Validazione dei modelli Strumenti quantitativi per la gestione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Validazione dei modelli Strumenti quantitativi per la gestione"

Transcript

1 Validazione dei modelli Strumenti quantitativi per la gestione Emanuele Taufer Validazione dei modelli Il data set Auto I dati Il problema analizzato Validation set approach Diagramma a dispersione Test set e training set Regressione lineare semplice RLS: Test MSE Regressione quadratica Rq: Test MSE Regressione cubica Rc: Test MSE Regressione KNN Input nella funzione knn.reg.1() Calcolare le previsioni con KNN Plot Test MSE e training MSE Plot degli MSE Confronto test MSE Validazione dei modelli In questo esempio consideriamo il data set Auto e: adattiamo un modello di regressione lineare adattiamo una regressione polinomiale adattiamo una regressione KNN (nonparametrica) compariamo i modelli attraverso il calcolo del test MSE Il data set Auto In questo data set vi sono alcuni valori mancanti indicati con?. Nella lettura del file specifichiamo che? indica un valore mancante ( NA ) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 1/17

2 Auto< read.csv("http://www.cs.unitn.it/~taufer/data/auto.csv",header=t,na.strings="?") str(auto) ## 'data.frame': 397 obs. of 9 variables: ## $ mpg : num ## $ cylinders : int ## $ displacement: num ## $ horsepower : int ## $ weight : int ## $ acceleration: num ## $ year : int ## $ origin : int ## $ name : Factor w/ 304 levels "amc ambassador brougham",..: I dati Nel data.frame eliminiamo le righe con i valori mancanti attraverso la funzione complete.cases che crea un vettore logico (T,F,T...) con F in corrispondenza di una riga con uno o più valori mancanti Auto< Auto[complete.cases(Auto),] ## elimino le righe con "NA" head(auto) ## mpg cylinders displacement horsepower weight acceleration year origin ## ## ## ## ## ## ## name ## 1 chevrolet chevelle malibu ## 2 buick skylark 320 ## 3 plymouth satellite ## 4 amc rebel sst ## 5 ford torino ## 6 ford galaxie 500 nrow(auto) ## [1] 392 Il problema analizzato file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 2/17

3 Poiché l obiettivo di questa esercitazione è l applicazione di tecniche di scelta dei modelli, consideriamo un solo predittore: questo ci permetterà di visualizzare i risultati. Proviamo a prevedere il consumo (mpg) in funzione della potenza del motore (horsepower) L obiettivo è dunque stimare f nel modello Stimiamo f attraverso diversi modelli: 1. regressione lineare semplice, quadratica e cubica (modello parametrico) 2. regressione KNN (non parametrico) Validation set approach Per validare i modelli utilizzeremo il cd validation set approach, in cui una parte dei dati a disposizione è messa da parte e utilizzata come test set. Il test MSE calcolato dai dati test sarà utilizzato per scegliere K nella regressione KNN comparare i diversi modelli stimati Diagramma a dispersione plot(auto$horsepower,auto$mpg) mpg = f(horsepower) + ε file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 3/17

4 Test set e training set Il dataset è composto da 392 unità. Suddividiamo casualmente il dataset in due parti: il training set il test set unità unità Individuiamo le unità del training set con la funzione sample(). Il vettore train definito sotto contiene le posizioni selezionate set.seed(1) train=sample(392,292) train file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 4/17

5 [1] [18] [35] [52] [69] [86] [103] [120] [137] [154] [171] [188] [205] [222] [239] [256] [273] [290] Costruiamo i due data set, test e training, utilizzando i risultati del campionamento: Auto.test< Auto[ train,] nrow(auto.test) [1] 100 Auto.train< Auto[train,] nrow(auto.train) [1] 292 Regressione lineare semplice rls< lm(mpg~horsepower, data=auto.train) summary(rls) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 5/17

6 Call: lm(formula = mpg ~ horsepower, data = Auto.train) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) <2e 16 *** horsepower <2e 16 *** Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 290 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 1 and 290 DF, p value: < 2.2e 16 plot(auto$horsepower,auto$mpg) abline(rls,col="red",lwd=2) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 6/17

7 RLS: Test MSE Il calcolo del test MSE può essere fatto molto semplicemente definendo la media delle differenze al quadrato tra i valori di mpg nel test set e la loro previsione in base al modello rls test.mse.rls< mean((auto.test$mpg predict(rls,auto.test))^2) test.mse.rls [1] Regressione quadratica rq< lm(mpg~poly(horsepower,2), data=auto.train) summary(rq) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 7/17

8 Call: lm(formula = mpg ~ poly(horsepower, 2), data = Auto.train) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e 16 *** poly(horsepower, 2) < 2e 16 *** poly(horsepower, 2) e 15 *** Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 289 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 2 and 289 DF, p value: < 2.2e 16 plot(auto$horsepower,auto$mpg) lines(sort(auto$horsepower),predict(rq,auto)[order(auto$horsepower)],col="red",lwd=2) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 8/17

9 Rq: Test MSE test.mse.rq< mean((auto.test$mpg predict(rq,auto.test))^2) test.mse.rq [1] Regressione cubica rc< lm(mpg~poly(horsepower,3), data=auto.train) summary(rc) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 9/17

10 Call: lm(formula = mpg ~ poly(horsepower, 3), data = Auto.train) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) <2e 16 *** poly(horsepower, 3) <2e 16 *** poly(horsepower, 3) e 15 *** poly(horsepower, 3) Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 288 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 3 and 288 DF, p value: < 2.2e 16 plot(auto$horsepower,auto$mpg) lines(sort(auto$horsepower),predict(rc,auto)[order(auto$horsepower)],col="red",lwd=2) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 10/17

11 Rc: Test MSE test.mse.rc< mean((auto.test$mpg predict(rc,auto.test))^2) test.mse.rc ## [1] Regressione KNN Per adattare una regressione KNN ai dati è necessario costruire una funzione ad hoc. La funzione knn.reg.1() disponibile nel file KNNR.r è appropriata per il caso di un solo regressore e automaticamente produce le previsioni per il vettore di dati x.test dato l input x.train e l output y.train. E possibile specificare una lista (o anche solo uno) di valori di K da considerare file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 11/17

12 Per indicare ad R dove trovare la funzione knn.reg.1(), copiare il file KNNR.r nella directory di lavoro di R e richiamarlo con la funzione source() knn.reg.1 < function(klist,x.train,y.train,x.test) # Regressione k nearest neighbors # # klist è la lista dei valori K da usare # x.train, y.train: il training set (indipendente dipendente) # x.test: il test set # Output: una matrice di valori previsti per il test set (una colonna per ogni K in kl ist) source("knnr.r") Input nella funzione knn.reg.1() In questo caso, la funzione knn.reg.1(), ci chiede di fornire come input i dati separati in variabile dipendente indipendente, test e training. x.train< Auto.train$horsepower y.train< Auto.train$mpg x.test< Auto.test$horsepower y.test< Auto.test$mpg Calcolare le previsioni con KNN Con il codice seguente calcoliamo le previsioni del modello KNN per valori di K da 1 a 60 ( klist=seq(60) ): y.pred.train contiene i valori previsti per il training set y.pred.test contiene i valori previsti per il test set klist< seq(60) # testiamo i risultati per k=1,2, y.pred.train< knn.reg.1(klist,x.train,y.train,x.train) y.pred.test< knn.reg.1(klist,x.train,y.train,x.test) Plot file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 12/17

13 plot(auto.train$horsepower,auto.train$mpg) lines(sort(auto.train$horsepower),knn.reg.1(292,x.train,y.train,x.train)[order(auto.trai n$horsepower)],col=1,lwd=2) lines(sort(auto.train$horsepower),knn.reg.1(50,x.train,y.train,x.train)[order(auto.trai n$horsepower)],col=2,lwd=2) lines(sort(auto.train$horsepower),knn.reg.1(10,x.train,y.train,x.train)[order(auto.trai n$horsepower)],col=3,lwd=2) lines(sort(auto.train$horsepower),knn.reg.1(1,x.train,y.train,x.train)[order(auto.train$h orsepower)],col=4,lwd=2) legend("topright",legend=c('k=292','k=50','k=10','k=1'),text.col=seq(4), lty=1, col=se q(4)) Test MSE e training MSE mse.train < apply((y.pred.train y.train)^2, 2, mean) mse.test < apply((y.pred.test y.test)^2, 2, mean) MSE.table< data.frame("k"=klist, "test MSE"=mse.test,"training MSE"=mse.train) knitr::kable(mse.table) K test.mse training.mse file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 13/17

14 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 14/17

15 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 15/17

16 Plot degli MSE Riportiamo in un grafico i valori di MSE ottenuti. Dalla tavola precedente notiamo che il valore di test MSE più basso corrisponde al caso K = 10. Tuttavia per un intervallo di valori K piuttosto ampio questo rimane molto basso. Il valore K = 50 produce una adattamento molto più smussato rispetto al caso K = 10 plot(mse.train, type='l', xlab='k', ylab='mse', col=1, lwd=2) lines(mse.test, col=2, lwd=2) legend("bottomright",legend=c('train','test'),text.col=seq(2), lty=1, col=seq(2)) Confronto test MSE file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 16/17

17 1. RLS: test MSE = RQ: test MSE = RC: test MSE = K = KNN, : test MSE = K = KNN, : test MSE = file:///c:/users/emanuele.taufer/dropbox/3%20sqg/labs/validation.html 17/17

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

MODELLI LINEARI E NON LINEARI IN R

MODELLI LINEARI E NON LINEARI IN R MODELLI LINEARI E NON LINEARI IN R Angelo M. Mineo Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Università degli Studi di Palermo Copyright 2008 Angelo M. Mineo. All rights reserved. i

Dettagli

Materiale didattico per i laboratori di Modelli Statistici I 1

Materiale didattico per i laboratori di Modelli Statistici I 1 Materiale didattico per i laboratori di Modelli Statistici I 1 M. Chiogna, A. Salvan e N. Sartori Anno Accademico 2006-2007 1 Documento preparato con LATEX, Sweave e R 2.4.1 su i386-apple-darwin8.8.1 in

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Note sul linguaggio ed ambiente statistico

Note sul linguaggio ed ambiente statistico Note sul linguaggio ed ambiente statistico Dr. Luca Scrucca Dipartimento di Economia, Finanza e Statistica Sezione di Statistica Università degli Studi di Perugia luca@stat.unipg.it Questo documento fornisce

Dettagli

Introduzione all analisi statistica con R

Introduzione all analisi statistica con R Introduzione all analisi statistica con R Riccardo Massari riccardo.massari@uniroma1.it 1 Introduzione 1.1 Generalità 1.1.1 Che cos è R R è un ambiente basato sul linguaggio S, per la gestione e l analisi

Dettagli

Fondamenti di Informatica. Dichiarazione, creazione e gestione di array in Java

Fondamenti di Informatica. Dichiarazione, creazione e gestione di array in Java Fondamenti di Informatica Dichiarazione, creazione e gestione di array in Java Array in Java - creazione La creazione fa una inizializzazione implicita: num = new int[10]; con valore 0 per int e double,

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Appendice I. Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice

Appendice I. Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice . Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice Ordinamento di osservazioni: PROC SORT PROC SORT DATA=fa il sort è numerico

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

Analisi di massima: L utente dovrà inserire un numero limite, e tramite vari calcoli verrà stampato a video la sequenza.

Analisi di massima: L utente dovrà inserire un numero limite, e tramite vari calcoli verrà stampato a video la sequenza. Relazione tecnica Fibonacci ANDENA GIANMARCO Traccia: Creare un algoritmo che permetta, dato un valore intero e positivo, di stabilire la sequenza utilizzando la regola di fibonacci dei numeri fino al

Dettagli

1x1 qs-stat. Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità. Versione: 1 / Marzo 2010 Doc. n.

1x1 qs-stat. Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità. Versione: 1 / Marzo 2010 Doc. n. 1x1 qs-stat Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità Versione: 1 / Marzo 2010 Doc. n.: PD-0012 Copyright 2010 Q-DAS GmbH & Co. KG Eisleber Str. 2 D - 69469 Weinheim

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Consideriamo il nostro dataset formato da 468 individui e 1 variabili nominali costituite dalle seguenti modalità : colonna D: Age of client

Dettagli

Problem solving avanzato

Problem solving avanzato Problem solving avanzato Formulazione del problema Struttura dati e algoritmo Il programma 2 26 Politecnico di Torino 1 Dati in input (1/4) Sono dati due file di testo, contenenti le informazioni sulle

Dettagli

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento.

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. Excel: le funzioni Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. DEFINIZIONE: Le funzioni sono dei procedimenti

Dettagli

ANALISI DEI DATI CON SPSS

ANALISI DEI DATI CON SPSS STRUMENTI E METODI PER LE SCIENZE SOCIALI Claudio Barbaranelli ANALISI DEI DATI CON SPSS II. LE ANALISI MULTIVARIATE ISBN 978-88-7916-315-9 Copyright 2006 Via Cervignano 4-20137 Milano Catalogo: www.lededizioni.com

Dettagli

Guida rapida. Cos è GeoGebra? Notizie in pillole

Guida rapida. Cos è GeoGebra? Notizie in pillole Guida rapida Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Riunisce geometria, algebra, tabelle,

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

Comandi filtro: sed. Se non si specificano azioni, sed stampa sullo standard output le linee in input, lasciandole inalterate.

Comandi filtro: sed. Se non si specificano azioni, sed stampa sullo standard output le linee in input, lasciandole inalterate. Comandi filtro: sed Il nome del comando sed sta per Stream EDitor e la sua funzione è quella di permettere di editare il testo passato da un comando ad un altro in una pipeline. Ciò è molto utile perché

Dettagli

Scilab: I Polinomi - Input/Output - I file Script

Scilab: I Polinomi - Input/Output - I file Script Scilab: I Polinomi - Input/Output - I file Script Corso di Informatica CdL: Chimica Claudia d'amato claudia.damato@di.uniba.it Polinomi: Definizione... Un polinomio è un oggetto nativo in Scilab Si crea,

Dettagli

Preprocessamento dei Dati

Preprocessamento dei Dati Preprocessamento dei Dati Raramente i dati sperimentali sono pronti per essere utilizzati immediatamente per le fasi successive del processo di identificazione, a causa di: Offset e disturbi a bassa frequenza

Dettagli

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi Appendice III (articolo 5, comma 1 e art. 22 commi 5 e 7) Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi 1. Tecniche di modellizzazione 1.1 Introduzione. In generale,

Dettagli

Allegato A Documentazione introduttiva all utilizzo della SAM regionale nel periodo di cantiere

Allegato A Documentazione introduttiva all utilizzo della SAM regionale nel periodo di cantiere 1 La matrice di contabilità sociale (SAM): uno strumento per la valutazione. Appendice A Documentazione introduttiva all utilizzo della SAM regionale nel periodo di cantiere IPI, 2009 Sono vietate le riproduzioni

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Modulo. Programmiamo in Pascal. Unità didattiche COSA IMPAREREMO...

Modulo. Programmiamo in Pascal. Unità didattiche COSA IMPAREREMO... Modulo A Programmiamo in Pascal Unità didattiche 1. Installiamo il Dev-Pascal 2. Il programma e le variabili 3. Input dei dati 4. Utilizziamo gli operatori matematici e commentiamo il codice COSA IMPAREREMO...

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Grafica e analisi di dati utilizzando GNUPLOT Carlo Meneghini

Grafica e analisi di dati utilizzando GNUPLOT Carlo Meneghini 1 Grafica e analisi di dati utilizzando GNUPLOT Carlo Meneghini Vediamo come graficare dati e funzioni e come effettuare fit non lineari utilizzando il programma: Gnuplot. Gnuplot e un software free, ottenibile

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse Cos è Excel Uno spreadsheet : un foglio elettronico è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse I dati contenuti nelle celle possono essere elaborati ponendo

Dettagli

Queste sono alcune domande che ci sono venute in mente.

Queste sono alcune domande che ci sono venute in mente. Applicazione di metodi statistici per la verifica di Sistemi Qualità in società di servizi. S. Gorla (*), R. Bergami (**), R. Grassi (***), E. Belluco (****) (*) Responsabile Qualità e Certificazione Citroën

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Introduzione al linguaggio C Gli array

Introduzione al linguaggio C Gli array Introduzione al linguaggio C Gli array Vettori nome del vettore (tutti gli elementi hanno lo stesso nome, c) Vettore (Array) Gruppo di posizioni (o locazioni di memoria) consecutive Hanno lo stesso nome

Dettagli

Introduzione a MySQL

Introduzione a MySQL Introduzione a MySQL Cinzia Cappiello Alessandro Raffio Politecnico di Milano Prima di iniziare qualche dettaglio su MySQL MySQL è un sistema di gestione di basi di dati relazionali (RDBMS) composto da

Dettagli

Volume HUMIGRAIN SYSTEM. Manuale d uso

Volume HUMIGRAIN SYSTEM. Manuale d uso Volume 1 HUMIGRAIN SYSTEM Manuale d uso Manuale d uso Fornasier Tiziano & C. S.a.s. Via Mercatelli Maglio, 26 31010 Ponte della Priula (TV) - ITALY tel. +39 0438 445354 fax +39 0438 759210 Sommario Principio

Dettagli

Progettazione Orientata agli Oggetti

Progettazione Orientata agli Oggetti Progettazione Orientata agli Oggetti Sviluppo del software Ciclo di vita del software: comprende tutte le attività dall analisi iniziale fino all obsolescenza (sviluppo, aggiornamento, manutenzione) Procedimento

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

Ricerca sequenziale di un elemento in un vettore

Ricerca sequenziale di un elemento in un vettore Ricerca sequenziale di un elemento in un vettore La ricerca sequenziale o lineare è utilizzata per ricercare i dati in un vettore NON ordinato. L algoritmo di ricerca sequenziale utilizza quan non ha alcuna

Dettagli

Funzioni matlab per la gestione dei file. Informatica B Prof. Morzenti

Funzioni matlab per la gestione dei file. Informatica B Prof. Morzenti Funzioni matlab per la gestione dei file Informatica B Prof. Morzenti File Contenitori di informazione permanenti Sono memorizzati su memoria di massa Possono continuare a esistere indipendentemente dalla

Dettagli

Laboratorio di Statistica con Excel

Laboratorio di Statistica con Excel Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica G. Peano MARIA GARETTO Laboratorio di Statistica con Excel Soluzioni Corso di Laurea in Biotecnologie A.A. 2009/2010 Quaderno # 46

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

Bloodshed Dev-C++ è l IDE usato durante le esercitazioni/laboratorio. IDE = Integrated Development Environment

Bloodshed Dev-C++ è l IDE usato durante le esercitazioni/laboratorio. IDE = Integrated Development Environment Bloodshed Dev-C++ Bloodshed Dev-C++ è l IDE usato durante le esercitazioni/laboratorio IDE = Integrated Development Environment Gerardo Pelosi 01 Ottobre 2014 Pagina 1 di 8 Dev-C++ - Installazione Potete

Dettagli

I.Stat Guida utente Versione 1.7 Dicembre 2010

I.Stat Guida utente Versione 1.7 Dicembre 2010 I.Stat Guida utente Versione 1.7 Dicembre 2010 1 Sommario INTRODUZIONE 3 I concetti principali di I.Stat 4 Organizzazione dei dati 4 Ricerca 5 GUIDA UTENTE 6 Per iniziare 6 Selezione della lingua 7 Individuazione

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

Legge del Raffreddamento di Newton

Legge del Raffreddamento di Newton Legge del Raffreddamento di Newton www.lepla.eu Obiettivo L'obiettivo di questo esperimento è studiare l'andamento temporale della temperatura di un oggetto che si raffredda e trovare un modello matematico

Dettagli

Energy Studio Manager Manuale Utente USO DEL SOFTWARE

Energy Studio Manager Manuale Utente USO DEL SOFTWARE Energy Studio Manager Manuale Utente USO DEL SOFTWARE 1 ANALYSIS.EXE IL PROGRAMMA: Una volta aperto il programma e visualizzato uno strumento il programma apparirà come nell esempio seguente: Il programma

Dettagli

Scrivere uno script php che, dato un array associativo PERSONE le cui chiavi sono i

Scrivere uno script php che, dato un array associativo PERSONE le cui chiavi sono i Esercizi PHP 1. Scrivere uno script PHP che produca in output: 1. La tabellina del 5 2. La tavola Pitagorica contenuta in una tabella 3. La tabellina di un numero ricevuto in input tramite un modulo. Lo

Dettagli

Import Dati Release 4.0

Import Dati Release 4.0 Piattaforma Applicativa Gestionale Import Dati Release 4.0 COPYRIGHT 2000-2005 by ZUCCHETTI S.p.A. Tutti i diritti sono riservati.questa pubblicazione contiene informazioni protette da copyright. Nessuna

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Cos è una stringa (1) Stringhe. Leggere e scrivere stringhe (1) Cos è una stringa (2) DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247

Cos è una stringa (1) Stringhe. Leggere e scrivere stringhe (1) Cos è una stringa (2) DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247 Cos è una stringa (1) Stringhe DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247 Una stringa è una serie di caratteri trattati come una singola unità. Essa potrà includere lettere, cifre, simboli e caratteri

Dettagli

Comandi di Input/Output in Matlab

Comandi di Input/Output in Matlab Comandi di Input/Output in Matlab Il comando format controlla la configurazione numerica dei valori esposta da MAT- LAB; il comando regola solamente come i numeri sono visualizzati o stampati, non come

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n 1 Medie La statistica consta di un insieme di metodi atti a elaborare e a sintetizzare i dati relativi alle caratteristiche di una fissata popolazione, rilevati mediante osservazioni o esperimenti. Col

Dettagli

FUNZIONI AVANZATE DI EXCEL

FUNZIONI AVANZATE DI EXCEL FUNZIONI AVANZATE DI EXCEL Inserire una funzione dalla barra dei menu Clicca sulla scheda "Formule" e clicca su "Fx" (Inserisci Funzione). Dalla finestra di dialogo "Inserisci Funzione" clicca sulla categoria

Dettagli

Introduzione alla statistica descrittiva con R

Introduzione alla statistica descrittiva con R Introduzione alla statistica descrittiva con R Dispensa per il corso Tecniche di Analisi di Dati I, Corso di Laurea Specialistica in Psicobiologia e Neuroscienze Cognitive, Università di Parma, 2013-2014.

Dettagli

Data warehouse.stat Guida utente

Data warehouse.stat Guida utente Data warehouse.stat Guida utente Versione 3.0 Giugno 2013 1 Sommario INTRODUZIONE 3 I concetti principali 4 Organizzazione dei dati 4 Ricerca 5 Il browser 5 GUIDA UTENTE 6 Per iniziare 6 Selezione della

Dettagli

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni Funzioni Le funzioni Con il termine funzione si intende, in generale, un operatore che, applicato a un insieme di operandi, consente di calcolare un risultato, come avviene anche per una funzione matematica

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Manuale operativo per il programma Banco Razzi

Manuale operativo per il programma Banco Razzi Struttura del programma: Manuale operativo per il programma Banco Razzi Addetti Rockets Prove Archivi Calibrazione Prove motori Gestione sensori Nuova Prova Visualizza prova Peso Verticale Anteprima curva

Dettagli

Introduzione al software SEER*Stat

Introduzione al software SEER*Stat Introduzione al software SEER*Stat Claudio Sacchettini, Carlotta Buzzoni, Emanuele Crocetti Registro Tumori Toscano Perché usare il SEER*Stat Alta qualità e competenza dei produttori Orientato alle esigenze

Dettagli

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000.

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000. A0/010226 Pag.1/13 Cliente: Ricerca di Sistema Oggetto: Determinazione della tenacità di acciai eserciti - Correlazioni per stime di FATT da prove Small Punch Ordine: Contratto CESI n. 71/00056 Note: DEGRADO/GEN04/003

Dettagli

La somma di 12 e 30 è 42

La somma di 12 e 30 è 42 Nuovo Esercizio Supponendo che: all operazione somma corrisponda il numero 1 all operazione differenza corrisponda il numero 2 all operazione modulo corrisponda il numero 3 all operazione divisione intera

Dettagli

Installazione LINUX 10.0

Installazione LINUX 10.0 Installazione LINUX 10.0 1 Principali passi Prima di iniziare con l'installazione è necessario entrare nel menu di configurazione del PC (F2 durante lo start-up) e selezionare nel menu di set-up il boot

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

PROGETTO AIR-CAMPANIA: SCHEDA SVAFRA

PROGETTO AIR-CAMPANIA: SCHEDA SVAFRA PROGETTO AIR-CAMPANIA: SCHEDA SVAFRA La Scheda Valutazione Anziano FRAgile al momento dell inserimento è abbinata al paziente. E possibile modificarla o inserirne una nuova per quest ultimo. Verrà considerata

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

Manipolazione di testi: espressioni regolari

Manipolazione di testi: espressioni regolari Manipolazione di testi: espressioni regolari Un meccanismo per specificare un pattern, che, di fatto, è la rappresentazione sintetica di un insieme (eventualmente infinito) di stringhe: il pattern viene

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

FENICE ARREDI. Via Bertolini 49/51 27029 Vigevano (PV) Relazione tecnica

FENICE ARREDI. Via Bertolini 49/51 27029 Vigevano (PV) Relazione tecnica FENICE ARREDI Via Bertolini 49/51 27029 Vigevano (PV) Prove di vibrazione su sistemi per pavimenti tecnici sopraelevati - Four x Four Relazione tecnica Via Ferrata 1, 27100 Pavia, Italy Tel. +39.0382.516911

Dettagli

Obiettivo: fornire rapidamente una introduzione di base a Stata; risolvere i problemi di inserimento e lettura dei dati.

Obiettivo: fornire rapidamente una introduzione di base a Stata; risolvere i problemi di inserimento e lettura dei dati. 1 Esercitazione Stata 18/11/2011 ore 9-12 Obiettivo: fornire rapidamente una introduzione di base a Stata; risolvere i problemi di inserimento e lettura dei dati. Stata, che cos'è Stata è un software statistico

Dettagli

La valutazione degli effetti dei Programmi: il progetto PQM e altre indagini sui dati acquisiti

La valutazione degli effetti dei Programmi: il progetto PQM e altre indagini sui dati acquisiti Seminario Valutazione PON Roma, 29 marzo 2012 La valutazione degli effetti dei Programmi: il progetto PQM e altre indagini sui dati acquisiti Elena Meroni - Università di Padova e INVALSI Daniele Vidoni

Dettagli

FORNASIER TIZIANO & C. S.a.s. Manuale d uso HUMITESTER

FORNASIER TIZIANO & C. S.a.s. Manuale d uso HUMITESTER FORNASIER TIZIANO & C. S.a.s. Manuale d uso HUMITESTER Versione 1.0 del 18.08.2009 Sommario Schermata iniziale Pag. 3 Descrizione tasti del menu Pag. 3 Pagina principale Pag. 4 Pagina set allarmi Pag.

Dettagli

STATA. e la BIOSTATISTICA di Norman - Streiner. Prof. Pierpaolo Vittorini pierpaolo.vittorini@univaq.it

STATA. e la BIOSTATISTICA di Norman - Streiner. Prof. Pierpaolo Vittorini pierpaolo.vittorini@univaq.it e la BIOSTATISTICA di Norman - Streiner pierpaolo.vittorini@univaq.it Università degli Studi dell Aquila Facoltà di Medicina e Chirurgia 14 febbraio 2013 Contenuti e obiettivi Breve riassunto applicativo

Dettagli

Ambienti di sviluppo integrato

Ambienti di sviluppo integrato Ambienti di sviluppo integrato Un ambiente di sviluppo integrato (IDE - Integrated Development Environment) è un ambiente software che assiste i programmatori nello sviluppo di programmi Esso è normalmente

Dettagli

Le pompe di calore II

Le pompe di calore II Le pompe di calore II G.L. Morini Laboratorio di Termotecnica Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale Viale Risorgimento 2, 40136 Bologna COP medio effettivo: SCOP COP

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Dati importati/esportati

Dati importati/esportati Dati importati/esportati Dati importati Al workspace MATLAB script Dati esportati file 1 File di testo (.txt) Spreadsheet Database Altro Elaborazione dati Grafici File di testo Relazioni Codice Database

Dettagli

RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di

RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di esempio CERCA 90 NEL SACCHETTO = estrai num Casi num 90 Effetti CERCA 90 NEL

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

sed: editor non interattivo di file di testo (1974 nei Bell Labs come evoluzione di grep, Lee E. McMahon)

sed: editor non interattivo di file di testo (1974 nei Bell Labs come evoluzione di grep, Lee E. McMahon) Sed & Awk Sed e Awk sed: editor non interattivo di file di testo (1974 nei Bell Labs come evoluzione di grep, Lee E. McMahon) awk: linguaggio per l'elaborazione di modelli orientato ai campi (1977, Bell

Dettagli

Piattaforma Applicativa Gestionale. Import dati. Release 7.0

Piattaforma Applicativa Gestionale. Import dati. Release 7.0 Piattaforma Applicativa Gestionale Import dati Release 7.0 COPYRIGHT 2000-2012 by ZUCCHETTI S.p.A. Tutti i diritti sono riservati. Questa pubblicazione contiene informazioni protette da copyright. Nessuna

Dettagli

PHP: form, cookies, sessioni e. Pasqualetti Veronica

PHP: form, cookies, sessioni e. Pasqualetti Veronica PHP: form, cookies, sessioni e mysql Pasqualetti Veronica Form HTML: sintassi dei form 2 Un form HTML è una finestra contenente vari elementi di controllo che consentono al visitatore di inserire informazioni.

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

Editor vi. Editor vi

Editor vi. Editor vi Editor vi vi 1 Editor vi Il vi è l editor di testo standard per UNIX, è presente in tutte le versioni base e funziona con qualsiasi terminale a caratteri Permette di visualizzare una schermata alla volta

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli