MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010"

Transcript

1 elementi di teoria dei grafi anno acc. 2009/2010

2 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre L(G) è un insieme finito di coppie non ordinate di elementi di V(G) distinti tra loro. Tali coppie vengono dette lati o spigoli di G. I due vertici di un lato vengono detti estremi del lato stesso. Il numero dei vertici viene talora detto ordine del grafo; il numero dei lati viene talora detto grandezza del grafo. Ad esempio G 1 = (V(G 1 ) = {a, b, c}, L(G 1 ) = {{a, c}, {b, c}}), G 2 = (V(G 2 ) = {x, y, z, u, w}, L(G 2 ) = {{x, z}, {x, w}, {y, w}}), sono grafi semplici. Un grafo semplice può essere rappresentato tramite un diagramma in cui i vertici siano rappresentati come punti (ad esempio del piano) ed in cui due vertici v 1 e v 2 sono collegati da segmento (o da un arco di curva) se e solo se la coppia {v 1, v 2 } appartiene a L(G).

3 In figura sono rappresentati i grafi G 1 e G 2 definiti prima: G 1 = (V(G 1 ) = {a, b, c}, L(G 1 ) = {{a, c}, {b, c}}), G 2 = (V(G 2 ) = {x, y, z, u, w}, L(G 2 ) = {{x, z}, {x, w}, {y, w}}), Viceversa dalla rappresentazione grafica si risale facilmente al grafo.

4 Due lati aventi un vertice in comune vengono detti incidenti e due vertici di uno stesso lato vengono detti adiacenti. Ad esempio in G 2, x e z sono adiacenti, mentre x e y non lo sono, {x, z} e {x, w} sono incidenti, mentre {x, z} e {y, w} non lo sono. Fissato un vertice v di un grafo semplice si dice valenza o grado di v il numero dei lati aventi v come estremo. Ad esempio, in G 2, x ha valenza 2. Un vertice di valenza 0 (come u per G 2 ) viene detto isolato; un vertice di valenza 1 (come z e y per G 2 ) viene detto terminale.

5 Grafi Ammettendo, tra i lati, la presenza di coppie di vertici coincidenti, ed anche di coppie di vertici ripetute, si ottine la nozione di grafo. Un grafo G quindi è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre L(G) è una lista (multinsieme) finita di coppie non ordinate (eventualmente ripetute) di elementi di V(G) (eventualmente coincidenti tra loro). Ad esempio G 3 = ({a, b, c}, {{a, a}, {a, c}, {a, c}, {b, c}}), è un grafo (non semplice) (si veda la figura).

6 Un lato del tipo {v, v} viene detto cappio Le definizioni date sopra per i grafi semplici si estendono in modo ovvio ai grafi, tenendo presente che per convenzione un cappio {v, v} conta per 2 nel calcolo della valenza di v. LEMMA - La somma delle valenze dei vertici di un grafo è uguale al doppio del numero dei lati (in particolare quindi è un numero pari). Idea della dimostrazione - Sommando i gradi dei vertici si ottiene il numero dei lati moltiplicato per due, perchè ogni lato congiunge due vertici e quindi viene contato due volte in tale somma. COROLLARIO 1- Il numero dei vertici di un grafo di valenza dispari è pari. Idea della dimostrazione - La somma dei gradi di tutti i vertici è pari, per il lemma. La somma dei gradi dei vertici di valenza pari è pari, perchè somma di numeri pari. Per differenza allora la somma dei gradi dei vertici di valenza dispari è pure pari (e quindi anche il numero dei vertici di valenza dispari lo è).

7 Un grafo viene detto regolare di grado d se tutti i suoi vertici hanno la stessa valenza d. I grafi R 1, R 2 (ma anche R 2 ), R 3 e R 4 in figura sono esempi di grafi regolari di grado 1, 2, 3 e 4 rispettivamente. COROLLARIO 2- Un grafo regolare di grado d con n vertici ha dn/2 lati.

8 Un grafo viene detto completo se è semplice e ogni coppia di vertici di G è una coppia di vertici adiacenti. Un grafo completo con n vertici viene indicato con K n. In figura sono rappresentati i grafi K 2, K 3 e K 4.

