemi di equazioni lineari Lezione. Sistemi di equazioni lineari Definizione. (Sistemi di equazioni lineari e loro soluzioni). Un equazione lineare nelle n incognite x,,...,x n acoefficientiink = R, èun equazionedellaforma a x +

Dettagli

1 se k = r i. 0 altrimenti. = E ij (c)

1 se k = r i. 0 altrimenti. = E ij (c) Facoltà di Scienze Statistiche, Algebra Lineare A, G.Parmeggiani LEZIONE 5 Matrici elementari e loro inverse Si fissi m un numero naturale. Per ogni i, j m con i j siano E ij (c) (ove c è uno scalare )

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Identità ed equazioni

Identità ed equazioni Matematica e-learning - Identità ed equazioni Prof. erasmo@galois.it A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli

Argomento 12 Matrici

Argomento 12 Matrici Argomento 2 Matrici 2 Vettori di R n eoperazioni I Vettore di R n : x =(x i ) i=n =(x i ) n i=,conx i R componenti di x I R n = spazio dei vettori reali a n componenti = spazio vettoriale reale n-dimensionale

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

a.a MATEMATICA GENERALE: SISTEMI LINEARI E MATRICI

a.a MATEMATICA GENERALE: SISTEMI LINEARI E MATRICI aa 2012-2013 MATEMATICA GENERALE: SISTEMI LINEARI E MATRICI 1 Sistemi di equazioni lineari Definizione 11 i Un equazione lineare nelle indeterminate (o incognite X 1,, X 1 m a coefficienti interi (o razionali,

Dettagli

Geometria BAER I canale Foglio esercizi 3

Geometria BAER I canale Foglio esercizi 3 Geometria BAER I canale Foglio esercizi 3 Esercizio. Discutere le soluzioni del seguente sistema lineare nelle incognite,, z al variare del parametro k. 3 + kz = k k + 3z = k k + z = Soluzione: Il determinante

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Capitolo VI SISTEMI LINEARI

Capitolo VI SISTEMI LINEARI Capitolo VI SISTEMI LINEARI 1 Concetti fondamentali 11 Definizione Un equazione in n incognite x 1,, x n a coefficienti in R si dice lineare se è della forma: a 1 x 1 + + a n x n = b con a i R e b R Una

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre SETTIMANA 4 (19 25 Ottobre) Matrici elementari Gli esercizi sono presi dal libro Intorduction to Linear Algebra di Serge Lang. Esercizio

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Argomenti trattati nella settimana novembre Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare

Argomenti trattati nella settimana novembre Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare Argomenti trattati nella settimana 23-27 novembre 2009 Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare 1 Sistemi lineari; 2 applicazioni lineari; Sistemi lineari;

Dettagli