Termochimica - L Aspetto Energetico della Chimica (cap. 5)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Termochimica - L Aspetto Energetico della Chimica (cap. 5)"

Transcript

1 Scuola di Ingegneria Industriale e dell Informazione Insegnamento di Chimica Generale CCS CHI e MAT Termochimica - L Aspetto Energetico della Chimica (cap. 5) Prof. Dipartimento CMIC Giulio Natta :

2 Termochimica: Flusso di Energia e Trasformazioni Chimiche 2 - Calorimetria: Misura dei Calori di Reazione - Stechiometria delle Equazioni Termochimiche - Bilanci Energetici - Cicli Termodinamici - Legge di Hess sulla Somma dei Calori

3 Capacità Termica (Calore) 3 q = quantità di calore q T q trasferito è proporzionale alla variazione di temperatura T = (T f T i ), la differenza tra la temperatura finale e quella iniziale. q c' T calore guadagnato differenza di Temperatura capacità termica (heat capacity) (unità in J K -1 ) Capacità termica dell H 2 O = 1 cal K -1 g-1 (a 25 C) Capacità termica molare H 2 O = ( ) cal K -1 mol-1 = 75.3 J K-1 mol-1 Calore specifico: capacità termica (no unità) rispetto a quella dell acqua.

4 Capacità Termica Specifica (calore specifico) e Capacità Termica Molare 4 La capacità termica specifica (o calore specifico) di una sostanza è definita come il calore sulla variazione di temperatura per un grammo massa di una sostanza. c q massa T dove c ha le unità di = capacità termica specifica (calore specifico) J kg K (J kg -1 K -1 ) La capacità termica molare è la capacità termica per mole di sostanza. c q mol T dove c ha le unità di J mol K = capacità termica molare (calore specifico molare) (J mol -1 K -1 )

5 Calori Specifici di Alcuni Elementi, Composti e Materiali 5 Sostanza Calore Specifico Sostanza Calore Specifico (J g -1 K-1 )* (J g -1 K-1 )* Elementi Composti (cont.) Alluminio, Al Glicol Etilenico, 2.42 Grafite, C (CH 2 OH) 2 (l) Ferro, Fe Tetracloruro di Carbonio Rame, Cu CCl 4 (l) Oro, Au Composti Materiali Solidi Ammoniaca, NH 3 (l) 4.70 Lana 1.76 Acqua, H 2 O(l) Cemento 0.88 Alcool Etilico, 2.46 Vetro 0.84 C 2 H 5 OH(l) Granito 0.79 Acciaio 0.45 * A 298 K (25 C)

6 Calcolo della Quantità di Calore mediante il Calore Specifico 6 Problema: Calcolare la quantità di calore richiesta per riscaldare un anello d oro di massa g da C a C Piano: Moltiplicare la capacità termica (per grammo) per la variazione di temperatura e la massa dell oro. Soluzione: La capacità termica (c) dell oro è J g -1 K -1. q c T massa J K g 648 J g K 0.648kJ T T T C C finale iniziale K K

7 Calorimetro e Bomba Calorimetrica 7 La capacità termica di un solido si può misurare scaldando una quantità in massa nota di una sostanza e inserendola in una massa nota di acqua in un recipiente isolato a pressione costante e ad una temperatura nota. Il calore perso dal solido, q p, è acquistato dall acqua. Note la capacità termica e la variazione di temperatura dell acqua, è possibile calcolare il calore acquistato dall acqua, e, perciò, si può valutare la capacità termica del solido. q campione q calorimetro massa calore specifico T massa calore specifico T camp. H C H C T q P P P T P calor. H U pv H q P

8 Direzione del Trasferimento di Calore 8 T aumenta +T, +q (calore entra) T diminuisce -T, -q (calore esce) Problema: Quanto calore (in J) sono trasferiti da una tazza da tè di 250 ml a 60 C al corpo umano a 37 C? (No dispersione termica!) Risoluzione: Considerando una densità di 1 g ml -1 per l acqua: T T T finale iniziale dacqua 1.00 g ml 1 J 3 q g 310.0K 333.0K J g K

9 Esempio 2 9 Un campione di g di un solido viene scaldato in un recipiente a C in acqua bollente e quindi inserito in un calorimetro a tazza contenente g di acqua. La temperatura dell acqua aumenta da C a C. Stabilire il calore specifico del solido assumendo che tutto il calore sia acquisito dall acqua. PROCEDIMENTO: Costruire una tabella riassuntiva dei dati disponibili. Quindi uguagliare il calore perso dal sistema con quello acquisito dall ambiente acqua. Massa(g) c(j g -1 K -1 ) T iniziale ( C) T finale ( C) T (K) solido H 2 O c SOLUZIONE: g c K = g 4.18 J g -1 K K c solido = g 4.18 J g -1 K K g ( K) = 0.387J g -1 K -1

10 Determinazione del Calore di Reazione 10 Si dispone di due soluzioni di ml di NaOH e HCl entrambe a concentrazione 1.00 mol L -1. Quando si mescolano in un calorimetro, la temperatura sale da a C. Quant è il calore rilasciato? Soluzione: Assunti: non ci sono perdite di calore e si considerano, in prima istanza, le soluzioni come acqua pura: C = g 4.18 J g 1 K 1 = 836 J K 1. Calore di reazione = 836 J K 1 ( ) K = 5785 J = 5.79 kj. Moli di H + e OH reagite = 1.00 mol L L = mol Calore molare di reazione, H reaz. = kj / mol = kj mol -1 Reazione: H + + OH H 2 O H reazione = kj mol -1

11 Potere Calorifico di un Combustibile 11 Quantità di calore sviluppata dalla combustione completa dell'unità di massa (liquidi/solidi) o volume (gas) da un combustibile. Unità di misura: kcal kg -1 o kcal Nm -3 (quantità di gas che in condizioni normali (0 C - 1 atm) occupa 1 m 3 di volume) Combustione completa: tutto il C CO 2 tutto l'h H 2 O tutto S SO 2 tutto N N 2 CH O 2 CO H 2 O (in che fase?) Q s = 9500 kcal Nm -3 (pari a kj Nm -3 o a H = 890 kj mol -1 )

12 Potere Calorifico Inferiore (più utile) Q i e Potere Calorifico Superiore Q s 12 Potere calorifico inferiore (più utile) Q i : H 2 O prodotta in fase gassosa Potere calorifico superiore Q s : H 2 O prodotta in fase liquida Q s = Q i + n 600 n = quantità (kg) di acqua prodotta dalla combustione di una unità (m 3 o kg) di combustibile [N.B. : 600 kcal = calore di vaporizzazione di 1 kg di acqua] Se si usa l unità J calore di vaporiz. di 1 kg di acqua = 2440 kj Se il combustibile non è anidro bisogna sottrarre al Q del combustibile anidro la percentuale relativa all acqua presente.

13 Valori Tipici di Q s e Q i 13 In prima approssimazione Q può essere calcolato in base all'analisi elementare (percentuali di C, H, S ed eventualmente O ed N). Q s = 81 C (H - O/8) S kcal kg -1 Q i = 81 C (H - O/8) S 6 Um kcal kg -1 dove: C, H, O,S sono le percentuali in peso dei relativi elementi ed Um è l'umidità del combustibile. Q s [kcal kg -1 ] Q i [kcal kg -1 ] legno torba 3500 lignite litantrace benzina gasolio gas di città 4000 oli combustibili 10000

14 Esempi 14 Combustibile: CH 4 in kcal Nm -3 CH O 2 CO H 2 O (Q s = 9500 kcal Nm -3 ) Q i??? ; n =??? 1 mole di metano 2 moli di acqua (MW acqua = 18 u) 22.4 m 3 di CH = 36 kg di acqua 1 m 3 di CH 4 36/22.4 = 1.61 kg di H 2 O Q i = ( ) = 8354 kcal Nm C 2 H 5 OH commerciale (95% in peso C 2 H 5 OH, 5% H 2 O) in kj kg -1 (Q s C2H5OH anidro = kj kg -1 ; MW C2H5OH = 46 u) C 2 H 5 OH + 3 O 2 2 CO H 2 O Q s C2H5OH commerciale:???; Q i C2H5OH commerciale:???; Q s = = kj kg -1 ; 46 g comb g H 2 O 0.95 kg di combustibile 1.11 kg acqua (acqua tot = = 1.16 kg) Q i = ( ) = kj kg -1

15 Aria Teorica di Combustione - Volume e Composizione Fumi 15 Definizione: quantità d'aria che è stechiometricamente necessaria per l'ossidazione totale di un combustibile. L'aria è costituita da: circa 21 % in volume O 2 circa 78 % in volume di N 2 circa l'1 % di gas nobili, per cui il rapporto altri gas/o 2 è uguale a 3.8. L'aria teorica di combustione viene calcolata sulla base delle reazioni di combustione e si esprime in Nm 3 per kg di combustibile solido o liquido o per Nm 3 di combustibile gassoso. In pratica è necessario un eccesso di aria che non partecipa alla combustione, ma aumenta il volume dei fumi.

16 Esempio 16 CH O 2 CO H 2 O per bruciare 1 m 3 di CH 4 2 m 3 di O 2 1 parte di O parti di altri gas 2 m 3 O m 3 di aria ( ) Aria teorica di combustione: 9.6 m 3 Composizione dei fumi: CH O N 2 CO H 2 O N 2 1 m 3 CO 2 2 m 3 H 2 O 7.6 m 3 N 2 Volume totale fumi: 10.6 m 3

17 Altri Esempi 17 Per l'idrogeno e l'ossido di carbonio: 2 H 2 + O N 2 2 H 2 O N 2 ; 2 CO + O N 2 2 CO N 2 quindi per bruciare 1 Nm 3 di idrogeno o CO occorrono 1.9 Nm 3 di aria; Per il carbonio, allo stato solido: C (s) + O N 2 CO N 2 quindi per bruciare 1 kmol di carbonio, ossia 12 kg, occorrono 22.4 Nm 3 di ossigeno, ossia = Nm 3 di aria; perciò: per bruciare 1 Kg di carbonio occorrono 107.5/12 = 8.96 Nm 3 di aria. Per lo zolfo: S + O N 2 SO N 2 Quindi per bruciare 1 mol di zolfo, ossia 32 g, occorre 1 mol di O 2, ossia 32 g di O 2 e 3.8 mol di N 2, ossia = g di N 2. Per bruciare 1 Kg di zolfo occorrono perciò Kg di aria.

18 Altri Esempi 18 Per la combustione di 1 Nm 3 della miscela gassosa: 30% CH 4, 10% H 2, 30% CO, 20% CO 2, 10% N 2 per il metano : = 2.88 per l'idrogeno : = 0.24 per l'ossido di carbonio: = Nm 3 di aria. Nel caso di 1 Kg di un carbone contenente: 75% C, 5% H 2, 8% S, 8% O 2 1) C + O 2 CO 2 12:22.4 = 0.75:x 1 x 1 = 1.4 2) 2H 2 + O 2 2H 2 O 4:22.4 = 0.05:x 2 x 2 = ) S + O 2 SO 2 32:22.4 = 0.08:x 3 x 3 = Nm 3 di O 2 tenendo conto dell O 2 presente nel combustibile, che è 0.08 Kg; (Y= Nm 3 di O 2 ); servono: = 1.68 Nm 3 di O 2 e 8.06 Nm 3 di aria.

19 Calcoli Semplificati 19 L'aria teorica (A t ) può essere anche calcolata con la formula di carattere generale: A t = C H S O dove: A t = volume in Nm 3 dell'aria teoricamente necessaria per la completa combustione di 1 kg di combustibile, C, H, S, O rappresentano i valori percentuali del carbonio, idrogeno, zolfo, ossigeno presenti nel combustibile in esame. Bruciando 1 Kg di carbone di composizione: risultano: (75% C, 5% H 2, 8% S, 8% O 2, 4% N 2 ) 1.4 Nm 3 di CO 2 ; 0.56 Nm 3 di H 2 O; Nm 3 di SO 2 ; 6.38 Nm 3 N 2. N 2 del combustibile: 28:22.4 = 0.04:Y (Y = 0.032) ; totale: 8.43 Nm 3 Dalla formula precedente: F t = A t H O N F t = = 8.36 Nm 3

20 Bomba Calorimetrica 20 Il calorimetro a bomba o a volume costante è impiegato per misurare il calore di combustione a volume costante bruciando una quantità definita di combustibile. Sorgente elettrica Agitatore a motore Termometro Conoscendo la capacità termica del calorimetro, si determina il calore molare di combustione. Q v 2 T P A C p v( H O) ΔT = aumento di T [ C] P = massa di acqua [kg] A = costante dello strumento C v (H 2 O) = calore specifico H 2 O [kcal kg -1 K -1 ] p = massa di combustibile [kg] Sistema (sostanza combustibile e ossigeno compresso Spaccato di una bomba d acciaio Spirale di riscaldamento C V U C U T V V T q Calore da trasferire V Spaccato del recipiente isolante Bagno d acqua

21 Calcolo del Calore di Combustione 21 PROBLEMA: Un azienda rivendica di aver preparato un nuovo dessert dietetico che ha meno di 10 Calorie per porzione. Per verificare l affermazione si è posto una porzione di dessert in una bomba calorimetrica e lo si è bruciato in O 2 (la cui costante calorimetrica era = 8.15 kj K -1 ). La temperatura aumenta di C. L affermazione dell azienda è corretta? PIANO: - q campione = q calorimetro SOLUZIONE: q calorimetro = Calore specifico (calor.) T = kj K K = kj kj kcal 4.18 kj = 9.62 kcal o Calorie L azienda dice il vero.

22 Relazioni tra Quantità di Sostanza e il Calore Trasferito Durante una Reazione 22 Rapporto Molare dall equazione bilanciata H rxn (kj mol -1 ) Quantità (mol) del composto A Quantità (mol) del composto B CALORE (kj) guadagnato o perso

23 Esempio 23 La maggiore fonte di alluminio nel mondo è la bauxite (principalmente ossido di alluminio). La sua decomposizione termica è data da: Al 2 O 3 (s) 2 Al(s) + 3/2 O 2 (g) H rxn = 1676 kj Se l alluminio è così prodotto, quanti grammi di alluminio si possono formare quando si trasferiscono kj di calore? PIANO: SOLUZIONE: calore(kj) 1676 kj = 2 mol Al kj 2 mol Al 1676 kj 26.98g Al 1mol Al mol di Al = g di Al MW g di Al

24 Produzione di un Metallo con un Processo Redox - I 24 Problema: Il cromo elementare viene prodotto con la reazione di Goldschmidt tra l alluminio elementare e un ossido metallico come quello di cromo. Quanto cromo metallico e quanto calore si producono per reazione tra 41.0 g di Al, e 255 g di Cr 2 O 3? Piano: Il problema implica un reagente limitante, prima trovare le moli di ciascun reagente, quindi trovare quello limitante. Finalmente calcolare i prodotti usando i reagenti limitante. Soluzione: Cr 2 O 3 (s) + 2 Al(s) Al 2 O 3 (s) + 2 Cr(l) ; H = kj 255g Cr O moli di Cr O mol Cr O g Cr2O 3 / mol Cr2O g Al moli di Al mol Al 26.98g Al / mol Al Reagente Limitante

25 Produzione di un Metallo con un Processo Redox - II 25 Cr 2 O 3 (s) + 2 Al(s) Al 2 O 3 (s) + 2 Cr(l) ; H = kj Moli di cromo prodotto: 2 mol Cr mol Al mol Cr 2 mol Al Massa del cromo prodotto: g Cr mol Cr g Cr 1 mol Cr Energia prodotta: 536 kj mol Al mol Al kj

26 TERMODINAMICA 26 Si occupa di prevedere l'evoluzione (spontaneità) dei sistemi soggetti a trasformazione (chimica e fisica), stabilendo su basi quantitative mediante scambi di calore e di lavoro con opportune riserve il contenuto energetico di sistemi costituiti da un numero elevato di particelle. Non viene in prima istanza data importanza al fattore tempo della trasformazione, e le previsione fornite sono predittive a meno di tale grandezza. C diamante (s) + O 2 (g) CO 2 (g) + Energia H 2 O(s) + Energia H 2 O(l)

Esercizi di Termochimica

Esercizi di Termochimica Insegnamento di Chimica Generale 083424 - CCS CHI e MAT Esercizi di Termochimica Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio/education/general-chemistry-exercises/ Esercizio

Dettagli

Esercizi di Termochimica

Esercizi di Termochimica Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi di Termochimica Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio Esercizio 1-2 (Capacita

Dettagli

CORSO DI CHIMICA. Esercitazione del 7 Giugno 2016

CORSO DI CHIMICA. Esercitazione del 7 Giugno 2016 CORSO DI CHIMICA Esercitazione del 7 Giugno 2016 25 ml di una miscela di CO e CO 2 diffondono attraverso un foro in 38 s. Un volume uguale di O 2 diffonde nelle stesse condizioni in 34,3 s. Quale è la

Dettagli

Termodinamica e termochimica

Termodinamica e termochimica Termodinamica e termochimica La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in quali condizioni e con quali energie

Dettagli

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu Valitutti, Falasca, Tifi, Gentile Chimica concetti e modelli.blu 2 Capitolo 19 L energia si trasferisce 3 Sommario (I) 1. L «ABC» dei trasferimenti energetici 2. Durante le reazioni varia l energia chimica

Dettagli

Termochimica. La termochimica si occupa dell effetto termico associato alle reazioni chimiche. E i = energia interna molare H i = entalpia molare

Termochimica. La termochimica si occupa dell effetto termico associato alle reazioni chimiche. E i = energia interna molare H i = entalpia molare Termochimica La termochimica si occupa dell effetto termico associato alle reazioni chimiche. + +... + +... E i energia interna molare H i entalpia molare ( + +...) ( + +...) ν ( + +...) ( + +...) ν 1

Dettagli

Capitolo 16 L energia si trasferisce

Capitolo 16 L energia si trasferisce Capitolo 16 L energia si trasferisce 1. L «ABC» dei trasferimenti energetici 2. Le reazioni scambiano energia con l ambiente 3. Durante le reazioni varia l energia chimica del sistema 4. L energia chimica

Dettagli

Esercizi sui Bilanci di Massa

Esercizi sui Bilanci di Massa Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi sui Bilanci di Massa Prof. Dipartimento CMIC Giulio Natta http://iscamap.corsi.chem.polimi.it/citterio Punti

Dettagli

Esercizi sui Gas. Insegnamento di Chimica Generale CCS CHI e MAT

Esercizi sui Gas. Insegnamento di Chimica Generale CCS CHI e MAT Insegnamento di Chimica Generale 083424 - CCS CHI e MAT Esercizi sui Gas Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio/education/general-chemistry-exercises/ Esercizio 1 Un

Dettagli

Esercizi sui Gas. Insegnamento di Chimica Generale CCS CHI e MAT. A.A. 2015/2016 (I Semestre)

Esercizi sui Gas. Insegnamento di Chimica Generale CCS CHI e MAT. A.A. 2015/2016 (I Semestre) Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi sui Gas Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio Esercizio 1 Un campione

Dettagli

Cap. 7 - Termochimica. Le variazioni di energia relative ai processi chimici

Cap. 7 - Termochimica. Le variazioni di energia relative ai processi chimici Cap. 7 - Termochimica Le variazioni di energia relative ai processi chimici 1 Energia La capacità di svolgere lavoro o di trasferire calore Energia Cinetica Energia di movimento; KE = ½ mv 2 Energia Potenziale

Dettagli

Termodinamica e termochimica

Termodinamica e termochimica Termodinamica e termochimica La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in quali condizioni e con quali energie

Dettagli

UNITA 3 COMBUSTIONE, CARBURANTI, LUBRIFICANTI

UNITA 3 COMBUSTIONE, CARBURANTI, LUBRIFICANTI UNITA 3 COMBUSTIONE, CARBURANTI, LUBRIFICANTI Esercizio 3.1 Calcolare il potere calorifico superiore e inferiore del gas metano che brucia secondo la reazione CH 4 + 2 O 2 CO 2 + 2 H 2 O sapendo che l

Dettagli

Le reazioni chimiche

Le reazioni chimiche Le reazioni chimiche Le reazioni chimiche Le reazioni chimiche Le reazioni chimiche Una reazione chimica è un processo in cui una serie di sostanza (dette reagenti) viene convertita in altre sostanza (dette

Dettagli

+ + Corso di Chimica e Propedeutica Biochimica Le equazioni chimiche e la stechiometria. CH 4 (g)+ 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) 1

+ + Corso di Chimica e Propedeutica Biochimica Le equazioni chimiche e la stechiometria. CH 4 (g)+ 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) 1 Corso di Chimica e Propedeutica Biochimica Le equazioni chimiche e la stechiometria + + 1 molecola di metano (CH 4 ) 2 molecole di ossigeno (O 2 ) 1 molecola di biossido di carbonio (CO 2 ) 2 molecole

Dettagli

Termochimica. Capitolo 6

Termochimica. Capitolo 6 Termochimica Capitolo 6 L energia è la capacità di compiere lavoro L energia radiante proviene dal sole ed è la fonte primaria di energia sulla Terra L energia termica è l energia associata al moto casuale

Dettagli

Esercizi di. Stechiometria dei composti. mercoledì 9 dicembre 2015

Esercizi di. Stechiometria dei composti. mercoledì 9 dicembre 2015 Esercizi di Stechiometria dei composti mercoledì 9 dicembre 2015 Il cloro ha due isotopi stabili contenenti rispettivamente 18 e 20 neutroni. Utilizzando la tavola periodica degli elementi, scrivere i

Dettagli

Reazioni chimiche e stechiometria

Reazioni chimiche e stechiometria Reazioni chimiche e stechiometria REAZIONI CHIMICHE Trasformazione di una o più sostanze (reagenti) in una o più sostanze (prodotti) EQUAZIONE CHIMICA Una equazione chimica è la rappresentazione simbolica

Dettagli

Termochimica. Tutte le trasformazioni della materia, chimiche e fisiche, sono accompagnate da variazioni di energia.

Termochimica. Tutte le trasformazioni della materia, chimiche e fisiche, sono accompagnate da variazioni di energia. Termochimica Tutte le trasformazioni della materia, chimiche e fisiche, sono accompagnate da variazioni di energia. Per osservare e misurare variazioni di energia dobbiamo definire: sistema: porzione di

Dettagli

Esercizi su Equilibri Chimici Gassosi

Esercizi su Equilibri Chimici Gassosi Insegnamento di Chimica Generale 08344 - CCS CHI e MAT Esercizi su Equilibri Chimici Gassosi Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio/education/general-chemistry-exercises/

Dettagli

IMPIANTI DELL INDUSTRIA DI PROCESSO ESERCITAZIONE N. 2. Bilanci di energia

IMPIANTI DELL INDUSTRIA DI PROCESSO ESERCITAZIONE N. 2. Bilanci di energia 1 IMPIANTI DELL INDUSTRIA DI PROCESSO ESERCITAZIONE N. 2 Bilanci di energia 1. Calcolare la quantità di calore ceduta da 1 m 3 di aria a TPS nel raffreddamento da 500 C a 0 C, alla pressione costante di

Dettagli

Energia e reazioni chimiche. Cap , 19-21, 27-30, 47-48, 50, 59-62

Energia e reazioni chimiche. Cap , 19-21, 27-30, 47-48, 50, 59-62 2016-2017 CCS Biologia CCS Scienze Geologiche 1 Energia e reazioni chimiche Cap 5. 7-13, 19-21, 27-30, 47-48, 50, 59-62 2009 Brooks/Cole - Cengage Energia & Chimica 2 ENERGIA è la capacità di compiere

Dettagli

La termochimica. Energia in movimento

La termochimica. Energia in movimento La termochimica Energia in movimento Sistema termodinamico La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in

Dettagli

Combustione 2H 2 CO 2. Entalpie standard di combustione

Combustione 2H 2 CO 2. Entalpie standard di combustione La combustione è una reazione di ossidoriduzione esotermica in cui si ha l'ossidazione di un combustibile da parte di un comburente (ossigeno presente nell aria), con sviluppo di calore e radiazioni luminose.

Dettagli

STECHIOMETRIA. (s) + 3 CO (g) 2 Fe (s) + 3 CO 2

STECHIOMETRIA. (s) + 3 CO (g) 2 Fe (s) + 3 CO 2 Data la reazione Fe 2 (s) + 3 CO (g) 2 Fe (s) + 3 CO 2 (g) Calcolare quanti grammi di ferro si possono produrre da 0.3 Kg di ossido di ferro (III) che reagiscono con 0.3 m 3 STP di CO. Quanti litri STP

Dettagli

Esercizi sulla Termodinamica Chimica

Esercizi sulla Termodinamica Chimica Insegnamento di Chimica Generale 083424 - CCS CHI e MAT Esercizi sulla Termodinamica Chimica Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio/education/general-chemistry-exercises/

Dettagli

Programma: a che punto siamo? Sistema, equilibrio e fase Tre concetti fondamentali. Definizione di sistema in termodinamica

Programma: a che punto siamo? Sistema, equilibrio e fase Tre concetti fondamentali. Definizione di sistema in termodinamica Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Programma: a che punto siamo? Lezioni 19-20 2010 Sistema, equilibrio e fase Tre concetti fondamentali Definizione di sistema

Dettagli

Corso di Studi di Fisica Corso di Chimica

Corso di Studi di Fisica Corso di Chimica Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Lezioni 19-20 2009 Programma: a che punto siamo? Sistema, equilibrio e fase Tre concetti fondamentali Sistema: la parte del

Dettagli

reazioni Sostanze Reazioni di sintesi Reazioni di decomposizione

reazioni Sostanze Reazioni di sintesi Reazioni di decomposizione Si consumano nelle reazioni Si formano nelle reagenti Si trasformano con prodotti Sostanze Sostanze semplici Sostanze composte Non ottenibili con Non decomponibili con Reazioni di sintesi Reazioni di decomposizione

Dettagli

Generica equazione chimica:

Generica equazione chimica: REAZIONI CHIMICHE Trasformazione di una o più sostanze (reagenti) in una o più sostanze (prodotti) EQUAZIONE CHIMICA Una equazione chimica è la rappresentazione simbolica di una reazione chimica in termini

Dettagli

Equilibri Eterogenei. Insegnamento di Chimica Generale CCS CHI e MAT

Equilibri Eterogenei. Insegnamento di Chimica Generale CCS CHI e MAT Insegnamento di Chimica Generale 083424 - CCS CHI e MAT Equilibri Eterogenei Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio/education/general-chemistry-exercises/ Esercizio

Dettagli

Le reazioni chimiche

Le reazioni chimiche Le reazioni chimiche Le reazioni chimiche Le reazioni chimiche Le reazioni chimiche Una reazione chimica è un processo in cui una serie di sostanza (dette reagenti) viene convertita in altre sostanza (dette

Dettagli

Reazioni ed Equazioni Chimiche

Reazioni ed Equazioni Chimiche ESERCITAZIONE 2 Reazioni ed Equazioni Chimiche Reazione chimica Trasformazione di una o più sostanze (REAGENTI) in una o più sostanze (PRODOTTI) Equazioni chimiche Traduzione scritta delle reazioni chimiche

Dettagli

La reazione tra Mg metallico e CO 2 è 2Mg + CO 2(g) 2 MgO(s) + C (grafite)

La reazione tra Mg metallico e CO 2 è 2Mg + CO 2(g) 2 MgO(s) + C (grafite) 3 kg di butano (C 4 H 10 ) vengono bruciati in una caldaia con un eccesso di aria del 40% in moli. Determinare il calore sviluppato dalla combustione e quanti m 3 (STP) di CO2 vengono prodotti. Determinare

Dettagli

3) La reazione tra Mg metallico e CO 2 è 2Mg + CO 2(g) 2 MgO(s) + C (grafite)

3) La reazione tra Mg metallico e CO 2 è 2Mg + CO 2(g) 2 MgO(s) + C (grafite) 1) Determinare la variazione di entalpia associata alla seguente reazione e indicare se è esotermica o endotermica: a) Na(s) + ½Cl 2 (g) NaCl(s) Sono note le variazioni di entalpia delle seguenti reazioni:

Dettagli

La stechiometria studia i rapporti quantitativi fra le masse delle sostanze coinvolte in una reazione chimica.

La stechiometria studia i rapporti quantitativi fra le masse delle sostanze coinvolte in una reazione chimica. La Stechiometria La stechiometria studia i rapporti quantitativi fra le masse delle sostanze coinvolte in una reazione chimica. La stechiometria di reazione indica in che rapporti due o più sostanze reagiscono

Dettagli

Composti chimici. Formula minima: CH 3 molecolare: C 2 H 6 di struttura: H H H C C H H H

Composti chimici. Formula minima: CH 3 molecolare: C 2 H 6 di struttura: H H H C C H H H Stechiometria Composti chimici Formula minima: CH 3 molecolare: C H 6 di struttura: H H H C C H H H Formula di struttura Formula minima molecolare: C H 6 O Formula di struttura H O H H H H Reazioni

Dettagli

Fondamenti di Chimica T-A T A (A-K) Calcolo n moli e rendimento reazione

Fondamenti di Chimica T-A T A (A-K) Calcolo n moli e rendimento reazione Università degli Studi di Bologna Anno Accademico 009/010 Facoltà di Ingegneria Corso di Laurea in Ingegneria Gestionale Fondamenti di Chimica T-A T A (A-K) Calcolo n moli e rendimento reazione Dott. Enzo

Dettagli

Chimica Generale ed Inorganica

Chimica Generale ed Inorganica Termochimica: I Principio Chimica Generale ed Inorganica Chimica Generale prof. Dario Duca Un getto di acqua bollente trasferisce calore ad un blocco di ghiaccio Termodinamica e Cinetica: la termochimica

Dettagli

Calcolo del numero di moli dei reagenti: P.M. HCl= 36 uma. 36 g/mol. n HCl = 1,9 g = 0,0528 moli

Calcolo del numero di moli dei reagenti: P.M. HCl= 36 uma. 36 g/mol. n HCl = 1,9 g = 0,0528 moli ESERCIZI DI STECHIOMETRIA IN CUI COMPAIONO SPECIE ALLO STATO GASSOSO Es. ESERCIZIO 1 Nella reazione tra alluminio ed acido cloridrico si sviluppa idrogeno gassoso. Determinare il volume di H 2, misurato

Dettagli

Leggi ricavate da osservazioni sperimentali : mantenendo costante due dei 4 parametri, come variano gli altri due?

Leggi ricavate da osservazioni sperimentali : mantenendo costante due dei 4 parametri, come variano gli altri due? Le leggi dei gas Lo stato gassoso è caratterizzato da mancanza di forma e volume propri, e dalla tendenza a occupare tutto il volume disponibile. Lo stato di un gas dipende da 4 parametri: Volume (V) Pressione

Dettagli

ossidazione/riduzione, ossidante/riducente

ossidazione/riduzione, ossidante/riducente ossidazione/riduzione, ossidante/riducente Esercizio tipo: bilanciamento redox +6-1 -1 +3-1 K 2 Cr 2 O 7 (aq) + HI(aq) KI(aq) + CrI 3 (aq) + I 2 (s) + H 2 O(l) 0 K 2 Cr 2 O 7 (aq) + 6HI(aq) KI(aq) + 2CrI

Dettagli

TERMODINAMICA CHIMICA

TERMODINAMICA CHIMICA TERMODINAMICA CHIMICA Si definisce FUNZIONE DI STATO una variabile il cui valore dipende solo dallo stato iniziale e finale del sistema e non dal cammino percorso nella trasformazione effettuata Sono funzioni

Dettagli

ESERCIZIO 1 Q = 6991, kj

ESERCIZIO 1 Q = 6991, kj ESERCIZIO 1 A 25 C, l entalpia standard di idrogenazione del cicloesene a cicloesano: C 6 H 10 (l) + H 2 (g) C 6 H 12 (l) vale -93,83 kj mol -1, mentre l entalpia standard di combustione del cicloesene

Dettagli

CICLI TERMODINAMICI. Introduzione 1

CICLI TERMODINAMICI. Introduzione 1 CICLI TERMODINAMICI Introduzione 1 CICLI TERMODINAMICI CICLO DI CARNOT CICLO RANKINE CICLO BRAYTON CICLO OTTO / CICLO DIESEL IL CICLO DI CARNOT RAPPRESENTA IL MODELLO DA PERSEGUIRE, PERCHE A PARITA DI

Dettagli

Esame (0) classei - Codice Prova:

Esame (0) classei - Codice Prova: 1) Il diossido di zolfo reagirà con l acqua secondo la reazione: SO 2 (g) + H 2 O (l) H 2 SO 3 (l) Quanto diossido di zolfo è necessario per preparare 27.86 g di H 2 SO 3 (l)? A. 27.86 g B. 0.3394 g C.

Dettagli

Termochimica : studio della variazione di entalpia nelle reazioni chimiche

Termochimica : studio della variazione di entalpia nelle reazioni chimiche Termochimica : studio della variazione di entalpia nelle reazioni chimiche generalmente le reazioni chimiche avvengono con scambio di calore tra sistema e ambiente in condizioni di P costante a P costante,

Dettagli

Determinazione del calore di combustione specifico di un pellet vegetale

Determinazione del calore di combustione specifico di un pellet vegetale Determinazione del calore di combustione specifico di un pellet vegetale La bomba calorimetrica di Mahler è un apparecchio che consente la determinazione del potere calorifico superiore di un combustibile

Dettagli

I principio della termodinamica: E tot = 0 = E sistema + E ambiente. E=q+w

I principio della termodinamica: E tot = 0 = E sistema + E ambiente. E=q+w I principio della termodinamica: E tot 0 E sistema + E ambiente Eq+w ESERCIZIO: Un sistema ha un aumento di Energia Interna di 000cal e compie un lavoro di 50cal. Qual è il calore assorbito o ceduto dal

Dettagli

CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 03/11/2010

CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 03/11/2010 CorsI di aurea in Ingegneria Aereospaziale-Meccanica-Energetica FONDAMENTI DI CIMICA Docente: Cristian Gambarotti Esercitazione del // Argomenti della lezione avoro, Calore, Energia Interna, Entalpia relativi

Dettagli

La termochimica. Energia in movimento

La termochimica. Energia in movimento La termochimica Energia in movimento Sistema termodinamico La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in

Dettagli

Combustione, carburanti e lubrificanti. Richiami di termochimica La combustione I combustibili Carburanti e inquinamento Lubrificanti

Combustione, carburanti e lubrificanti. Richiami di termochimica La combustione I combustibili Carburanti e inquinamento Lubrificanti Combustione, carburanti e lubrificanti Richiami di termochimica La combustione I combustibili Carburanti e inquinamento Lubrificanti Richiami di termochimica Reazioni endotermiche ed esotermiche ed entalpia

Dettagli

Relazioni di massa nelle reazioni chimiche. Capitolo 3

Relazioni di massa nelle reazioni chimiche. Capitolo 3 Relazioni di massa nelle reazioni chimiche Capitolo 3 Micro mondo atomi & molecole Macro mondo grammi Massa atomica è la massa di un atomo espressa in unità di massa atomica (uma) Per definizione: 1 atomo

Dettagli

Reazioni Chimiche: Esempi

Reazioni Chimiche: Esempi Reazioni Chimiche: Esempi Scambio: NaCl + AgN 3 AgCl + NaN 3 Acido-Base o Neutralizzazione: HCl + NaH H 2 + NaCl ssidoriduzione: 2 H 2 + 2 2 H 2 Sintesi: 3 H 2 + N 2 2 NH 3 Decomposizione: BaC 3 Ba + C

Dettagli

LE REAZIONI CHIMICHE

LE REAZIONI CHIMICHE LE REAZIONI CHIMICHE Una reazione chimica è una trasformazione che comporta una nuova distribuzione degli atomi in una o più determinate sostanze Una reazione chimica è un processo dinamico in cui alcune

Dettagli

Termochimica reazione esotermica: cede calore all ambiente 2Al + Fe 2 O 3 Al 2 O 3 + 2Fe 2Mg + CO 2 2MgO + C

Termochimica reazione esotermica: cede calore all ambiente 2Al + Fe 2 O 3 Al 2 O 3 + 2Fe 2Mg + CO 2 2MgO + C Termochimica reazione esotermica: cede calore all ambiente 2Al + Fe 2 O 3 Al 2 O 3 + 2Fe 2Mg + CO 2 2MgO + C Thermite.mov Magco2.mov reazione endotermica: assorbe calore dall ambiente Endo2.mov Ba (OH)

Dettagli

Correzione Parziale del 24/01/2014

Correzione Parziale del 24/01/2014 Correzione Parziale del 24/01/2014 Compito A Esercizio 1 L analisi elementare di una sostanza ha dato il seguente risultato: C 52,2%, H 13%, O 34,8%. 3,83 g di questa sostanza vengono introdotti in un

Dettagli

Inquinamento ARIA. Inquinamento ARIA. Inquinamento ARIA. Inquinamento ARIA

Inquinamento ARIA. Inquinamento ARIA. Inquinamento ARIA. Inquinamento ARIA COMBUSTIONE: principi Processo di ossidazione di sostanze contenenti C ed H condotto per ottenere energia termica (calore) C,H + O 2 calore + gas comb. COMBUSTIBILE + COMBURENTE CALORE + RESIDUI [ARIA]

Dettagli

H 2 SO 4 : mol : 3 = mol REAGENTE LIMITANTE Ca 3 (PO 4 ) 2 : mol : 1 = mol

H 2 SO 4 : mol : 3 = mol REAGENTE LIMITANTE Ca 3 (PO 4 ) 2 : mol : 1 = mol 1) Partendo da 100.0 g di H 2 SO 4 e 300.0 g di Ca 3 (PO 4 ) 2, calcolare quanti grammi di prodotti si formano e quanti grammi di reagente in eccesso rimangono non reagiti. 3H 2 SO 4 + Ca 3 (PO 4 ) 2 3CaSO

Dettagli

Elementi e composti Pesi atomici e pesi molecolari Mole e massa molare

Elementi e composti Pesi atomici e pesi molecolari Mole e massa molare Elementi e composti Pesi atomici e pesi molecolari Mole e massa molare 2 a lezione 17 ottobre 2016 Elementi ed atomi Una sostanza viene definita «elemento» quando non è scomponibile in altre sostanze Un

Dettagli

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore Sistemi termodinamici Sistema: regione dello spazio oggetto delle nostre indagini. Ambiente: tutto ciò che circonda un sistema. Universo: sistema + ambiente Sistema aperto: sistema che consente scambi

Dettagli

energia Cos è? è un lavoro.

energia Cos è? è un lavoro. energia Cos è?! L energia NON si vede, NON si tocca, ma è qualcosa che è dentro, all interno della materia stessa e la rende capace di compiere un lavoro.! ENERGIA E LA CAPACITA' DI UN CORPO O DI UN SISTEMA

Dettagli

Tutoraggio Ing. Biomedica Lez.2

Tutoraggio Ing. Biomedica Lez.2 Tutoraggio Ing. Biomedica Lez.2 Esercizio 1. Il metanolo, CH 3 OH, che è usato come combustibile nelle macchine da corsa e nelle celle a combustibile, si può produrre facendo reagire monossido di carbonio

Dettagli

Compiti estivi di chimica classe 1Ag

Compiti estivi di chimica classe 1Ag Compiti estivi di chimica classe Ag Separare un miscuglio secondo le tecniche studiate. Quale metodo di separazione potrebbe essere utilizzato per separare un miscuglio formato da sale mescolato con frammenti

Dettagli

Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire.

Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire. Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire. Molte reazioni procedono in modo incompleto; è importante quindi determinare

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

Termodinamica I. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Termodinamica I. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Termodinamica I Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. La Termodinamica studia l interconversione del calore e di altre forme di energia. Il sistema

Dettagli

Calcolare quante moli di zinco sono contenute in 5,50 g di Zn. (Massa molare (m.m.) Zn = 65,409 g mol -1 ).

Calcolare quante moli di zinco sono contenute in 5,50 g di Zn. (Massa molare (m.m.) Zn = 65,409 g mol -1 ). Calcolare quante moli di zinco sono contenute in 5,50 g di Zn. (Massa molare (m.m.) Zn = 65,409 g mol -1 ). moli Zn = massa Zn / m.m. Zn = 5,50 / 65,409 g mol -1 = 8,41 10-2 mol Calcolare a quante moli

Dettagli

Esercizi su Cambiamenti di Stato

Esercizi su Cambiamenti di Stato Insegnamento di Chimica Generale 083424 - CCS CHI e MAT Esercizi su Cambiamenti di Stato Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio/education/general-chemistry-exercises/

Dettagli

Legge di Hess. Legge di Hess: per una reazione suddivisa in più stadi, il H totale è la somma delle variazioni di entalpia dei singoli stadi

Legge di Hess. Legge di Hess: per una reazione suddivisa in più stadi, il H totale è la somma delle variazioni di entalpia dei singoli stadi La legge di Hess Legge di Hess Consideriamo una reazione in due stadi Qual è il H? C (s) + ½ O 2(g) CO (g) H 1 = -110 kj Co (g) + ½ O 2(g) CO 2(g) H 2 = -283 kj C (s) + O 2(g) CO 2(g) H =-393 kj Legge

Dettagli

ossidazione/riduzione, ossidante/riducente

ossidazione/riduzione, ossidante/riducente ossidazione/riduzione, ossidante/riducente Esercizio tipo: bilanciamento redox 0 +5 +2 +4 Cu(s) + HNO 3 (aq) Cu(NO 3 ) 2 + NO 2 (g) + H 2 O(l) Determinazione dei numeri di ossidazione Cu(s) + 2HNO 3 (aq)

Dettagli

Olimpiadi di Chimica

Olimpiadi di Chimica Olimpiadi di Chimica Acqua Oro Zucchero Relazioni di massa nelle reazioni chimiche Massa atomica è la massa di un atomo espressa in unità di massa atomica (uma) Per definizione: 1 atomo 12 C pesa 12 uma

Dettagli

PESO MOLECOLARE. Il peso molecolare di una sostanza è la somma dei pesi atomici di tutti gli atomi nella molecola della sostanza.

PESO MOLECOLARE. Il peso molecolare di una sostanza è la somma dei pesi atomici di tutti gli atomi nella molecola della sostanza. PESO MOLECOLARE Il peso molecolare di una sostanza è la somma dei pesi atomici di tutti gli atomi nella molecola della sostanza. H 2 O PA(H)=1,0 u.m.a. PA(O)=16,0 u.m.a. PM(H 2 O)=2 x 1,0 + 16,0 =18,0

Dettagli

Corso di laurea in Chimica e Tecnologia Farmaceutiche Corso di Chimica Generale e Inorganica CH 3

Corso di laurea in Chimica e Tecnologia Farmaceutiche Corso di Chimica Generale e Inorganica CH 3 Corso di laurea in Chimica e Tecnologia Farmaceutiche Corso di Chimica Generale e Inorganica - LA MATERIA- COOH O O Al(OH) 4 - CH 3 Prof.ssa Ivana Fenoglio I lucidi forniti non sono da utilizzare come

Dettagli

Reazioni ed Equazioni Chimiche. Coefficienti stechiometrici :

Reazioni ed Equazioni Chimiche. Coefficienti stechiometrici : Reazioni ed Equazioni Chimiche Reazione chimica Trasformazione di una o più sostanze (REAGENTI) in una o più sostanze (PRODOTTI) Equazioni chimiche Traduzione scritta delle reazioni chimiche Per scrivere

Dettagli

relazioni tra il calore e le altre forme di energia.

relazioni tra il calore e le altre forme di energia. Termodinamica i Termodinamica: ramo della scienza che studia le relazioni tra il calore e le altre forme di energia. Sistema e ambiente sistema: zona dello spazio all interno della quale studiamo i fenomeni

Dettagli

Prima parte dell esame di CHIMICA GENERALE ED INORGANICA CORSO DI LAUREA IN SCIENZE BIOLOGICHE (L-Z) (ELABORATO SIMBOLICO-NUMERICO)

Prima parte dell esame di CHIMICA GENERALE ED INORGANICA CORSO DI LAUREA IN SCIENZE BIOLOGICHE (L-Z) (ELABORATO SIMBOLICO-NUMERICO) (Es.1) 1) 4.4 grammi di propano, C 3 H 8, vengono bruciati in aria. Determinare la massa dell ossigeno consumato nella combustione. R = 16 g 2) La costante di equilibrio della seguente reazione di dissociazione

Dettagli

Aspetti quali-quantitativi delle reazioni chimiche unità 1, modulo B del libro unità 2, modulo E del libro

Aspetti quali-quantitativi delle reazioni chimiche unità 1, modulo B del libro unità 2, modulo E del libro Aspetti quali-quantitativi delle reazioni chimiche unità 1, modulo B del libro unità 2, modulo E del libro Trovare una bilancia che possa pesare un atomo è un sogno irrealizzabile. Non potendo determinare

Dettagli

Soluzioni. capitolo La massa assoluta di una molecola si calcola moltiplicando M r per u.

Soluzioni. capitolo La massa assoluta di una molecola si calcola moltiplicando M r per u. Soluzioni capitolo 8 VERIFICA LE TUE CONOSCENZE LA MASSA ATOMICA ASSOLUTA E RELATIVA 1 La massa atomica assoluta è la massa di un atomo espressa in kg; il suo simbolo è m a. 2 Affermazione falsa: B Corrisponde

Dettagli

Laboratorio di Chimica Generale ed Inorganica. Lezione 6. Leggi fondamentali della chimica

Laboratorio di Chimica Generale ed Inorganica. Lezione 6. Leggi fondamentali della chimica Laboratorio di Chimica Generale ed Inorganica Lezione 6 Leggi fondamentali della chimica Dott.ssa Lorenza Marvelli Dipartimento di Scienze Chimiche e Farmaceutiche Laboratorio di Chimica Generale ed Inorganica

Dettagli

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato I GAS PERFETTI GAS Forze di legame intermolecolari ridotte Stato altamente disordinato Principali caratteristiche: Bassa viscosità Assenza di volume e forma propri Comprimibilità Miscibilità Pressione:

Dettagli

ATTIVITA' ESTIVA 3ASA

ATTIVITA' ESTIVA 3ASA ATTIVITA' ESTIVA 3ASA PROBLEMI STECHIOMETRIA 1) Nella reazione chimica AsF 3 + C 2 Cl 6 AsCl 3 + C 2 Cl 2 F 4 la resa teorica di C 2 Cl 2 F 4 è stata calcolata in 1,86 mol. Se la resa in percentuale della

Dettagli

TERMODINAMICA CHIMICA E SPONTANEITA DELLE REAZIONI

TERMODINAMICA CHIMICA E SPONTANEITA DELLE REAZIONI TERMODINAMICA CHIMICA E SPONTANEITA DELLE 9.A PRE-REQUISITI 9.B PRE-TEST 9.C OBIETTIVI 9.4 IL SECONDO PRINCIPIO DELLA TERMODINAMICA E L ENTROPIA - VALUTAZIONE DELLA SPONTANEITA DI UNA REAZIONE 9.V VERIFICA

Dettagli

Definizioni: sistema ambiente sistema isolato sistema chiuso sistema adiabatico stato di un sistema. Termodinamica

Definizioni: sistema ambiente sistema isolato sistema chiuso sistema adiabatico stato di un sistema. Termodinamica Definizioni: Termodinamica sistema ambiente sistema isolato sistema chiuso sistema adiabatico stato di un sistema Proprietà macroscopiche di un sistema intensive: sono indipendenti dalla massa del sistema

Dettagli

Lo stato gassoso e le sue proprietà

Lo stato gassoso e le sue proprietà Lo stato gassoso e le sue proprietà Dr. Gabriella Giulia Pulcini Ph.D. Student, Development of new approaches to teaching and learning Natural and Environmental Sciences University of Camerino, ITALY 1

Dettagli

In questo esperimento impariamo a calibrare un calorimetro e ad utilizzarlo per trovare il calore specifico di un solido metallico.

In questo esperimento impariamo a calibrare un calorimetro e ad utilizzarlo per trovare il calore specifico di un solido metallico. 1. Misura di calore specifico In questo esperimento impariamo a calibrare un calorimetro e ad utilizzarlo per trovare il calore specifico di un solido metallico. Materiali - un calorimetro con un volume

Dettagli

POLITECNICO DI MILANO ING. ENG AER MEC. Corso di FONDAMENTI DI CHIMICA I PROVA IN ITINERE 16 novembre Compito A

POLITECNICO DI MILANO ING. ENG AER MEC. Corso di FONDAMENTI DI CHIMICA I PROVA IN ITINERE 16 novembre Compito A POLITECNICO DI MILANO ING. ENG AER MEC. Corso di FONDAMENTI DI CHIMICA I PROVA IN ITINERE 16 novembre 2012. Compito A Avvertenze: scrivere le soluzioni sull apposito oglio che va completato con tutti i

Dettagli

Brady Senese Pignocchino Chimica.blu Zanichelli 2013 Soluzione degli esercizi Capitolo 6

Brady Senese Pignocchino Chimica.blu Zanichelli 2013 Soluzione degli esercizi Capitolo 6 Brady Senese Pignocchino Chimica.blu Zanichelli 2013 Soluzione degli esercizi Capitolo 6 Esercizio Risposta PAG 124 ES 1 12 C. 12u PAG 124 ES 2 Perché non esistono bilance con una sensibilità abbastanza

Dettagli

Espressioni di concentrazione di una soluzione

Espressioni di concentrazione di una soluzione SOLUZIONI Una soluzione è un sistema fisicamente omogeneo costituito da due o più componenti: il solvente e il soluto (o i soluti. Il solvente è il componente presente, in genere ma non di regola, in maggior

Dettagli

Soluzioni. Miscele: (gas in gas) Leghe: (solidi in solidi) Soluzioni p.d: (solventi liquidi)

Soluzioni. Miscele: (gas in gas) Leghe: (solidi in solidi) Soluzioni p.d: (solventi liquidi) Soluzioni Sono miscele omogenee in cui si riconoscono 2 componenti o fasi: il soluto, presente in quantità minore il solvente presente in quantità maggiore. Tipi di soluzioni: Miscele: (gas in gas) Leghe:

Dettagli

TERMODINAMICA E TERMOCHIMICA

TERMODINAMICA E TERMOCHIMICA TERMODINAMICA E TERMOCHIMICA La TERMODINAMICA è una scienza chimico-fisica che studia le trasformazioni dell energia. La TERMOCHIMICA è una particolare branca della termodinamica che valuta quantitativamente

Dettagli

Lezione 2. Leggi ponderali

Lezione 2. Leggi ponderali Lezione 2 Leggi ponderali I miscugli eterogenei presentano i componenti distinguibili in due o più fasi, in rapporti di massa altamente variabili e che mantengono le caratteristiche originarie. I miscugli

Dettagli

Esercitazioni di stechiometria - Corso di Chimica Generale ed inorganica C

Esercitazioni di stechiometria - Corso di Chimica Generale ed inorganica C A.A. 2005/2006 Laurea triennale in Chimica Esercitazioni di stechiometria - Corso di Chimica Generale ed inorganica C ARGOMENTO 1: mole, bilanciamento di equazioni chimiche non redox, formule minime e

Dettagli

Chimica Generale ed Inorganica: Programma del Corso

Chimica Generale ed Inorganica: Programma del Corso Chimica Generale ed Inorganica: Programma del Corso Gli atomi I legami chimici Forma e struttura delle molecole Le proprietà dei gas Liquidi e solidi Termodinamica Equilibri fisici Equilibri chimici Equilibri

Dettagli

Calcolare la resa teorica di AgCl: 0.640g x 100/98.3 = 0.651g. Calcolare le moli di AgCl: massa molare AgCl: g/mol

Calcolare la resa teorica di AgCl: 0.640g x 100/98.3 = 0.651g. Calcolare le moli di AgCl: massa molare AgCl: g/mol Esercizio 1 Quanti millilitri di una soluzione 2.73x10-1 M di AgNO3 bisogna far reagire con una soluzione di HCl per ottenere 640 mg di AgCl sapendo che la resa della reazione è del 98.3%. Scrivere la

Dettagli

Problema 1 Mg + 2HCl H 2 + MgCl 2. di Mg 1 Mg 1 H 2 quindi 0,823 moli di H 2 di H 2

Problema 1 Mg + 2HCl H 2 + MgCl 2. di Mg 1 Mg 1 H 2 quindi 0,823 moli di H 2 di H 2 REAZIONI CHIMICHE 1. Con riferimento alla seguente reazione (da bilanciare): Mg + HCl H 2 + MgCl 2 calcolare i grammi di H 2 che si ottengono facendo reagire completamente 20 g di magnesio. utilizzando

Dettagli

ESERCIZIO 1 Per combustione completa in eccesso di ossigeno di un composto costituito da calcio, carbonio e azoto, si formano CaO, CO 2 e NO 2 in

ESERCIZIO 1 Per combustione completa in eccesso di ossigeno di un composto costituito da calcio, carbonio e azoto, si formano CaO, CO 2 e NO 2 in ESERCIZIO 1 Per combustione completa in eccesso di ossigeno di un composto costituito da calcio, carbonio e azoto, si formano CaO, CO 2 e NO 2 in quantità rispettivamente pari a 3,500, 2,747 e 5,743 g.

Dettagli

CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 26/10/2010

CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 26/10/2010 CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti Esercitazione del 6/0/00 ARGOMENTI TRATTATI DURANTE LA LEZIONE Equazione di stato dei

Dettagli