9 Grafi isomorfi Due grafi G e Γ si dicono isomorfi se esiste una applicazione biunivoca (detta isomorifismo tra i grafi) tra i gli insiemi dei vertici di G e di Γ F : V(G) V(Γ) tale che v, w V(G) il numero dei lati di G aventi per estremi v e w sia lo stesso di quello dei lati di Γ congiungenti F(v) e F(w). Un isomorfismo di grafi induce anche una corrispondenza biunivoca tra le liste dei lati. Ad esempio i grafi G e Γ in figura sono isomorfi (esercizio: trovare un isomorfismo).

10 Cammini in un grafo In un grafo semplice G, un percorso da v 0 a v h è una successione finita di lati (non necessariamente distinti) di G della forma {v 0, v 1 }, {v 1, v 2 },..., {v h 2, v h 1 }, {v h 1, v h } (i lati consecutivi sono incidenti, cioè hanno un vertice in comune). v 0 viene detto vertice o estremo iniziale del percorso, v h vertice o estremo finale. Se v 0 v h, il percorso viene detto aperto, se v 0 = v h, il percorso viene detto chiuso. Il numero h dei lati che costituiscono il percorso viene detto lunghezza del percorso. Talora si usa indicare un percorso elencando la sequenza dei vertici v 0 v 1 v 2... v h 1 v h. Le definizioni date sopra si estendono al caso di grafi (non necessariamente semplici) con l accortezza di dover "etichettare" i lati per distinguerli (ad esempio scrivendo {u, v} 1, {u, v} 2 ), nel caso in cui vi siano più lati con gli stessi estremi.

11 Consideriamo un percorso in un grafo. Se i lati del percorso sono a due a due distinti tra loro, il percorso viene anche detto cammino (da v 0 a v h ). Un cammino chiuso (cioè con v 0 = v h ) viene detto circuito o ciclo. Un cammino in cui anche tutti i nodi della sequenza v 0 v 1 v 2... v h 1 v h, sono distinti tranne al più v 0 = v h, si dice semplice. Ad esempio, in figura, il cammino a sinistra non è semplice, mentre quello a destra lo è. Per convenzione, tra i cammini chiusi si considerano anche i cammini nulli: il cammino nullo da v a v è un cammino senza lati di estremo iniziale v e estremo finale v. Il cammino nullo non è un cappio.

12 Grafi connessi Un grafo G viene detto connesso se per ogni coppia di vertici v, w di G esiste un cammino da v e w. Ad esempio, in figura, i grafi G 1 e G 3 sono connessi, mentre i grafi G 2 e G 4 non lo sono. OSSERVAZIONE - La richiesta di esistenza di un cammino da v e w è equivalente a quella di esistenza di un percorso da v e w ed anche a quella di esistenza di un cammino semplice da v e w.

13 Un grafo G = (V(G), L(G)) può essere suddiviso in sottografi (grafi costituiti da vertici e lati di G) disgiunti connessi, detti componenti connesse del grafo, nel seguente modo. Si introduce una relazione ρ in V(G) ponendo uρv se e solo se esiste un cammino con estremo iniziale u ed estremo finale v. Si dimostra che ρ è una relazione di equivalenza e pertanto ρ determina una partizione in V(G). I vertici che stanno in uno stesso sottoinsieme della partizione, insieme ai lati di G che li hanno per estremi, determinano un grafo connesso che è una delle componenti connesse del grafo G. Ad esempio nel grafo G 2 si ha xρy ma non xρu. Il grafo G 2 ha due componenti connesse (individuate dai vertici {x, y, z, w} e {u} rispettivamente). Anche il grafo G 4 in figura ha due componenti connesse (individuate dai vertici {a, c, e} e {b, d, f } rispettivamente).

14 Grafi euleriani Un circuito euleriano è un circuito che contiene tutti i lati del grafo. Un grafo G viene detto euleriano se contiene un circuito euleriano. Il grafo G C in figura non è euleriano, ma ha un cammino aperto che contiene tutti i lati (cammino euleriano).

15 PROBLEMA DEI PONTI DI KOENIGSBERG - È possibile partire da un punto della città e tornare al punto di partenza avendo attraversato una ed una sola volta ciascuno dei sette ponti illustrati in figura? Problema equivalente: il grafo a destra in figura è euleriano? La risposta è negativa (Eulero, 1736). TEOREMA - Un grafo privo di nodi isolati è euleriano se e solo se è connesso e tutti i suoi vertici hanno valenza pari.

16 Grafi planari Un grafo si dice piano se i suoi vertici sono punti di un piano π e i suoi lati corrispondono ad archi di curve del piano π che congiungono gli estremi del lato e che si intersecano a coppie solo negli eventuali estremi comuni. Un grafo si dice planare se è isomorfo ad un grafo piano. Il grafo G 5 in figura è un esempio di grafo planare, ma non piano

17 PROBLEMA DELLE TRE CASE - È possibile allacciare ciascuna delle tre case X, Y e Z a ciascuno dei tre servizi A, G e L con condutture (di superficie) che non si intersechino? Problema equivalente: il grafo G 3C in figura è planare? La risposta è negativa. TEOREMA (Kuratowkski, 1930) - Un grafo è non planare se e solo se ha un sottografo isomorfo al grafo G 3C o al grafo completo K 5.

18 Da una cartina geografica si ricava facilmente, come in figura, un grafo (i vertici corrispondono alle regioni e i lati alle regioni confinanti). Si vuole colorare la cartina in modo che regioni confinanti non abbiano lo stesso colore. Equivalentemente si vuole assegnare un colore ai vertici del grafo in modo che vertici adiacenti non abbiano lo stesso colore. PROBLEMA (dei quattro colori): Quanti colori sono necessari per colorare una qualsiasi cartina? La figura mostra una cartina (e il corrispondente grafo) per la quale sono necessari almeno 4 colori.

19 Alberi Un grafo connesso si dice albero se non contiene cicli. Un grafo che sia unione di alberi due a due disgiunti (ovvero le cui componenti connesse siano alberi) si dice foresta. Dei tre grafi A, B, C in figura solo A è un albero.

20 OSSERVAZIONE - Un albero non ha cappi (sono cicli) e non ha coppie di lati distinti per gli stessi estremi (individuano un ciclo), quindi è semplice. OSSERVAZIONE - In un albero per ogni coppia di vertici esiste uno ed un solo cammino che li ha per estremi (una coppia di cammini con gli stessi estremi individua un ciclo). TEOREMA - Per un grafo G con n vertici sono equivalenti i G è un albero; ii G è connesso ed ha n 1 lati.

21 Gli alberi possono essere utilizzati per rappresentare espressioni contenenti parentesi, quali, ad esempio, le espressioni del calcolo algebrico, e per dedurne rappresentazioni che non utilizzino parentesi. Ci limitiamo a fare un esempio (che riguarda solo operazioni binarie). L espressione algebrica {[(a + 2) (b 2)] + c} (d + 1), può essere rappresentata dall albero T in figura, da cui si deduce la scrittura con operatore postposto e senza parentesi a2 + b2 c + d1 +.

22 Diagrammi di Hasse Consideriamo un insieme finito X = {x 1,, x n } e una relazione d ordine in X. C è un modo semplice di rappresentare tramite un grafo, detto diagramma di Hasse la relazione. I nodi del grafo sono gli elementi di X e, per convenzione, se x i x j sul piano si disegna il nodo x i più in basso del nodo x j. Inoltre, nel caso i j, se x i x j e non esiste alcun x k tale che x i x k x j allora si disegna un lato del grafo tra il nodo x i e il nodo x j.

23 Ad esempio, in figura è disegnato il diagramma di Hasse della relazione "essere divisore di" nell insieme {1, 3, 5, 6, 9, 15}. Gli alberi genealogici possono essere interpretati come diagrammi di Hasse relativi alla relazione "essere discendente di" (o "essere uguale a"). Si noti però che gli "alberi genealogici" non sono necessariamente "alberi" anche nel senso della teoria dei grafi.

24 Matrici di adiacenza Dato un grafo G = (V(G), L(G)) con n nodi, ovvero con V(G) = {x 1,..., x n }, si definisce matrice di adiacenza di G la matrice quadrata M G, di tipo n n, che al posto a i,j di riga i e colonna j ha il numero di lati della lista L(G) di estremi x i e x j. Ad esempio, nel caso di V(G) = {x 1, x 2, x 3, x 4 } e L(G) = {{x 1, x 1 }, {x 1, x 3 }, {x 2, x 3 } 1, {x 2, x 3 } 2, {x 1, x 4 }}, la matrice di adiacenza risulta M = OSSERVAZIONE - La matrice di adiacenza dipende dall ordine in cui vengono indicati i vertici. OSSERVAZIONE - La matrice di adiacenza è simmetrica ovvero si ha a i,j = a j,i, i, j..

25 Viceversa, data una matrice quadrata simmetrica di numeri interi non negativi, si può costruire un grafo (di cui la matrice risulterà essere la matrice di adiacenza) con tanti vertici quante sono le righe (e le colonne) della matrice. OSSERVAZIONE - Dalla matrice di adiacenza del grafo G = (V(G), L(G)) si ricavano facilmente le seguenti proprietà del grafo: il numero dei vertici: è il numero di righe (o colonne) della matrice; i vertici isolati: corrispondono alle righe (o colonne) nulle; i cappi: corrispondono agli elementi non nulli nella diagonale; il numero dei lati di estremi il vertice i esimo e il vertice j esimo: è l elemento di posto (i, j) della matrice; il grado del vertice i esimo: è la somma degli elementi della riga (o colonna) i con la convenzione di contare per due il contributo dell elemento di posto (i, i); se il grafo è semplice: la diagonale deve essere nulla e gli elementi della matrice devono essere solo 0 o 1.

26 Sia M G = {m hk } la matrice di adiacenza di un grafo G = (V(G), L(G)) con V(G) = {v 1,..., v n }. Denotiamo con M m G la matrice ottenuta come potenza m esima della matrice M G secondo l operazione data dal prodotto riga per colonna. LEMMA - L elemento di posto (i, j) della matrice MG m è il numero dei percorsi di lunghezza m di estremi v i e v j. Idea della dimostrazione nel caso m = 2 - L elemento di posto (i, j) della matrice M 2 G è mi1m1j + mi2m2j +... minmnj. m i1 è il numero di lati da v i a v 1 ; m 1j è il numero di lati da v 1 a v j, quindi m i1 m 1j è il numero di percorsi di lunghezza 2 da v i a v j che passano per v 1. Analogamente m i2 m 2j è il numero di percorsi di lunghezza 2 da v i a v j che passano per v 2, e... m in m nj è il numero di percorsi di lunghezza 2 da v i a v j che passano per v n. In conclusione m i1 m 1j + m i2 m 2j +... m in m nj è il numero complessivo dei percorsi di lunghezza 2 da v i a v j.

27 Sia M la matrice di adiacenza di un grafo G = (V(G), L(G)) con V(G) = {v 1,..., v n } e si denoti con I n la matrice identica di ordine n. TEOREMA - G è connesso se e solo se la matrice non ha alcun elemento nullo. C = I n + M + M M n 1 Idea della dimostrazione Implicazione - Se l elemento di posto (i, j) della matrice C non è nullo, allora esiste un percorso (di lunghezza al più n 1) da v i a v j. Quindi, se la matrice C non ha elementi nulli, tutti i vertici stanno nella stessa componente connessa. Implicazione - Se l elemento di posto (i, j) della matrice C è nullo, allora non esiste un percorso di lunghezza al più n 1 da v i a v j. Questo garantisce anche la non esistenza di un percorso di lunghezza n da v i a v j (un percorso con più di n 1 lati avrebbe vertici ripetuti e quindi cicli eliminabili; pertanto un tale percorso potrebbe essere "accorciato").

28 Ad esempio M = connesso dal momento che C = I 4 + M + M 2 + M 3 = è la matrice di un grafo non =

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS INTRODUZIONE Per conoscere la struttura di un grafo connesso è importante individuare nel grafo la distribuzione di certi punti detti cutpoints (punti

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o Sommario Sintesi di macchine a stati finiti 1 Realizzazione del ST M. avalli 2 utoma minimo di SM completamente specificate 6th June 2007 3 Ottimizzazione di SM non completamente specificate Sommario ()

Dettagli

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

LE EQUAZIONI CIRCUITALI

LE EQUAZIONI CIRCUITALI CAPITOLO 3 LE EQUAZIONI CIRCUITALI 3.1 Introduzione Il quadro della intera Teoria dei Circuiti è, a questo punto, completo. Essa è così costituita (per il momento, ci riferiremo a circuiti di soli bipoli):

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Corso introduttivo pluridisciplinare Strutture algebriche

Corso introduttivo pluridisciplinare Strutture algebriche Corso introduttivo pluridisciplinare Strutture algebriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Corso introduttivo pluridisciplinare 1 / 17 index

Dettagli

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia Definizione 1.1 Relazione. Dati due insiemi A e B un sottoisieme R A B è detto una relazione binaria tra A e B. Se A = B allora

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

Introduzione Ordini parziali e Reticoli Punti fissi

Introduzione Ordini parziali e Reticoli Punti fissi Introduzione Ordini parziali e Reticoli Punti fissi By Giulia Costantini (819048) & Giuseppe Maggiore (819050) Table of Contents ORDINE PARZIALE... 3 Insieme parzialmente ordinato... 3 Diagramma di Hasse...

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Due dimostrazioni alternative nella teoria di Ramsey

Due dimostrazioni alternative nella teoria di Ramsey Due dimostrazioni alternative nella teoria di Ramsey 28 Marzo 2007 Introduzione Teoria di Ramsey: sezione della matematica a metà tra la combinatoria e la teoria degli insiemi. La questione tipica è quella

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

Appunti di Logistica. F. Mason E. Moretti F. Piccinonno

Appunti di Logistica. F. Mason E. Moretti F. Piccinonno Appunti di Logistica F. Mason E. Moretti F. Piccinonno 2 1 Introduzione La Logistica è una disciplina molto vasta che, in prima approssimazione, si suddivide in logistica interna (alle aziende) e logistica

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2)

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2) Algoritmi per la visualizzazione DISEGNO DI GRAFI: ALCUNI CASI PARTICOLARI Disegno 2D ortogonale Disegno ortogonale 2D () Disegno ortogonale 2D (2) Punto di vista umano: primo criterio per giudicare la

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 LIVELLO STUDENT K,M N CD BC A S1. (5 punti ) In figura si vede una circonferenza della quale i segmenti AB, BC e CD

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE - Esame di Ricerca Operativa - settembre 7 Facoltà di rchitettura - Udine - CORREZIONE - Problema ( punti): Un azienda pubblicitaria deve svolgere un indagine di mercato per lanciare un nuovo prodotto. L

Dettagli

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Modellazione delle preferenze

Modellazione delle preferenze Modellazione delle preferenze Roberto Cordone 1 1 Sono debitore delle dispense di B. Simeone e F. Patrone Sistemazione assiomatica Dato un insieme non vuoto di impatti F, esprimere una preferenza fra due

Dettagli

Corrispondenze e relazioni - Complementi

Corrispondenze e relazioni - Complementi PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici Capitolo 2 TOPOLOGIE Ogni spazio che si considera in gran parte della matematica e delle sue applicazioni è uno spazio topologico di qualche tipo: qui introduciamo in generale le nozioni di base della

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Traguardi per lo sviluppo delle competenze Sviluppare un atteggiamento positivo nei confronti della matematica. Obiettivi di apprendimento NUMERI Acquisire

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Grafi. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria Università di Bologna. moreno.marzolla@unibo.it http://www.moreno.marzolla.

Grafi. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria Università di Bologna. moreno.marzolla@unibo.it http://www.moreno.marzolla. Grafi Moreno Marzolla ip. di Informatica Scienza e Ingegneria Università di ologna moreno.marzolla@unibo.it http://www.moreno.marzolla.name/ opyright lberto Montresor, Università di Trento, Italy (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016

SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016 SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016 SCUOLA PRIMARIA CLASSE PRIMA MATEMATICA AREA DISCIPLINARE: MATEMATICO- SCIENTIFICO-TECNOLOGICA COMPETENZA DI Mettere in relazione il

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli