ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica
|
|
- Leone Pagano
- 5 anni fa
- Visualizzazioni
Transcript
1 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica
2 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio un lavoro fisico. Tuttavia a seguito dell attività fisica questa energia viene «persa». Grazie all alimentazione (e al riposo) l energia può essere riacquistata.
3 3 Energia Allo stesso modo se viene fatta cadere una massa d acqua questa è in grado di trasmettere il moto ad una turbina collegata ad un alternatore che produce energia elettrica. Una volta che l acqua ha compiuto il dislivello però, per poter essere in grado di produrre energia deve essere riportata ad una certa quota: per fare questo occorre compiere un certo lavoro.
4 4 Energia e Lavoro In modo del tutto generale si può definire ENERGIA la capacità di produrre lavoro. Ma cosa si intende per LAVORO? In Fisica il significato della grandezza lavoro non coincide con il significato che correntemente si applica nell esperienza quotidiana. Possiamo, come primo tentativo, definire il lavoro come: Lavoro= forza x spostamento
5 5 Lavoro Se forza e spostamento hanno la stessa direzione: L = F s
6 6 Lavoro Se forza e spostamento hanno direzioni diverse: F x = F cosθ F y = F sinθ L = F x s = F cosθ s
7 7 Lavoro Ricordando il significato di prodotto scalare di due vettori possiamo scrivere in termini più generali: L = F s = F s cosθ Il lavoro compiuto da una forza che provoca uno spostamento si ottiene cioè considerando la sua proiezione nella direzione del moto. Da un punto di vista dimensionale si ha: Lavoro = Forza x spostamento = N m = (kg m)/s 2 m = J (joule)
8 8 Potenza Se durante un intervallo di tempo t è eseguito il lavoro L, la potenza media impiegata P P L t passando a considerare intervalli di tempo infinitesimi è possibile definire la potenza istantanea come: P L t lim t0 Da un punto di vista dimensionale si ha: J s L t W
9 9 Esempio di calcolo della potenza o dell energia Consideriamo una lampada la cui potenza sia pari a 60 W: qual è l energia consumata (che quindi pagheremo!) se la dimentichiamo accesa per 10 ore? E = P t = 60 x (10 x 3600) = J = 2.16 MJ Quanti kwh sono? 2.16 x 1000 / 3600 = 0.6 kwh Consideriamo adesso un elettrodomestico che abbia consumato 7200 J in mezz ora: qual è la sua potenza? P = E / t = 7200 / 1800 = 4 W
10 10 Energia cinetica Si consideri ora una forza F che agisca su una massa m in moto facendone variare la velocità v. Se tale forza ha la stessa direzione del moto si può scrivere: F ma m dv dt e il lavoro svolto da tale forza lungo lo spostamento elementare ds vale: L Fds m dv dt ds m dv ds dt F m
11 Poiché per definizione ds/dt corrisponde alla velocità istantanea v del corpo si ha anche: L mv dv 11 e pertanto il lavoro svolto dalla forza lungo lo spostamento da A a B è: B B L mvdv m vdv m( vb va ) 2 A A E stato eseguito sul corpo un lavoro ed esso ha acquistato una quantità di energia pari a tale lavoro. L energia che un corpo possiede in virtù del suo moto è detta energia cinetica E k e può essere espressa dalla relazione: Ek 1 mv 2 2
12 12 Energia potenziale Esaminiamo ora l energia associata all attrazione gravitazionale agente fra la terra e altri oggetti in prossimità della sua superficie. E stato eseguito del lavoro contro la forza di gravità mg, l oggetto possiede un energia in virtù della sua posizione. Applicando la definizione di lavoro si ha: L = F s = mg h
13 13 Energia potenziale Lasciando cadere il corpo, nell istante dell impatto con la superficie terrestre avremo che la sua velocità è arrivata a: v 2gh E k mv m gh mgh L oggetto prima di cadere ha quindi una quantità di energia mgh che ha la possibilità di trasformarsi, cadendo, in energia cinetica. Questa energia che il corpo possiede in virtù della sua posizione è chiamata energia potenziale del corpo E p e può essere espressa dalla relazione: E p mgh
14 14 Forze conservative Essendo la forza gravitazionale diretta sempre verticalmente verso il basso non occorre (in assenza di attrito) alcuna forza, e quindi lavoro, per spostare un oggetto in direzione orizzontale con velocità costante. In assenza di attriti, se si scelgono due percorsi differenti per sollevare un oggetto all altezza h come in figura, la quantità di lavoro è la stessa cioè mgh. Ogni spostamento arbitrario può essere scomposto in due componenti una orizzontale e una verticale: solo il moto verticale richiede che si esegua lavoro, il moto orizzontale non richiede alcun lavoro.
15 15 Forze conservative Perciò il moto di un oggetto da una posizione ad un altra contro la forza di gravità che è costante in modulo e direzione richiede la stessa quantità di lavoro qualunque sia il percorso seguito. Si vede allora che il lavoro compiuto da tale forza dipende unicamente dalle posizioni iniziali e finali che caratterizzano lo spostamento. Se il corpo venisse spostato lungo una traiettoria chiusa su se stessa (ovvero se la posizione iniziale e finale che descrivono lo spostamento coincidessero) il lavoro compiuto dalla forza sarebbe nullo. Una forza la quale sia caratterizzata dalla proprietà per cui la quantità di lavoro eseguito contro di essa dipende solo dalla posizione iniziale e finale dell oggetto spostato è detta forza conservativa. La forza gravitazionale che esiste in prossimità della superficie terrestre è una forza conservativa.
16 16 Energia meccanica L energia cinetica e l energia potenziale sono due delle diverse forme in cui si può presentare l energia di un corpo. Durante il moto del corpo queste due forme di energia, in generale, variano da istante a istante: l energia cinetica E k varia se varia la velocità del corpo, l energia potenziale E p varia se varia la posizione del corpo.
17 17 Principio di conservazione dell energia meccanica Esiste però una legge fondamentale della fisica, detta legge di conservazione dell energia meccanica, la quale stabilisce che: «se le forze che agiscono sul corpo considerato sono tutte conservative, la somma dell energia cinetica e di quella potenziale si mantiene costante durante il moto» cioè: E k +E p = E = costante La costante E ha il nome di energia meccanica del corpo. N.B. Questa legge ha una validità generale a condizione che sul corpo non agiscano forze dissipative, come l attrito e la resistenza del mezzo in cui il corpo si muove.
2. L ENERGIA MECCANICA
. L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».
Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.
Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,
Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo
Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione
LAVORO ED ENERGIA 4.1 LAVORO
4 LAVORO ED ENERGIA L energia è il concetto fisico più importante che si incontra in tutta la scienza. Una sua chiara comprensione e un esatta valutazione della sua importanza non fu raggiunta che nel
Lavoro di una forza costante
Lavoro ed energia Per spostare un oggetto o per sollevarlo dobbiamo fare un lavoro Il lavoro richiede energia sotto varie forme (elettrica, meccanica, ecc.) Se compio lavoro perdo energia Queste due quantità
. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d
Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche
Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.
Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.
Esercitazione 5 Dinamica del punto materiale
Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal
Modulo di Meccanica e Termodinamica
Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e
Dinamica II Lavoro di una forza costante
Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.
Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia
Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione
9. Urti e conservazione della quantità di moto.
9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due
Note a cura di M. Martellini e M. Zeni
Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte
a t Esercizio (tratto dal problema 5.10 del Mazzoldi)
1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2
Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.
Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento
Esercitazione VIII - Lavoro ed energia II
Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di
Verifica sperimentale del principio di conservazione dell'energia meccanica totale
Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone
Una forza, per la fisica, compie un lavoro se provoca uno spostamento.
Lavoro La forza è la causa del cambiamento di moto di un corpo (dinamica). Se la risultante di puù forze applicate ad un corpo è nulla il corpo è in equilibrio stabile (statica). Una forza può causare
19 Il campo elettrico - 3. Le linee del campo elettrico
Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,
GIRO DELLA MORTE PER UN CORPO CHE ROTOLA
0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte
GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA
8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per
Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie
Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una
LA FORZA. Il movimento: dal come al perché
LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1
LA CORRENTE ELETTRICA
L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso
2. L ENERGIA MECCANICA
. L NRGIA MCCANICA. Il concetto di forza La forza può essere definita come azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso.
Densità e volume specifico
Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare
Cap 3.1- Prima legge della DINAMICA o di Newton
Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria
Energia potenziale elettrica
Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo
Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA -
Danilo Saccoccioni - LVORO - - ENERGI MECCNIC - - POTENZ - LVORO COMPIUTO D UN ORZ RELTIVMENTE UNO SPOSTMENTO Diamo la definizione di lavoro compiuto da una forza relativamente a uno spostamento, distinguendo
CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2
COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto
Proprieta meccaniche dei fluidi
Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti
Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti LAVORO D NRGIA 5. GNRALITÀ In questo capitolo si farà riferimento a concetto quali lavoro ed energia termini che hanno nella
MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME
6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice
v = 4 m/s v m = 5,3 m/s barca
SOLUZIONI ESERCIZI CAPITOLO 2 Esercizio n.1 v = 4 m/s Esercizio n.2 v m = 5,3 m/s = 7 minuti e 4 secondi Esercizio n.3 Usiamo la seguente costruzione grafica: fiume 1 km/h barca 7 km/h La velocità della
Concetto di forza. 1) Principio d inerzia
LA FORZA Concetto di forza Pi Principi ii dll della Dinamica: i 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale i e forza peso Accelerazione di gravità Massa, peso,
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100
percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.
Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra
La conservazione dell energia meccanica
La conservazione dell energia meccanica Uno sciatore che scende da una pista da sci è un classico esempio di trasformazione di energia. Quando lo sciatore usa gli impianti di risalita per andare in vetta
CONSERVAZIONE DELL ENERGIA MECCANICA
CONSERVAZIONE DELL ENERGIA MECCANICA L introduzione dell energia potenziale e dell energia cinetica ci permette di formulare un principio potente e universale applicabile alla soluzione dei problemi che
Progetto La fisica nelle attrazioni Attrazione ISPEED
Progetto La fisica nelle attrazioni Attrazione ISPEED Dati utili Lunghezza del treno: 8,8 m Durata del percorso: 55 s Lunghezza del percorso: 1200 m Massa treno a pieno carico: 7000 kg Altezza della prima
Moto circolare uniforme
Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare
Lezione 14: L energia
Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,
- LAVORO - - ENERGIA MECCANICA - - POTENZA -
Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA - Indice Lavoro compiuto da una forza relativo ad uno spostamento pag. 1 Lavoro ed energia cinetica 3 Energia potenziale 4 Teorema di conservazione
L ENERGIA. L energia. pag.1
L ENERGIA Lavoro Energia Conservazione dell energia totale Energia cinetica e potenziale Conservazione dell energia meccanica Forze conservative e dissipative Potenza Rendimento di una macchina pag.1 Lavoro
DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi
DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato
Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini
Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Gli scriventi, in qualità di studiosi del generatore omopolare hanno deciso di costruire questo motore per cercare di capire le
IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti
IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti ATTENZIONE Quest opera è stata scritta con l intenzione di essere un comodo strumento di ripasso, essa non dà informazioni
Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia
Seminario didattico Ingegneria Elettronica Lezione 5: Dinamica del punto materiale Energia 1 Esercizio n 1 Un blocco di massa m = 2 kg e dimensioni trascurabili, cade da un altezza h = 0.4 m rispetto all
Cenni di geografia astronomica. Giorno solare e giorno siderale.
Cenni di geografia astronomica. Tutte le figure e le immagini (tranne le ultime due) sono state prese dal sito Web: http://www.analemma.com/ Giorno solare e giorno siderale. La durata del giorno solare
Verifica di Fisica- Energia A Alunno. II^
Verifica di Fisica- Energia A Alunno. II^!!!!!!!!!!!!!! NON SARANNO ACCETTATI PER NESSUN MOTIVO ESERCIZI SVOLTI SENZA L INDICAZIONE DELLE FORMULE E DELLE UNITA DI MISURA!!!!!!!!!! 1-Il 31 ottobre ti rechi
APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA
APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,
CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA
CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:
Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.
Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità
2 R = mgr + 1 2 mv2 0 = E f
Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore
Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti
Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 Un punto materiale di massa 5 kg si muove di moto circolare uniforme con velocità tangenziale 1 m/s. Quanto
FISICA DELLA BICICLETTA
FISICA DELLA BICICLETTA Con immagini scelte dalla 3 SB PREMESSA: LEGGI FISICHE Velocità periferica (tangenziale) del moto circolare uniforme : v = 2πr / T = 2πrf Velocità angolare: ω = θ / t ; per un giro
Risultati questionario Forze
Risultati questionario Forze Media: 7.2 ± 3.3 Coeff. Alpha: 0.82 Frequenza risposte corrette Difficoltà domande 18 16 14 12 10 8 6 4 2 0 25% 42% 75% 92% 100% % corrette 100% 90% 80% 70% 60% 50% 40% 30%
CONSERVAZIONE DELL'ENERGIA MECCANICA esercizi risolti Classi terze L.S.
CONSERVAZIONE DELL'ENERGIA MECCANICA esercizi risolti Classi terze L.S. In questa dispensa verrà riportato lo svolgimento di alcuni esercizi inerenti il principio di conservazione dell'energia meccanica,
bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo
Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.
Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.
Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un
Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia
Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi
Usando il pendolo reversibile di Kater
Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità
Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:
1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al
Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013
Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola
DINAMICA, LAVORO, ENERGIA. G. Roberti
DINAMICA, LAVORO, ENERGIA G. Roberti 124. Qual è il valore dell'angolo che la direzione di una forza applicata ad un corpo deve formare con lo spostamento affinché la sua azione sia frenante? A) 0 B) 90
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze
Complementi di Termologia. I parte
Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si
Transitori del primo ordine
Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli
LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.
LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec
F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.
Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,
Lezione 18. Magnetismo WWW.SLIDETUBE.IT
Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà
Energia potenziale elettrica Potenziale elettrico Superfici equipotenziali
Energia potenziale elettrica Potenziale elettrico Superfici euipotenziali Energia potenziale elettrica Può dimostrarsi che le forze elettriche, come uelle gravitazionali, sono conservative. In altre parole
Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine
Il fotone Emanuele Pugliese, Lorenzo Santi URDF Udine Interpretazione di Einstein dell effetto fotoelettrico Esistono «particelle»* di luce: i fotoni! La luce è composta da quantità indivisibili di energia
FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.
01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)
Energia potenziale elettrica
Energia potenziale elettrica La dipendenza dalle coordinate spaziali della forza elettrica è analoga a quella gravitazionale Il lavoro per andare da un punto all'altro è indipendente dal percorso fatto
LE TORRI: DISCOVERY e COLUMBIA
LE TORRI: DISCOVERY e COLUMBIA Osservazioni e misure a bordo Le tue sensazioni e l accelerometro a molla 1) Nelle due posizioni indicate dalle frecce indica le sensazioni ricevute rispetto al tuo peso
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio
Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili
Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Angolo di risalita = 25 Altezza massima della salita = 25,87 m Altezza della salita nel tratto lineare (fino all ultimo pilone di metallo)
CORRENTE ELETTRICA. φ 1
COENTE ELETTCA lim t Q/ tdq/dt ntensità di corrente φ φ > φ φ La definizione implica la scelta di un verso positivo della corrente. Per convenzione, il verso positivo della corrente è parallelo al moto
Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15
Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico
Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA
Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi
Questionario. figura il filo si rompe. Quale traiettoria segue la boccia?
Questionario 1) Due palline metalliche hanno le stesse dimensioni, ma una pesa il doppio dell altra. Le due palline vengono lasciate cadere contemporaneamente dal tetto di un edificio di due piani. Il
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili
Correnti e circuiti a corrente continua. La corrente elettrica
Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media
Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo
Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze
Oscillazioni: il pendolo semplice
Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per
Energy in our life. 6. Perché risparmiare energia? 1. Forme di energia:
Energy in our life 1. Forme di energia: Energia meccanica; Energia nucleare; Energia elettrica; Energia chimica; Energia termica; 1. Consumi nel mondo; 2. Consumi in italia; 3. Consumi in Sicilia; 4. Energia
LA CORRENTE ELETTRICA CONTINUA
LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico
LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it
LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.
Esempi di funzione. Scheda Tre
Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.
V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.
LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro
Q t CORRENTI ELETTRICHE
CORRENTI ELETTRICHE La corrente elettrica è un flusso di particelle cariche. L intensità di una corrente è definita come la quantità di carica netta che attraversa nell unità di tempo una superficie: I
Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v.
Quantità di moto Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. La seconda legge di Newton può essere scritta con la quantità di moto: d Q F =
L ENERGIA 1. IL LAVORO. Il joule come unità di misura derivata Abbiamo visto che la definizione di joule è: 1 J = (1 N) (1 m);
1 L ENERGIA holbox/shutterstock 1. IL LAVORO Il joule come unità di misura derivata Abbiamo visto che la definizione di joule è: 1 J (1 N) (1 m); inoltre, la formula (5) del capitolo «I princìpi della
Materia:FISICA Insegnante: ing. prof. Amato Antonio
ISTITUTO ISTRUZIONE SUPERIORE DI STATO ROBERTO ROSSELLINI PROGRAMMAZIONE DIDATTICA a.s. 2012/2013 BIENNIO Materia:FISICA Insegnante: ing. prof. Amato Antonio L azione didattica ed educativa nel primo biennio
L=F x s lavoro motore massimo
1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza
Amplificatori Audio di Potenza
Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso
GEOMETRIA DELLE MASSE
1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro