TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11"

Transcript

1 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A = a a... a m1 m2 m dove aij K 1 i m 1 j Ua matrice A del tipo (m, ) è composta da m elemeti disposti secodo m righe e secodo coloe. Tutti gli elemeti vegoo idicati co doppio idice, il primo idica la riga, il secodo la coloa. I modo compatto ua matrice si può idicare co A= ( a ij ) i= 1,..., m j= 1,..., Se m la matrice è rettagolare, se m = la matrice è quadrata. I quest ultimo caso il umero delle righe (o coloe) prede il ome di ordie della matrice. Diamo adesso delle defiizioi di uso frequete. 1) Chiamasi liea della matrice idifferetemete ua riga o ua coloa, liee parallele più righe o più coloe. 2) I due liee parallele si dicoo corrispodeti gli elemeti di ugual posto, cioè l elemeto p mo dell ua co l elemeto p mo dell altra, qualuque sia p. 3) Ua liea si dice ideticamete ulla se soo tutti ulli i suoi elemeti. 4) Due liee si dicoo uguali o proporzioali quado gli elemeti dell ua soo uguali o proporzioali ai corrispodeti dell altra. 5) Ua matrice si dice ulla se ha ulli tutti i suoi elemeti. 6) Due matrici si dicoo simili quado hao lo stesso umero di righe e di coloe, i due matrici simili si dicoo corrispodeti gli elemeti di ugual posto. 7) Due matrici di m elemeti: A= ( aij ) eb= ( bij ) soo uguali se soo uguali tutti i corrispodeti elemeti, cioè se a = b per ogi i e per ogi j. 8) I ua matrice quadrata A ( a ij ) ij ij = di ordie, gli elemeti aij co i = j (cioè gli elemeti a 11, a 22,..., a ) costituiscoo la diagoale pricipale, metre gli elemeti a1, a2( 1),..., a 1 costituiscoo la diagoale secodaria. 9) I ua matrice quadrata, due elemeti aik, aki che hao gli stessi idici, ma i ordie iverso, si dicoo coiugati, i loro posti soo simmetrici rispetto alla diagoale pricipale. Gli elemeti che stao sulla diagoale pricipale soo coiugati di se stessi. Nel caso particolare che gli elemeti siao tra loro uguali, cioè sia aik = aki, la matrice quadrata si dice simmetrica. 1

2 2 L isieme di tutte le matrici m a coefficieti i K si idica cok m,. Data ua matrice A K m,, la trasposta di A è la matrice che si idica co t A, otteuta da A scambiado fra loro le righe co le coloe. Es. - A = 1 4 K , 3 t A= 2 5 K m, t m, I geerale, se A K, A K. Si ha t t t ( A+ B) = A+ B L isieme K m, si può dotare di ua struttura algebrica. Comiciamo, ifatti, a defiire u operazioe di somma tale che K m, sia u gruppo abeliao (cioè gode della proprietà commutativa). 3, 2 Somma di matrici Siao A= ( a i, j ) e B ( b i j ) B è ua matrice C ( c i j ) =, due matrici m a coefficieti i K. La matrice somma A + =, defiita da ci, j= ai, j+ bi, j coi, j N : 1 i m 1 j Quidi la matrice C è la matrice otteuta sommado gli elemeti corrispodeti di A e di B. Es. Siao assegate le matrici: A = B = La matrice somma sarà: A+ B = C = Per cui otteiamo: C =

3 3 La somma di due matrici A e B è defiita solo quado A e B hao lo stesso umero di righe e lo stesso umero di coloe. L operazioe somma di matrici soddisfa le proprietà dei gruppi abeliai : a1) A + (B +C) = (A + B) + C ABC K m,,, a2) A + B = B + A m, a3) 0 K : A+ 0= 0+ A= A a4) A K m, m, B K : A+ B= B+ A= 0 Per quato riguarda il prodotto ell isieme K m, delle matrici m è possibile itrodurre due tipi di prodotto : prodotto estero matrice per scalare prodotto itero righe per coloe. Prodotto di ua matrice per uo scalare m A= a K, ua matrice m a coefficieti el campo K e λ uo scalare, cioè u Sia ( ij) elemeto del campo su cui si opera. Chiamiamo prodotto di λ per A la matrice m, C = ( aij) K doveaij = λ aij i = 1,..., me j = 1,..., I altre parole, la matrice C = λ A è la matrice otteuta moltiplicado ogi elemeto di A per il umero λ. a11... a1 a21... a2 A =... a... a m1 m a11... a1 a21... a2 λ A = λ =... a... a m1 m λa11... λa1 λa21... λa2... λa... λa m1 m Il prodotto matrice per scalare gode di quattro fodametali proprietà: m, 1) proprietà associativa: ( λ µ ) A= λ ( µ A) A K λ, µ K 2) distributiva ( λ + µ ) A = λ A + µ A m, 3) distributiva λ( A + B) = λ A + λ B A, B K λ K 4) prodotto per 1 1 A = A ( 1) A = A Cosideriamo l isieme K m, co le operazioi di somma e di prodotto per uo scalare così defiita. K m, rispetto alla somma è u gruppo abeliao, metre rispetto al prodotto, che è u prodotto estero, gode delle quattro proposizioi sopra elecate. Per cui, l isieme K m, delle matrici m a coefficieti i K è u esempio di spazio vettoriale, ua struttura su 3

4 4 cui soo defiite due operazioi ua itera (somma) e l altra estera (prodotto per uo scalare) Prodotto itero righe per coloe Per quato riguarda il prodotto itero, il più importate è il prodotto righe per coloe. Tale prodotto è possibile quado il umero delle coloe della prima matrice è uguale al umero delle righe della secoda matrice. m, p, q Quidi, se A = ( aij ) K e B = ( bij ) K il prodotto A B è defiito solo se = p. Se le matrici A e B soddisfao a questa codizioe, si dicoo compatibili per la moltiplicazioe. Co questa codizioe, si defiisce il prodotto tra le matrici A e B. m q A B = C = ( cij ) K, La matrice C del tipo (m, q) il cui elemeto geerico c ij è dato da cij = ail blj = a 1b1 + a 2b a b l= 1 i j i j i j La relazioe precedete afferma che per otteere l elemeto c ij di C si cosidera la riga i - esima di A e la coloa j - esima di B, si eseguoo i prodotti dei termii corrispodeti e si sommao i prodotti così otteuti. a11 a12... a1 j... a1 a21 a22... a2 j... a A B = ai1 ai ai a a a m1 m2 m b11 b12... b1 j... b1 q b21 b22... b2 j... b2q = bi1 bi biq b b... bj... b q 1 2 c11 c c1 q c21 c22... c2q... = cij cm cm... cmq 1 2 Per questo il prodotto di matrici prede il ome di prodotto righe per coloe. 4

5 5 Si vede facilmete che il prodotto A B = C è del tipo (m, q). Ifatti, poiché il geerico elemeto c ij si ottiee dalla i - esima riga di A e dalla j - esima coloa di B, e poiché A K m, pq, e B K co = p, allora i può assumere soltato i valori 1,...,m metre j può assumere solo i valori 1,...,q, per cui la matrice A B = C ha tate righe e coloe quate e ha B. Esempio A= K B = 0 3 K , 32, ( ) ( 1) ( 1) 22, A B = C K C = c ij = 1 1+ ( 1) ( 1) + ( 1) 3+ 3 ( 1) Avremo pertato 4 3 C = 7 7 Esempio 2 A= B A B 1 2 = 1 = 1+ 4 = Proprietà del prodotto di matrici Il prodotto di matrici gode delle segueti proprietà 1) Sia A K m,, B K, p, C K p, q allora risulta A ( B C) = ( A B) C 2) Se A e B soo matrici del tipo (m, ) e C è ua matrice del tipo (, p) allora ( A + B) C = AC + BC (proprietà distributiva a siistra) Se ivece A è ua matrice m e B e C soo matrici p allora AB ( + C) = AB + AC (proprietà distributiva a destra) Duque, il prodotto righe per coloe gode della proprietà associativa (1) e della proprietà distributiva rispettivamete a siistra e a destra rispetto alla somma. Si ha ioltre: 5

6 6 se A K m, e B K, p ed è α R allora α( AB) = ( α A) B = A( α B) Il prodotto di matrici o è commutativo, per cui se A K m, e B K, m soo defiite etrambe le matrici prodotto A B = C K mm e B A C K, = ', i geerale risulta C = A B B A = C'. Ciò è sicuramete vero se si cosiderao matrici quadrate Esempio A= K B K = , 22, A B = B A= 3 10 quidi A B B A Teorema di Biet Le defiizioi date, riguardati il prodotto fra matrici, soo giustificate dal seguete teorema di Biet : Date due matrici simili A e B di m righe ed coloe, il determiate del loro prodotto per righe è ullo se < m ; se le matrici soo quadrate il determiate del loro prodotto è uguale al prodotto dei loro determiati; se >m il determiate del loro prodotto è uguale alla somma di tutti i prodotti che si ottegoo moltiplicado ogi miore di A di ordie m per il miore corrispodete di B. Altre proprietà algebriche delle operazioi matriciali Se A è ua matrice e c è u elemeto del campo K su cui si opera, cioè m m,, tk K A K m, t t : e c K ( ca) = c A t A A Se A e B soo matrici m allora t t t ( A+ B) = A+ B Se A K m, allora t ( t A)) = A Se A è ua matrice m e B è ua matrice p allora risulta t t t ( A B) = B A Quidi avremo: La trasposta del prodotto di due matrici si ottiee moltiplicado le trasposte delle matrici i ordie iverso. 6

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

(A + B) ij = A ij + B ij, i = 1,..., m, j = 1,..., n.

(A + B) ij = A ij + B ij, i = 1,..., m, j = 1,..., n. Algebra lieare Matematica CI) 263 Somma di matrici Siao m ed due iteri positivi fissati Date due matrici A, B di tipo m, sommado a ciascu elemeto di A il corrispodete elemeto di B, si ottiee ua uova matrice

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Unità Didattica N 33 L algebra dei vettori

Unità Didattica N 33 L algebra dei vettori Uità Didattica N 33 Uità Didattica N 33 0) La ozioe di vettore 02) Immagie geometrica di u vettore umerico 03) Somma algebrica di vettori 04) Prodotto di u umero reale per u vettore 05) Prodotto scalare

Dettagli

Preparazione al corso di statistica Prof.ssa Cerbara

Preparazione al corso di statistica Prof.ssa Cerbara Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Somma E possibile sommare due matrici A e B ottenendo una matrice C se e solo se le due matrici hanno lo stesso numero di righe e di colonne.

Somma E possibile sommare due matrici A e B ottenendo una matrice C se e solo se le due matrici hanno lo stesso numero di righe e di colonne. Matrici Geeralità sulle matrici I matematica, ua matrice è uo schierameto rettagolare di oggetti; le matrici di maggiore iteresse soo costituite da umeri come, per esempio, la seguete: 1 s 6 4 4 2 v t

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Vettori riga, vettori coloa Sia u itero ositivo fissato Ciascu vettore di R uo essere esato come ua matrice riga oure come ua matrice coloa (co elemeti) Per covezioe, idetifichiamo

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Elementi di algebra per la chimica. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova

Elementi di algebra per la chimica. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova Elemeti di algebra per la chimica toio Polimeo Dipartimeto di Scieze Chimiche Uiversità degli Studi di Padova 1 Corpi & spazi Corpo: u corpo K è u isieme di umeri tali che Se a e b appartegoo a K, allora

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE Sia V uo spazio vettoriale sul campo K. Siao v, v,..., v vettori dati apparteeti a V e siao, ioltre, assegati scalari k, k,..., k apparteeti a K. Si defiisce

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE Sia V uo spazio vettoriale sul campo K. Siao v, v,..., v vettori dati apparteeti a V e siao, ioltre, assegati scalari k, k,..., k apparteeti a K. Si defiisce

Dettagli

v = ( v 1,..., v n ).

v = ( v 1,..., v n ). Lezioe del 21 ovembre. Sistemi lieari 1. Spaio vettoriale R Sia u itero positivo. ssatoمح Cosideriamo lلاiisieme R delle ple ordiate di umeri reali u (u 1, u 2,..., u ), u i R. Al posto di pla ordiata

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado.

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado. Capitolo 3 3.1 Defiizioi e proprietà La comparsa dei umeri complessi è legata, da u puto di vista storico, alla risoluzioe delle equazioi di secodo grado. L equazioe ammette le soluzioi x 2 + 2px + q =

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO

ELEMENTI DI CALCOLO COMBINATORIO ELEMENTI DI CALCOLO COMBINATORIO 1 Elemeti di calcolo combiatorio Si tratta di ua serie di teciche per determiare il umero di elemeti di u isieme seza eumerarli direttamete. Dati elemeti distiti ci chiediamo

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

Forme Bilineari 1 / 34

Forme Bilineari 1 / 34 Forme Bilieari 1 / 34 Defiizioe applicazioe Dicesi forma bilieare su uo spazio vettoriale V, ua ϕ : V V R che è lieare i etrambi gli argometi, ossìa tale che u,v,w V e a,b R si abbia: ϕ(au + bv,w) =aϕ(u,w)

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

NUMERI REALI Mauro Saita Versione provvisoria. Settembre 2012.

NUMERI REALI Mauro Saita Versione provvisoria. Settembre 2012. NUMERI REALI Mauro Saita maurosaita@tiscaliet.it Versioe provvisoria. Settembre 2012. Idice 1 Numeri reali. 1 1.1 Numeri aturali, iteri, razioali......................... 1 1.2 La scoperta dei umeri irrazioali.........................

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Cenni di calcolo combinatorio

Cenni di calcolo combinatorio Appedice B Cei di calcolo combiatorio B Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare degli

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50 Ua delle applicazioi della teoria delle proporzioi è la divisioe di u umero (o di ua gradezza) i parti direttamete o iversamete proporzioali a più umeri o a più serie di umeri dati. Tale tipo di problema

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe, che per il mometo deoteremo co ( ), così defiita: a ( ) b divide a-b Esempio: 5 (7 ) 19, perché 7 5-19=-14, metre 4 o è ella relazioe

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Stima di somme: esercizio

Stima di somme: esercizio Stima di somme: esercizio Valutare l'ordie di gradezza della somma k l (1 + 3 k ) Quado x

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

AL210 - Appunti integrativi - 2

AL210 - Appunti integrativi - 2 AL210 - Apputi itegrativi - 2 Prof. Stefaia Gabelli - a.a. 2016-2017 Classi laterali e Teorema di Lagrage Se G è u gruppo fiito, il umero degli elemeti di G si chiama l ordie di G e si idica co G. J.-L.

Dettagli

Probabilità e Statistica (cenni)

Probabilità e Statistica (cenni) robabilità e Statistica (cei) remettiamo la distizioe tra i due cocetti: Defiizioe: dato il verificarsi di u eveto si defiisce la probabilità per l eveto cosiderato il rapporto tra il umero dei casi favorevoli

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe così defiita: a b divide a-b. La relazioe biaria è detta cogrueza modulo. Se a b scriveremo pure a b (mod. ) e leggeremo a cogruo b (modulo

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh.

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh. Prerequisiti: Lezioe Gruppi Lezioe 2 Z Gruppi isomorfi Gruppi S e A Riferimeti ai testi: [FdG] Sezioe ; [H] Sezioe 26; [PC] Sezioe 58 Sottogruppi ormali Gruppi quoziete L Esempio 7 giustifica la seguete

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Technische Universität Dortmund, Vogelpothsweg , Dortmund (Germania)

138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Technische Universität Dortmund, Vogelpothsweg , Dortmund (Germania) 138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Techische Uiversität Dortmud, Vogelpothsweg 87 44227, Dortmud (Germaia) No c è certo da stupirsi se oggi troviamo relazioi tra operazioi matematiche

Dettagli

7 LE PROPRIETÀ DEI NUMERI NATURALI. SUCCES- SIONI

7 LE PROPRIETÀ DEI NUMERI NATURALI. SUCCES- SIONI 7 LE PROPRIETÀ DEI NUMERI NATURALI. SUCCES- SIONI Abbiamo usato alcue proprietà dei umeri aturali che coviee mettere i evideza. Per prima cosa otiamo che N gode delle due proprietà (i 0 N; (ii se N allora

Dettagli

Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN

Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN Giulio Cesare Barozzi: Primo Corso di Aalisi Matematica Zaichelli (Bologa), 998, ISBN 88-08-069-0 Capitolo NUMERI REALI Soluzioe dei problemi posti al termie di alcui paragrafi. Numeri aturali, iteri,

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

0 a 22 a 2n A n n = 0 0 a nn Se una matrice quadrata è triangolare superiore, la sua trasposta è triangolare inferiore e viceversa a

0 a 22 a 2n A n n = 0 0 a nn Se una matrice quadrata è triangolare superiore, la sua trasposta è triangolare inferiore e viceversa a Defiizioe Defiizioe La matrice è u isieme di N umeri reali o complessi orgaizzata i m righe e coloe, co m = N a 11 a 12 a 1 A = a 21 a 22 a 2 [ ] a i j i = 1,,m j = 1,, a m1 a m2 a m Ua matrice viee sempre

Dettagli

FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE

FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE. Le Fuzioi L'operazioe di prodotto cartesiao relazioe biaria La relazioe biaria fuzioe Fuzioi iiettive, suriettive, biuivoche Fuzioi ivertibili. Le Successioi

Dettagli

ANNO ACCADEMICO 2016/2017 INGEGNERIA CHIMICA

ANNO ACCADEMICO 2016/2017 INGEGNERIA CHIMICA Fisica Matematica pputi di Simoe De Martio Prof.essa De gelis NNO CCDEMICO 2016/2017 INGEGNERI CHIMIC Vettori liberi Defiizioe cosideriamo ua coppia ordiata ( ; B); si defiisce segmeto orietato u ete che

Dettagli

Esercizi settimanali

Esercizi settimanali Geometria (per il corso di laurea i Fisica), AA 5-6, I semestre Doceti: Erico Arbarello, Alberto De Sole Esercizi settimaali Esercizi per martedì 6 Ottobre Esercizio (Maetti 75) Scrivere i segueti umeri

Dettagli

Appendice 2. Norme di vettori e matrici

Appendice 2. Norme di vettori e matrici Appedice 2. Norme di vettori e matrici La ozioe esseziale per poter defiire il cocetto di distaza e lughezza i uo spazio vettoriale lieare è quello di orma. Il cocetto di orma è ua geeralizzazioe del cocetto

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dip. di Scienze Statistiche e Matematiche Silvio Vianelli

Università degli Studi di Palermo Facoltà di Economia. Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Uiversità degli Studi di Palermo Facoltà di Ecoomia Dip. di Scieze Statistiche e Matematiche Silvio Viaelli Apputi del corso di Matematica Geerale Le Serie Ao Accademico 2009/200 V. Lacagia - S. Piraio

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

SERIE DI POTENZE. n=0 a n z n.

SERIE DI POTENZE. n=0 a n z n. SERIE DI POTENZE 1. Covergeza putuale Data ua successioe di coefficieti (a ) N, a C, e dato u cetro w 0, la relativa serie di poteze è la serie di fuzioi a (z w 0 ) a 0 + a 1 (z w 0 ) + + a (z w 0 ) +.

Dettagli

SUCCESSIONI SERIE NUMERICHE pag. 1

SUCCESSIONI SERIE NUMERICHE pag. 1 SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle

Dettagli

Forme multilineari alternanti e prodotto esterno

Forme multilineari alternanti e prodotto esterno Forme multilieari alterati e prodotto estero Sia V uo spazio vettoriale di dimesioe sul campo C. Per ogi itero,, idiciamo co A (V lo spazio vettoriale delle fuzioi, F : V C, -lieari ed alterati; cioè le

Dettagli

I TRIANGOLI ARITMETICI

I TRIANGOLI ARITMETICI I TRIANGOLI ARITMETICI Atoio Salmeri Qui di seguito si prederao i esame alcui triagoli aritmetici. Essi soo ell ordie i triagoli che foriscoo i coefficieti dei poliomi geerati dalle segueti espressioi:.

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni,

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni, Cotare sequeze e collezioi Coteuto Sequeze e collezioi di elemeti distiti Sequeze e collezioi arbitrarie 3 Esercizi I questo capitolo approfodiremo le ostre coosceze su sequeze e collezioi, acquisedo gli

Dettagli

Il discriminante Maurizio Cornalba 23/3/2013

Il discriminante Maurizio Cornalba 23/3/2013 Il discrimiate Maurizio Coralba 3/3/013 Siao X 1,..., X idetermiate. Cosideriamo i poliomi V (X 1,..., X ) = i>j(x i X j ) (X 1,..., X ) = V (X 1,..., X ) Il poliomio V (X 1,..., X ) è chiaramete atisimmetrico.

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Disposizioni semplici

Disposizioni semplici Disposizioi semplici Calcolo combiorio D, K ( ) ( )...( K+ ) co 0< K Di elemeti e K (umero urale) si dicoo disposizioi semplici di elemeti di classe K i raggruppameti otteuti scegliedo K elemeti tra gli

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 2007/2008

UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 2007/2008 UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 007/008 Questi apputi soo stati cocepiti come u aiuto didattico per gli studeti della Facoltá di Ecoomia.

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

06 LE SUCCESSIONI DI NUMERI REALI

06 LE SUCCESSIONI DI NUMERI REALI 06 LE SUCCESSIONI DI NUMERI REALI Ua successioe è ua fuzioe defiita i. I simboli ua f : A tale che f ( ) è ua successioe di elemeti di A. Se poiamo f ( i) ai co i,...,,..., ua successioe può essere rappresetata

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 1 12/03/2015 Soluzioi del primo foglio di esercizi Esercizio 0.1. Ua classe di studeti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vegoo esposti i ua graduatoria

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combiatorio Il pricipio fodametale del calcolo combiatorio Il pricipio fodametale del calcolo combiatorio può essere euciato così: Se dobbiamo fare N scelte e la prima scelta può essere fatta i

Dettagli

Metodi Matematici per l Ingegneria

Metodi Matematici per l Ingegneria Metodi Matematici per l Igegeria Agelo Alvio A.A.2016-17 2 Idice 1 Fuzioi olomorfe 5 1.1 La fuzioe exp i campo complesso................ 5 1.2 Derivabilità i campo complesso.................. 8 1.3 Serie

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

2.4 Criteri di convergenza per le serie

2.4 Criteri di convergenza per le serie 2.4 Criteri di covergeza per le serie Come si è già acceato i precedeza, spesso è facile accertare la covergeza di ua serie seza cooscere la somma. Ciò è reso possibile da alcui comodi criteri che foriscoo

Dettagli

Appendice A1 Termodinamica Statistica.

Appendice A1 Termodinamica Statistica. Appedice A Termodiamica Statistica. A. - La distribuzioe biomiale di probabilità. Si cosideri u sistema isolato, macroscopicamete i equilibrio e omogeeo. Ache se la termodiamica covezioale stabilisce che

Dettagli

Foglio 3 Strutture Algebriche, Interi

Foglio 3 Strutture Algebriche, Interi Esercizi di Algebra I (A.A. 2012-13) prof.ssa Valetia Barucci, prof. Eresto Spielli Foglio 3 Strutture Algebriche, Iteri Esercizio 1. Dimostrare il teorema biomiale: ( ) (a + b) = a k b k N. k Esercizio

Dettagli

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado.

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado. Capitolo 8 8.1 Itroduzioe La comparsa dei umeri complessi è legata da u puto di vista storico alla risoluzioe delle equazioi di secodo grado. L equazioe x 2 + 2px + q = 0 ammette le soluzioi x = p ± p

Dettagli

APPLICAZIONI di MATEMATICA A.A

APPLICAZIONI di MATEMATICA A.A APPLICAZIONI di MATEMATICA A.A. 2011-2012 Tracce delle lezioi del 20 e 22 settembre 2011 September 26, 2011 1 Richiami sui umeri complessi 1.1 Forma algebrica. U umero complesso z i forma algebrica è u

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

11 IL CALCOLO DEI LIMITI

11 IL CALCOLO DEI LIMITI IL CALCOLO DEI LIMITI Il calcolo di u ite spesso si ricodurrà a trattare separatamete iti più semplici, su cui poi si farao operazioi algebriche. Dato che uo o più di questi iti possoo essere ±, bisoga

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli