Validazione dei modelli Strumenti quantitativi per la gestione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Validazione dei modelli Strumenti quantitativi per la gestione"

Transcript

1 Validazione dei modelli Strumenti quantitativi per la gestione Emanuele Taufer Validazione dei modelli Il data set Auto I dati Il problema analizzato Validation set approach Diagramma a dispersione Test set e training set Regressione lineare semplice RLS: Test MSE Regressione quadratica Rq: Test MSE Regressione cubica Rc: Test MSE Regressione KNN Input nella funzione knn.reg.1() Calcolare le previsioni con KNN Plot Test MSE e training MSE Plot degli MSE Confronto test MSE Validazione dei modelli In questo esempio consideriamo il data set Auto e: adattiamo un modello di regressione lineare adattiamo una regressione polinomiale adattiamo una regressione KNN (nonparametrica) compariamo i modelli attraverso il calcolo del test MSE Il data set Auto In questo data set vi sono alcuni valori mancanti indicati con?. Nella lettura del file specifichiamo che? indica un valore mancante ( NA ) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 1/17

2 Auto< read.csv("http://www.cs.unitn.it/~taufer/data/auto.csv",header=t,na.strings="?") str(auto) ## 'data.frame': 397 obs. of 9 variables: ## $ mpg : num ## $ cylinders : int ## $ displacement: num ## $ horsepower : int ## $ weight : int ## $ acceleration: num ## $ year : int ## $ origin : int ## $ name : Factor w/ 304 levels "amc ambassador brougham",..: I dati Nel data.frame eliminiamo le righe con i valori mancanti attraverso la funzione complete.cases che crea un vettore logico (T,F,T...) con F in corrispondenza di una riga con uno o più valori mancanti Auto< Auto[complete.cases(Auto),] ## elimino le righe con "NA" head(auto) ## mpg cylinders displacement horsepower weight acceleration year origin ## ## ## ## ## ## ## name ## 1 chevrolet chevelle malibu ## 2 buick skylark 320 ## 3 plymouth satellite ## 4 amc rebel sst ## 5 ford torino ## 6 ford galaxie 500 nrow(auto) ## [1] 392 Il problema analizzato file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 2/17

3 Poiché l obiettivo di questa esercitazione è l applicazione di tecniche di scelta dei modelli, consideriamo un solo predittore: questo ci permetterà di visualizzare i risultati. Proviamo a prevedere il consumo (mpg) in funzione della potenza del motore (horsepower) L obiettivo è dunque stimare f nel modello Stimiamo f attraverso diversi modelli: 1. regressione lineare semplice, quadratica e cubica (modello parametrico) 2. regressione KNN (non parametrico) Validation set approach Per validare i modelli utilizzeremo il cd validation set approach, in cui una parte dei dati a disposizione è messa da parte e utilizzata come test set. Il test MSE calcolato dai dati test sarà utilizzato per scegliere K nella regressione KNN comparare i diversi modelli stimati Diagramma a dispersione plot(auto$horsepower,auto$mpg) mpg = f(horsepower) + ε file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 3/17

4 Test set e training set Il dataset è composto da 392 unità. Suddividiamo casualmente il dataset in due parti: il training set il test set unità unità Individuiamo le unità del training set con la funzione sample(). Il vettore train definito sotto contiene le posizioni selezionate set.seed(1) train=sample(392,292) train file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 4/17

5 [1] [18] [35] [52] [69] [86] [103] [120] [137] [154] [171] [188] [205] [222] [239] [256] [273] [290] Costruiamo i due data set, test e training, utilizzando i risultati del campionamento: Auto.test< Auto[ train,] nrow(auto.test) [1] 100 Auto.train< Auto[train,] nrow(auto.train) [1] 292 Regressione lineare semplice rls< lm(mpg~horsepower, data=auto.train) summary(rls) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 5/17

6 Call: lm(formula = mpg ~ horsepower, data = Auto.train) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) <2e 16 *** horsepower <2e 16 *** Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 290 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 1 and 290 DF, p value: < 2.2e 16 plot(auto$horsepower,auto$mpg) abline(rls,col="red",lwd=2) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 6/17

7 RLS: Test MSE Il calcolo del test MSE può essere fatto molto semplicemente definendo la media delle differenze al quadrato tra i valori di mpg nel test set e la loro previsione in base al modello rls test.mse.rls< mean((auto.test$mpg predict(rls,auto.test))^2) test.mse.rls [1] Regressione quadratica rq< lm(mpg~poly(horsepower,2), data=auto.train) summary(rq) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 7/17

8 Call: lm(formula = mpg ~ poly(horsepower, 2), data = Auto.train) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e 16 *** poly(horsepower, 2) < 2e 16 *** poly(horsepower, 2) e 15 *** Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 289 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 2 and 289 DF, p value: < 2.2e 16 plot(auto$horsepower,auto$mpg) lines(sort(auto$horsepower),predict(rq,auto)[order(auto$horsepower)],col="red",lwd=2) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 8/17

9 Rq: Test MSE test.mse.rq< mean((auto.test$mpg predict(rq,auto.test))^2) test.mse.rq [1] Regressione cubica rc< lm(mpg~poly(horsepower,3), data=auto.train) summary(rc) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 9/17

10 Call: lm(formula = mpg ~ poly(horsepower, 3), data = Auto.train) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) <2e 16 *** poly(horsepower, 3) <2e 16 *** poly(horsepower, 3) e 15 *** poly(horsepower, 3) Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 288 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 3 and 288 DF, p value: < 2.2e 16 plot(auto$horsepower,auto$mpg) lines(sort(auto$horsepower),predict(rc,auto)[order(auto$horsepower)],col="red",lwd=2) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 10/17

11 Rc: Test MSE test.mse.rc< mean((auto.test$mpg predict(rc,auto.test))^2) test.mse.rc ## [1] Regressione KNN Per adattare una regressione KNN ai dati è necessario costruire una funzione ad hoc. La funzione knn.reg.1() disponibile nel file KNNR.r è appropriata per il caso di un solo regressore e automaticamente produce le previsioni per il vettore di dati x.test dato l input x.train e l output y.train. E possibile specificare una lista (o anche solo uno) di valori di K da considerare file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 11/17

12 Per indicare ad R dove trovare la funzione knn.reg.1(), copiare il file KNNR.r nella directory di lavoro di R e richiamarlo con la funzione source() knn.reg.1 < function(klist,x.train,y.train,x.test) # Regressione k nearest neighbors # # klist è la lista dei valori K da usare # x.train, y.train: il training set (indipendente dipendente) # x.test: il test set # Output: una matrice di valori previsti per il test set (una colonna per ogni K in kl ist) source("knnr.r") Input nella funzione knn.reg.1() In questo caso, la funzione knn.reg.1(), ci chiede di fornire come input i dati separati in variabile dipendente indipendente, test e training. x.train< Auto.train$horsepower y.train< Auto.train$mpg x.test< Auto.test$horsepower y.test< Auto.test$mpg Calcolare le previsioni con KNN Con il codice seguente calcoliamo le previsioni del modello KNN per valori di K da 1 a 60 ( klist=seq(60) ): y.pred.train contiene i valori previsti per il training set y.pred.test contiene i valori previsti per il test set klist< seq(60) # testiamo i risultati per k=1,2, y.pred.train< knn.reg.1(klist,x.train,y.train,x.train) y.pred.test< knn.reg.1(klist,x.train,y.train,x.test) Plot file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 12/17

13 plot(auto.train$horsepower,auto.train$mpg) lines(sort(auto.train$horsepower),knn.reg.1(292,x.train,y.train,x.train)[order(auto.trai n$horsepower)],col=1,lwd=2) lines(sort(auto.train$horsepower),knn.reg.1(50,x.train,y.train,x.train)[order(auto.trai n$horsepower)],col=2,lwd=2) lines(sort(auto.train$horsepower),knn.reg.1(10,x.train,y.train,x.train)[order(auto.trai n$horsepower)],col=3,lwd=2) lines(sort(auto.train$horsepower),knn.reg.1(1,x.train,y.train,x.train)[order(auto.train$h orsepower)],col=4,lwd=2) legend("topright",legend=c('k=292','k=50','k=10','k=1'),text.col=seq(4), lty=1, col=se q(4)) Test MSE e training MSE mse.train < apply((y.pred.train y.train)^2, 2, mean) mse.test < apply((y.pred.test y.test)^2, 2, mean) MSE.table< data.frame("k"=klist, "test MSE"=mse.test,"training MSE"=mse.train) knitr::kable(mse.table) K test.mse training.mse file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 13/17

14 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 14/17

15 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 15/17

16 Plot degli MSE Riportiamo in un grafico i valori di MSE ottenuti. Dalla tavola precedente notiamo che il valore di test MSE più basso corrisponde al caso K = 10. Tuttavia per un intervallo di valori K piuttosto ampio questo rimane molto basso. Il valore K = 50 produce una adattamento molto più smussato rispetto al caso K = 10 plot(mse.train, type='l', xlab='k', ylab='mse', col=1, lwd=2) lines(mse.test, col=2, lwd=2) legend("bottomright",legend=c('train','test'),text.col=seq(2), lty=1, col=seq(2)) Confronto test MSE file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 16/17

17 1. RLS: test MSE = RQ: test MSE = RC: test MSE = K = KNN, : test MSE = K = KNN, : test MSE = file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 17/17

Regressione lineare multipla Strumenti quantitativi per la gestione

Regressione lineare multipla Strumenti quantitativi per la gestione Regressione lineare multipla Strumenti quantitativi per la gestione Emanuele Taufer Regressione lineare multipla (RLM) Esempio: RLM con due predittori Stima dei coefficienti e previsione Advertising data

Dettagli

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette

Dettagli

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12) Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola

Dettagli

Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12

Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12 Indice 1 Introduzione ai modelli lineari 2 2 Dataset 3 3 Il Modello 8 4 In pratica 12 41 Peso e percorrenza 12 1 Capitolo 1 Introduzione ai modelli lineari Quando si analizzano dei dati, spesso si vuole

Dettagli

> d = alimentazione == "benz" > mean(percorr.urbana[!d]) - mean(percorr.urbana[d]) [1] 2.385627. > sd(percorr.urbana[d]) [1] 2.

> d = alimentazione == benz > mean(percorr.urbana[!d]) - mean(percorr.urbana[d]) [1] 2.385627. > sd(percorr.urbana[d]) [1] 2. A questo punto vale la pena di soffermarci di più sull alimentazione. Intanto cerchiamo di indagare se l alimentazione è davvero un fattore significativo per la percorrenza come è luogo comune pensare.

Dettagli

Analisi grafica residui in R. Da output grafico analisi regressionelm1.csv Vedi dispensa. peso-statura

Analisi grafica residui in R. Da output grafico analisi regressionelm1.csv Vedi dispensa. peso-statura Analisi grafica residui in R Da output grafico analisi regressionelm1.csv Vedi dispensa peso-statura 1) Il plot in alto a sinistra mostra gli errori residui contro i loro valori stimati. I residui devono

Dettagli

Modelli con predittori qualitativi e modelli con interazioni

Modelli con predittori qualitativi e modelli con interazioni Modelli con predittori qualitativi e modelli con interazioni Strumenti quantitativi per la gestione Emanuele Taufer Utilizzare variabili indipendenti qualitative (VIQ) Codifica binaria 0,1 Esempio: salari

Dettagli

ANOVA a un fattore between in R

ANOVA a un fattore between in R ANOVA a un fattore between in R Il file Excel Il file sinburn.xlsx contiene i dati dello studio sulla sindrome da burnout in quindici infermieri ospedalieri di tre diversi reparti. Importare dati in R

Dettagli

LABORATORIO 5. ANALISI DELLA VARIANZA AD UN CRITERIO DI CLASSIFICAZIONE

LABORATORIO 5. ANALISI DELLA VARIANZA AD UN CRITERIO DI CLASSIFICAZIONE LABORATORIO 5. ANALISI DELLA VARIANZA AD UN CRITERIO DI CLASSIFICAZIONE 5.1 ESEMPIO DI ANOVA AD UNA VIA In un esperimento un gruppo di bambini è stato assegnato a caso a 3 trattamenti, allo scopo di determinare

Dettagli

Regressione logistica. Strumenti quantitativi per la gestione

Regressione logistica. Strumenti quantitativi per la gestione Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html#(1) 1/25 Metodi di classificazione I metodi usati per analizzare

Dettagli

0.1 Percorrenza e Cilindrata

0.1 Percorrenza e Cilindrata 0.1 Percorrenza e Cilindrata Iniziamo ora un analisi leggermente più complessa basata sempre sui concetti appena introdotti. Innanzi tutto possiamo osservare, dal grafico ottenuto con il comando pairs,

Dettagli

Laboratorio di Statistica con R

Laboratorio di Statistica con R Laboratorio di Statistica con R R è un vero e proprio linguaggio di programmazione. Il suo nome, è dovuto probabilmente al nome dei suoi sviluppatori:robert Gentleman e Ross Ihaka Le principali funzioni

Dettagli

Laboratorio di ST1 Lezione 2

Laboratorio di ST1 Lezione 2 Laboratorio di ST1 Lezione 2 Claudia Abundo Dipartimento di Matematica Università degli Studi Roma Tre Frequenze in R ESEMPIO Fiori preferiti da n=6 ragazze In R: fiori=c("rosa", "orchidea", "violetta",

Dettagli

La previsione delle vendite dei lm

La previsione delle vendite dei lm La previsione delle vendite dei lm L'industria cinematograca è un business con un alto prolo e un'elevata variabilità nei ricavi. Nel 2005, gli americani hanno speso 8.8 miliardi di dollari di biglietti

Dettagli

INTRODUZIONE A R INTRODUZIONE A R

INTRODUZIONE A R INTRODUZIONE A R Negli anni 90 i Bell Laboratories sviluppano un nuovo ambiente per l analisi statistica: S. Sulla base di tale linguaggio viene successivamente sviluppato un software con il nome S-PLUS. R nasce come ambiente

Dettagli

Regressione logistica

Regressione logistica Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer Metodi di classificazione Tecniche principali Alcuni esempi Data set Default I dati La regressione logistica Esempio Il modello

Dettagli

ESERCITAZIONE C. Analisi di dati sperimentali PARTE 3: REGRESIONE

ESERCITAZIONE C. Analisi di dati sperimentali PARTE 3: REGRESIONE Università degli Studi di Padova Facoltà di Scienze MM.FF.NN. Corso di Laurea Magistrale: Biologia Sanitaria/Biologia Molecolare Insegnamento: Statistica Applicata Docente: Prof.ssa Alessandra R. Brazzale

Dettagli

LABORATORIO DI PROBABILITA E STATISTICA

LABORATORIO DI PROBABILITA E STATISTICA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 3 LA REGRESSIONE LINEARE ES. STUDIO RELAZIONE ALTEZZA - PESO Soggetto Altezza Peso A 174 75 B 166 63 C 173 70 D 171 71 E 168 68 F 167 68 G 165

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Esercizio 1 GRAFICO 1. X e Y sono indipendenti. X e Y non sono correlate. La correlazione tra X e Y è <1. X e Y sono perfettamente correlate

Esercizio 1 GRAFICO 1. X e Y sono indipendenti. X e Y non sono correlate. La correlazione tra X e Y è <1. X e Y sono perfettamente correlate Esercizio 1 Osservare il grafico 1 riportato in figura che mette in relazione una variabile dipendente Y ed una variabile indipendente X e rispondere alle seguenti domande. 400 300 200 GRAFICO 1 100 0

Dettagli

Statistical learning Strumenti quantitativi per la gestione

Statistical learning Strumenti quantitativi per la gestione Statistical learning Strumenti quantitativi per la gestione Emanuele Taufer Vendite Simbologia Reddito Statistical learning A cosa ci serve f? 1 Previsione 2 Inferenza Previsione Errore riducibile e errore

Dettagli

Esercizio 8. Ne segue, ovviamente che le aree geografiche di riferimento sono Africa e America del Sud.

Esercizio 8. Ne segue, ovviamente che le aree geografiche di riferimento sono Africa e America del Sud. Esercizio 8 La Swiss Economic Research della Union Bank of Switzerland conduce un controllo periodico dei livelli dei prezzi e dei salari nella principali città del mondo. Una delle variabili rilevate

Dettagli

Prova scritta di Affidabilità dei sistemi e controllo statistico di qualità

Prova scritta di Affidabilità dei sistemi e controllo statistico di qualità Prova scritta di Affidabilità dei sistemi e controllo statistico di qualità 1. a) La funzione di affidabilità è: Soluzioni 28 Gennaio 2016 = = 4. b) La probabilità che il sistema si guasti tra 0.4 e 1.4

Dettagli

Metodi statistici e probabilistici per l ingegneria. Corso di Laurea in Ingegneria Civile A.A. 2009-10. Facoltà di Ingegneria. Università di Padova

Metodi statistici e probabilistici per l ingegneria. Corso di Laurea in Ingegneria Civile A.A. 2009-10. Facoltà di Ingegneria. Università di Padova Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 29- Facoltà di Ingegneria Università di Padova Docente: Dott. L. Corain ESERCIZIO (TEST AD UN CAMPIONE) Un

Dettagli

stima per intervallo

stima per intervallo stima per intervallo intervalli di fiducia confidence interval una affermazione come questa: CI(95%): lim inf < µ < lim sup p = 0.95 che la media della popolazione sia compresa nell intervallo fra lim

Dettagli

3. Piano di lavoro: - applicazione di alcune semplici procedure, con il confronto tra le diverse soluzioni possibili nell ambito del programma SPSS

3. Piano di lavoro: - applicazione di alcune semplici procedure, con il confronto tra le diverse soluzioni possibili nell ambito del programma SPSS Per utilizzare SPSS sui PC dell aula informatica occorre accedere come: ID: SPSS Password: winidams Testo rapido di consultazione: Fideli R. Come analizzare i dati al computer. ed. Carocci, Urbino, 2002.

Dettagli

Multicollinearità Strumenti quantitativi per la gestione

Multicollinearità Strumenti quantitativi per la gestione Strumenti quantitativi per la gestione Emanuele Taufer Quando non tutto va come dovrebbe I dati Scatter plot Correlazioni RLS e RLM Individuare la MC Variance Inflation Factor Cosa fare in caso di MC Alcune

Dettagli

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004 esercitazione 8 p. 1/8 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004 Luca Monno Università degli studi di Pavia luca.monno@unipv.it http://www.lucamonno.it

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale Esperienze di Apprendimento Automatico per il corso di lippi@dsi.unifi.it Dipartimento Sistemi e Informatica Università di Firenze Dipartimento Ingegneria dell Informazione Università di Siena Introduzione

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Strumenti informatici 2.1 - Realizzare grafici e tabelle con Excel e SPSS

Strumenti informatici 2.1 - Realizzare grafici e tabelle con Excel e SPSS Strumenti informatici 2.1 - Realizzare grafici e tabelle con Excel e SPSS Realizzare un grafico con Excel è molto semplice, e permette tutta una serie di varianti. Il primo passo consiste nell organizzare

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori

REGRESSIONE lineare e CORRELAZIONE. Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori REGRESSIONE lineare e CORRELAZIONE Con variabili quantitative che si possono esprimere in un ampio ampio intervallo di valori Y X La NATURA e la FORZA della relazione tra variabili si studiano con la REGRESSIONE

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it TRATTAMENTI PRELIMINARI DEI DATI Pulizia dei dati (data cleaning) = processo capace di garantire, con una certa soglia

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Modelli non lineari Strumenti quantitativi per la gestione

Modelli non lineari Strumenti quantitativi per la gestione Modelli non lineari Strumenti quantitativi per la gestione Emanuele Taufer Metodi per affrontare problemi non lineari Regressione polinomiale Esempio: modellare i picchi di domanda di energia Fattori che

Dettagli

Modelli non lineari. Strumenti quantitativi per la gestione

Modelli non lineari. Strumenti quantitativi per la gestione Modelli non lineari Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/7_gam.html#(5) 1/54 Metodi per affrontare problemi nonlineari Regressione

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

Traccia delle lezioni svolte in laboratorio Excel 2003. Excel 2003 Excel 2010

Traccia delle lezioni svolte in laboratorio Excel 2003. Excel 2003 Excel 2010 Traccia delle lezioni svolte in laboratorio Excel 2003 Excel 2003 Excel 2010 INTRODUZIONE A EXCEL EXCEL è un programma di Microsoft Office che permette di analizzare grandi quantità di dati (database)

Dettagli

Laboratorio di R - 3 a lezione Prof. Mauro Gasparini

Laboratorio di R - 3 a lezione Prof. Mauro Gasparini Laboratorio di R - 3 a lezione Prof. Mauro Gasparini 1. Verifica di ipotesi: il test t di Student In R è disponibile la funzione t.test che effettua il test t di Student ad un campione, a due campioni

Dettagli

ANALISI DELLA VARIANZA

ANALISI DELLA VARIANZA ANALISI DELLA VARIANZA Il data set coagulation contenuto nella libreria faraway contiene i tempi di coagulazione del sangue (misurato in secondi) di 24 animali sottoposti casualmente a quattro tipi di

Dettagli

Multicollinearità. Strumenti quantitativi per la gestione

Multicollinearità. Strumenti quantitativi per la gestione Multicollinearità Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/3c_mc.html#(1) 1/13 Quando non tutto va come dovrebbe Si parla di multi-collinearità

Dettagli

6 Analisi della regressione lineare

6 Analisi della regressione lineare 6 Analisi della regressione lineare L'obiettivo dell'analisi della regressione è quello di studiare la distribuzione di una variabile, diciamo Y, per valori fissi di una'altra variabile che indichiamo

Dettagli

Introduzione alla Regressione Logistica

Introduzione alla Regressione Logistica Introduzione alla Regressione Logistica Contenuto regressione lineare semplice e multipla regressione logistica lineare semplice La funzione logistica Stima dei parametri Interpretazione dei coefficienti

Dettagli

Progetto T2 IUM 2 - Anno accademico 2012/2013

Progetto T2 IUM 2 - Anno accademico 2012/2013 1 Progetto T2 IUM 2 - Anno accademico 2012/2013 Marco Bottin 748881 Abstract Nel presente documento verrá illustrato l interfacciamento e l utilizzo dei classificatori K-NearestNeighbor e naïvebayes di

Dettagli

> cement <- read.table("i:/modelli/cement.dat", col.names=c("tempo", "resist")) > attach(cement)

> cement <- read.table(i:/modelli/cement.dat, col.names=c(tempo, resist)) > attach(cement) Laboratorio 6 Analisi dei residui 6.1 Analisi dei dati CEMENT.DAT I dati riportati nel file cement.dat si riferiscono ad uno studio sulla resistenza del cemento alla tensione. La resistenza dipende, tra

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard DISTRIBUZIONE DI FREQUENZE PER CARATTERI QUALITATIVI Questa nota consiste per la maggior parte nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000,

Dettagli

Esempio di prova di laboratorio

Esempio di prova di laboratorio Esempio di prova di laboratorio Messa a punto di un modello mediante: Utilizzo dell interprete Matlab Utilizzo del toolbox Fuzzy Logic Utilizzo del toolbox Neuro Network Creazione di funzioni Analisi critica

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

Esercizi di ripasso. Monica Marabelli. 22 Gennaio 2016

Esercizi di ripasso. Monica Marabelli. 22 Gennaio 2016 Esercizi di ripasso Monica Marabelli 22 Gennaio 2016 Esercizio 1 Tre diverse diete sono state testate per valutare la loro efficacia nel determinare una diminuzione di peso. Verifica se almeno una delle

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Contenuto del libro...2 Convenzioni utilizzate nel libro...2

Contenuto del libro...2 Convenzioni utilizzate nel libro...2 Indice Introduzione... 1 Contenuto del libro...2 Convenzioni utilizzate nel libro...2 I INTERVALLI E FORMULE DI EXCEL 1 Ricavare il massimo dagli intervalli.... 7 Tecniche avanzate di selezione degli intervalli...7

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste per la maggior parte nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data

Dettagli

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile

Dettagli

Modelli statistici per l analisi dei dati e la valutazione d efficacia Il caso del Comune di Perugia

Modelli statistici per l analisi dei dati e la valutazione d efficacia Il caso del Comune di Perugia Modelli statistici per l analisi dei dati e la valutazione d efficacia Il caso del Comune di Perugia Alessandra Pelliccia Matteo Cataldi Matteo Filippo Donadi 0 AGENDA Fonti Descrizione dei dati Variabili

Dettagli

R - Esercitazione 1. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. 30 Settembre 2013. Università Roma Tre

R - Esercitazione 1. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. 30 Settembre 2013. Università Roma Tre R - Esercitazione 1 Lorenzo Di Biagio dibiagio@mat.uniroma3.it Università Roma Tre 30 Settembre 2013 Introduzione a R R è un software open-source, per Linux, Mac OS X, Windows, distribuito secondo la licenza

Dettagli

Verifica di ipotesi sui coefficienti di regressione. Verifica di ipotesi sul coefficiente angolare

Verifica di ipotesi sui coefficienti di regressione. Verifica di ipotesi sul coefficiente angolare Verifica di ipotesi sui coefficienti di regressione Per il momento supponiamo di muoverci nel contesto del modello gaussiano. Vogliamo capire se alcune nostre congetture sui coefficienti di regressione

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative SOFTWARE ORIENTAMENTO E COMUNICAZIONE Diario del processo Mappa degli attori Trasparenza delle procedure Analisi del territorio Catalogo dati e indicatori Sistema informativo leggero Definizione di Generazione

Dettagli

Laboratorio di Analisi ed Esplorazione Dati A.A. 2008/09 Secondo foglio di esercizi per l esame.

Laboratorio di Analisi ed Esplorazione Dati A.A. 2008/09 Secondo foglio di esercizi per l esame. Laboratorio di Analisi ed Esplorazione Dati A.A. 2008/09 Secondo foglio di esercizi per l esame. Ognuno deve svolgere ambedue gli esercizi (a) e (b) del numero (da 1 a 9) assegnato. Bisogna scrivere un

Dettagli

STIMARE valori ed eseguire ANALISI DI REGRESSIONE

STIMARE valori ed eseguire ANALISI DI REGRESSIONE STIMARE valori ed eseguire ANALISI DI REGRESSIONE È possibile impostare una serie di valori che seguono una tendenza lineare semplice oppure una tendenza con crescita esponenziale. I valori stimati vengono

Dettagli

ESERCITAZIONE 4 SOCIALE. Corso di Laurea Comunicazione e A.A. 2012/2013

ESERCITAZIONE 4 SOCIALE. Corso di Laurea Comunicazione e A.A. 2012/2013 ESERCITAZIONE 4 STATISTICA PER LA RICERCA SOCIALE Corso di Laurea Comunicazione e Psicologia A.A. 2012/2013 \\lib\psico\corsi\esercitazioni_cp1 Il programma SPSS 1) Aprire spss 2) Immettere dati / aprire

Dettagli

Introduzione al software SAS

Introduzione al software SAS Introduzione al software SAS Metodi Quantitativi per Economia, Finanza e Management Esercitazione n 1 Orario di ricevimento Alberto Saccardi alberto.saccardi@nunatac.it asaccardi@liuc.it Lunedì 17-18 Aula

Dettagli

Liberare la memoria allocata dinamicamente.

Liberare la memoria allocata dinamicamente. Scrivere un programma per la gestione dei libri e dei prestiti di una biblioteca universitaria. I libri sono caratterizzati dalle seguenti informazioni: titolo, autore, collocazione del libro, numero di

Dettagli

Note introduttive Il software econometrico Easy Reg è scaricabile gratuitamente da internet (http://econ.la.psu.edu/~hbierens/easyreg.

Note introduttive Il software econometrico Easy Reg è scaricabile gratuitamente da internet (http://econ.la.psu.edu/~hbierens/easyreg. Note introduttive Il software econometrico Easy Reg è scaricabile gratuitamente da internet (http://econ.la.psu.edu/~hbierens/easyreg.htm) Per importare i dati in Easy Reg bisogna: 1. Cambiare le impostazioni

Dettagli

APPENDICE III. CONSIGLI PER L USO DEL SOFTWARE R (a cura del Dott. Lorenzo Giolli)

APPENDICE III. CONSIGLI PER L USO DEL SOFTWARE R (a cura del Dott. Lorenzo Giolli) APPENDICE III. CONSIGLI PER L USO DEL SOFTWARE R (a cura del Dott. Lorenzo Giolli) AIII.1. Installazione del software R Aprire il browser e andare alla pagina www.r-project.org e cliccare CRAN (Download,

Dettagli

TANTO PER COMINCIARE: INTRODUZIONE VELOCE AD R

TANTO PER COMINCIARE: INTRODUZIONE VELOCE AD R TANTO PER COMINCIARE: INTRODUZIONE VELOCE AD R Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Università degli Studi di Perugia Versione on-line: http://www.unipg.it/ onofri/rtutorial/index.html

Dettagli

DATASET GUIDA ALL USO

DATASET GUIDA ALL USO DATASET GUIDA ALL USO DATASET OBIETTIVO E STRUTTURA Lo strumento DATASET è una cartella Excel che ha l obiettivo di facilitare l elaborazione delle informazioni raccolte attraverso i questionari nell ambito

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Leggere e scrivere dati da file

Leggere e scrivere dati da file Università degli Studi di Milano Laurea Specialistica in Genomica Funzionale e Bioinformatica Corso di Linguaggi di Programmazione per la Bioinformatica Leggere e scrivere dati da file Giorgio Valentini

Dettagli

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) LABORATORIO EXCEL

Dettagli

Concetti Fondamentali

Concetti Fondamentali EXCEL Modulo 1 Concetti Fondamentali Excel è un applicazione che si può utilizzare per: Creare un foglio elettronico; costruire database; Disegnare grafici; Cos è un Foglio Elettronico? Un enorme foglio

Dettagli

Introduzione a R. Silvia Parolo. 14 November 2014

Introduzione a R. Silvia Parolo. 14 November 2014 Introduzione a R Silvia Parolo 14 November 2014 Cos è R?? è un tool per l analisi di dati è anche un linguaggio di programmazione si può scaricare da http: // www. r-project. org/ primi passi in R R può

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Riconoscimento e Recupero dell'informazione per Bioinformatica

Riconoscimento e Recupero dell'informazione per Bioinformatica Riconoscimento e Recupero dell'informazione per Bioinformatica LAB. 8 PRTools (2) Pietro Lovato Corso di Laurea in Bioinformatica Dip. di Informatica Università di Verona A.A. 2015/2016 Ripasso: validazione

Dettagli

Utilizzo di index() per determinare la colonna delle x

Utilizzo di index() per determinare la colonna delle x Utilizzo di index() per determinare la colonna delle x In generale devo essere in grado di costruire un foglio dati con una colonna delle x i cui estremi siano (a,b). Abbiamo visto che le righe sono individuate

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio1_dati.xls.

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO I TEST STATISTICI E IL P-VALUE Obiettivo di questo Learning Object è ripassare la teoria ma soprattutto la pratica dei test statistici, con un attenzione particolare ai test che si usano in Econometria.

Dettagli

Capitolo 7 Guida operativa del programma TQ Controlla

Capitolo 7 Guida operativa del programma TQ Controlla Capitolo 7 Guida operativa del programma TQ Controlla Panoramica delle funzionalità Fornisce un ampio ventaglio di strumenti per il controllo statistico dei processi (SPC) in modo da soddisfare ogni esigenza

Dettagli

La Statistica applicata attraverso l uso del programma R

La Statistica applicata attraverso l uso del programma R La Statistica applicata attraverso l uso del programma R Francesca Parpinel febbraio 2000 1 Introduzione È difficile pensare allo studio della statistica dei fenomeni reali non associato all uso del computer,

Dettagli

Fogli Elettronici: MS Excel

Fogli Elettronici: MS Excel Fogli Elettronici: MS Excel Informatica - A.A. 2010/2011 - Excel 7.0 Foglio Elettronico Un foglio elettronico (o spreadsheet) è un software applicativo nato dall esigenza di: organizzare insiemi di dati

Dettagli

Excel. A cura di Luigi Labonia. e-mail: luigi.lab@libero.it

Excel. A cura di Luigi Labonia. e-mail: luigi.lab@libero.it Excel A cura di Luigi Labonia e-mail: luigi.lab@libero.it Introduzione Un foglio elettronico è un applicazione comunemente usata per bilanci, previsioni ed altri compiti tipici del campo amministrativo

Dettagli

1 La Matrice dei dati

1 La Matrice dei dati Dispense sull uso di Excel Daniela Marella 1 La Matrice dei dati Un questionario è costituito da un insieme di domande raccolte su un determinato supporto (cartaceo o elettronico) e somministrate alla

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio2_dati.xls.

Dettagli

Excel avanzato. I nomi. Gli indirizzi e le formule possono essere sostituiti da nomi. Si creano tramite Inserisci Nome Definisci

Excel avanzato. I nomi. Gli indirizzi e le formule possono essere sostituiti da nomi. Si creano tramite Inserisci Nome Definisci Excel avanzato I nomi marco.falda@unipd.it Gli indirizzi e le formule possono essere sostituiti da nomi documentazione astrazione Si creano tramite Inserisci Nome Definisci Vengono raccolti nell area riferimento

Dettagli

Gianluca Della Vedova. Laboratorio Statistico-Informatico. Altre finestre. Finestre. Data Step. Data set. Data Step: Importazione.

Gianluca Della Vedova. Laboratorio Statistico-Informatico. Altre finestre. Finestre. Data Step. Data set. Data Step: Importazione. Univ. Milano Bicocca http://gianluca.dellavedova.org Lab. Statistico-Informatico Ufficio U7-244 http://gianluca.dellavedova.org gianluca.dellavedova@unimib.it 28 febbraio 2012, revisione 3fa2281 Finestre

Dettagli

Strumenti per la costruzione di modelli economici in Excel. Parte 4. Altre Funzioni

Strumenti per la costruzione di modelli economici in Excel. Parte 4. Altre Funzioni Strumenti per la costruzione di modelli economici in Excel Parte 4. Altre Funzioni Agenda 1. Obiettivi del documento 2. Funzioni basilari 3. Strumenti per analisi di sensitività 4. Strumenti di ottimizzazione

Dettagli

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD.

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Advanced level Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Sommario Toolbox finance Analisi dei portafogli Analisi grafica Determinate Date Toolbox statistics Analisi

Dettagli

Passo 2: avviare Access e creare una tabella per ogni tipo di entità Costruire la tabella per l entità cliente.

Passo 2: avviare Access e creare una tabella per ogni tipo di entità Costruire la tabella per l entità cliente. Realizzare un database con Access Di Antonio Bernardo e Mario Bochicchio Esercizio Una catena di supermercati vuole tener traccia dei prodotti acquistati dai clienti. Di ogni cliente si vuole conoscere

Dettagli

PULSANTI E PAGINE Sommario PULSANTI E PAGINE...1

PULSANTI E PAGINE Sommario PULSANTI E PAGINE...1 Pagina 1 Sommario...1 Apertura...2 Visualizzazioni...2 Elenco...2 Testo sul pulsante e altre informazioni...3 Comandi...3 Informazioni...4 Flow chart...5 Comandi...6 Pulsanti Principali e Pulsanti Dipendenti...6

Dettagli

Laboratorio di Alfabetizzazione Informatica - Esame 20 settembre 2013.

Laboratorio di Alfabetizzazione Informatica - Esame 20 settembre 2013. Laboratorio di Alfabetizzazione Informatica - Esame 20 settembre 2013. Questo documento contiene le istruzioni per lo svolgimento dell esame. La durata della prova è 60 minuti e richiede lo svolgimento

Dettagli

Metodi di analisi dei dati in MINITAB

Metodi di analisi dei dati in MINITAB Metodi di analisi dei dati in MINITAB 73 Metodi di analisi dei dati in MINITAB 4.1 Introduzione ai metodi di analisi dei dati con MINITAB MINITAB dispone di diverse tipologie di comandi per l analisi grafica

Dettagli

Primi passi con R. D. Fioredistella IEZZI e-mail: stella.iezzi@uniroma2.it

Primi passi con R. D. Fioredistella IEZZI e-mail: stella.iezzi@uniroma2.it Primi passi con R Che cosa è Ø R è un ambiente di programmazione (un insieme di funzioni, librerie, oggetti) Ø R è specializzato in analisi dei dati e rappresentazioni grafiche Ø R opera su sistemi operativi

Dettagli

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro,

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro, EXCEL PER WINDOWS95 1.Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area

Dettagli

Quickstart. Cos è GeoGebra? Notizie in pillole

Quickstart. Cos è GeoGebra? Notizie in pillole Quickstart Cos è GeoGebra? Un software di Matematica Dinamica in un pacchetto semplice da usare Per l apprendimento e la didattica a tutti i livelli scolastici Comprende geometria, algebra, tabelle, grafici,

Dettagli