Esercizi svolti di Matematica Finanziaria

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi svolti di Matematica Finanziaria"

Transcript

1 Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione, la duration di Macaulay, e dire approssimativamente senza calcolarlo qual è il prezzo dell obbligazione se il rendimento aumenta dello 0, %. Calcoliamo i fattori di sconto necessari: v 0, k = λ k, k =,..., m. n n In questo caso abbiamo: n = numero di cedole in un anno, m = periodi di pagamento rimasti, λ = 3, 7% rendimento. Per cui i fattori di sconto che ci interessano sono: v 0, = = 0, 99 v 0, = v 0, 3 = v0, = Per cui il prezzo dell obbligazione è: P =, 5 v 0,, 5 v e la duration di Macaulay è: D =, 5 v 0,, 5 v 0, = 0, 98 3 = 0, 973 = 0, 96. 0,, 5 v 0, 3 0, 5 v0, = 0, 8 3, 5 v 0, 3 0, 5 v0, P = 0, 978 anni. La variazione del prezzo ΔP è legata alla variazione del rendimento Δλ nel seguente modo ΔP P D M Δλ, dove D M è la duration modificata D M = D = 0, 969 anni. λ n Per cui se il rendimento aumenta dello 0, %, cioè Δλ = 0, 00, allora la variazione di prezzo è approssimata da ΔP P D M Δλ = 0, 8 0, 969 0, 00 = 0, 98 per cui il nuovo prezzo approssimativamente è P ΔP 0, 8 0, 98 = 0, 05. Esercizio II. Per un prestito di eè previsto un rimborso in 5 anni, con rate annuali immediate posticipate, a quota capitale costante e quota interesse calcolata sui tassi EURIBOR osservati sul mercato, con un tetto massimo del,%. Si osservino sul mercato i seguenti tassi EURIBOR annui: i0, = 3, %, i, =, 6%, i, 3 =, 5%, i3, = 3, 58%, i, 5 = 3, 9%.

2 Scrivere il piano di ammortamento a posteriori, cioè dopo che si sono osservati i tassi sul mercato per il rimborso di tale prestito. Per ogni periodo k, indichiamo con C k = la quota capitale, con I k la quota interessi, con R k la rata, con M k il debito resido, ottenendo: anni C k I k R k M k dove abbiamo usato: I = 0, =.700 I = 0, =.680 I 3 = 0, =.60 I = = 76. I 5 = 0, = 390. Esercizio III. Vendiamo un contratto FRA relativo al periodo forward [, ] espresso in anni, sul capitale di ead un tasso FRA = 3, %. E acquistiamo un contratto FRA relativo allo stesso periodo forward, sul capitale di ead un tasso FRA = 3, 9%. Dopo anni si osserva un tasso spot annuo i, = 3, 6%. Dire in che data avviene il pagamento e se globalmente come somma delle due compravendite paghiamo o riceviamo cioè se perdiamo o guadagnamo e quanto. Per il contratto FRA che vendiamo, in riceviamo , 03 0, 036 = 60, ovvero paghiamo 60e. Per il contratto FRA che acquistiamo, in paghiamo , 039 0, 036 = 300. Per cui al tempo in tutto paghiamo = 90e. Esercizio IV. Comperiamo,6 PUT sul sottostante S con strike K = 70 e maturity T = anni, e vendiamo,5 CALL sul sottostante S con strike K = 80 e maturity T = 3 anni. Descrivere il flusso monetario generato dal nostro portafoglio nei seguenti casi: a. Tra anni si osserva S = 65 e tra 3 anni si osserva S3 = 8. b. Tra anni si osserva S = 80 e tra 3 anni si osserva S3 = 90. Dire che cos è un opzione PUT dare solamente la definizione, in modo conciso, senza scrivere la formula. Caso a: P = K S = = 5, C = S 3 K = 8 80 =, {.6 P,.5 C} {, 3} = {8, 5} {, 3}.

3 Caso b: P = K S = = 0, C = S 3 K = = 0, {.6 P,.5 C} {, 3} = {0, 5} {, 3}. Una PUT su un sottostante S, con maturity T e strike K, è un opzione che dà al detentore il diritto e non l obbligo di vendere, al tempo T, un unità del sottostante al prezzo K. Se in T il valore del sottostante è minore dello strike, allora il detentore ha convenienza a eserciare l opzione cioè a vendere, altrimenti no. 3

4 Esercizio V. Si consideri un obbligazione al, 8%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 5%. Calcolare il prezzo di tale obbligazione, la duration di Macaulay, e dire approssimativamente senza calcolarlo qual è il prezzo dell obbligazione se il rendimento aumenta dello 0, %. Calcoliamo i fattori di sconto necessari: v 0, k = λ k, k =,..., m. n n In questo caso abbiamo: n = numero di cedole in un anno, m = periodi di pagamento rimasti, λ = 3, 7% rendimento. Per cui i fattori di sconto che ci interessano sono: v 0, = v 0, = v 0, 3 = v0, = Per cui il prezzo dell obbligazione è: P =, v 0,, v e la duration di Macaulay è: D =, v 0,, v 0, = 0, 99 = 0, = 0, 97 = 0, ,, v 0, 3 0, v0, = 0, 7 3, v 0, 3 0, v0, P = 0, 98 anni. La variazione del prezzo ΔP è legata alla variazione del rendimento Δλ nel seguente modo ΔP P D M Δλ, dove D M è la duration modificata D M = D = 0, 97 anni. λ n Per cui se il rendimento aumenta dello 0, %, cioè Δλ = 0, 00, allora la variazione di prezzo è approssimata da ΔP P D M Δλ = 0, 7 0, 97 0, 00 = 0, 97 per cui il nuovo prezzo approssimativamente è P ΔP 0, 7 0, 97 = 0, 075. Esercizio VI. Per un prestito di eè previsto un rimborso in 5 anni, con rate annuali immediate posticipate, a quota capitale costante e quota interesse calcolata sui tassi EURIBOR osservati sul mercato, con un tetto massimo del,%. Si osservino sul mercato i seguenti tassi EURIBOR annui: i0, = 3, %, i, =, 5%, i, 3 =, 7%, i3, = 3, 56%, i, 5 = 3, 8%.

5 Scrivere il piano di ammortamento a posteriori, cioè dopo che si sono osservati i tassi sul mercato per il rimborso di tale prestito. Per ogni periodo k, indichiamo con C k = la quota capitale, con I k la quota interessi, con R k la rata, con M k il debito resido, ottenendo: anni C k I k R k M k dove abbiamo usato: I = 0, =.00 I = 0, =.60 I 3 = 0, =.85 I = =.068. I 5 = 0, = 570. Esercizio VII. Vendiamo un contratto FRA relativo al periodo forward [3, 6] espresso in anni, sul capitale di ead un tasso FRA3 6 = 3, 3%. E acquistiamo un contratto FRA relativo allo stesso periodo forward, sul capitale di ead un tasso FRA3 6 = 3, 8%. Dopo 3 anni si osserva un tasso spot annuo i3, 6 = 3, 5%. Dire in che data avviene il pagamento e se globalmente come somma delle due compravendite paghiamo o riceviamo cioè se perdiamo o guadagnamo e quanto. Per il contratto FRA che vendiamo, in 6 riceviamo , = 0, ovvero paghiamo 0e. Per il contratto FRA che acquistiamo, in 6 paghiamo , = 585. Per cui al tempo 6 in tutto paghiamo = 005e. Esercizio VIII. Comperiamo. PUT sul sottostante S con strike K = 68 e maturity T = anni, e vendiamo.7 CALL sul sottostante S con strike K = 8 e maturity T = 3 anni. Descrivere il flusso monetario generato dal nostro portafoglio nei seguenti casi: a. Tra anni si osserva S = 65 e tra 3 anni si osserva S 3 = 8. b. Tra anni si osserva S = 80 e tra 3 anni si osserva S 3 = 90. Dire che cos è un opzione PUT dare solamente la definizione, in modo conciso, senza scrivere la formula. Caso a: P = K S = = 3, C = S 3 K = 8 8 =, {. P,.7 C} {, 3} = {.,.7} {, 3}. 5

6 Caso b: P = K S = = 0, C = S 3 K = 90 8 = 9, {. P,.7 C} {, 3} = {0,.3} {, 3}. Una PUT su un sottostante S, con maturity T e strike K, è un opzione che dà al detentore il diritto e non l obbligo di vendere, al tempo T, un unità del sottostante al prezzo K. Se in T il valore del sottostante è minore dello strike, allora il detentore ha convenienza a eserciare l opzione cioè a vendere, altrimenti no. 6

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS SDA Bocconi School of Management Danilo

unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS SDA Bocconi School of Management Danilo Danilo unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS Definizione Modalità di utilizzo Elementi di valutazione: valore minimo e valore temporale Relazione di parità Copyright SDA

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12 Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005 Matematica finanziaria: svolgimento prova di esame del 5 luglio 5. [5 punti cleai, 5 punti altri] Prestiamo e a un amico. Ci si accorda per un tasso di remunerazione del 6% annuale (posticipato), per un

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012 ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI 2 LE OPZIONI Le opzioni sono contratti che forniscono al detentore il diritto di acquistare o vendere una certa quantità del bene sottostante a una certa

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

Leggi di capitalizzazione

Leggi di capitalizzazione Leggi di capitalizzazione Introduzione Nel capitolo precedente abbiamo introdotto la definizione di fattore montante M(t,s)=V(s)/V(t) Quando M(t,s) viene vista come funzione di t e di s, si chiama legge

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Gli strumenti derivati. Prof. Mauro Aliano mauro.aliano@unica.it

Gli strumenti derivati. Prof. Mauro Aliano mauro.aliano@unica.it Gli strumenti derivati Prof. Mauro Aliano mauro.aliano@unica.it 1 I FRA (Forward Rate Agreement) Sono contratti con i quali due parti si mettono d accordo sul tasso di interesse da applicare ad un certo

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 22 maggio 2009 Cognome Nome e matr..................................................................................

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

LA RISTRUTTURAZIONE DEL DEBITO DEGLI ENTI PUBBLICI

LA RISTRUTTURAZIONE DEL DEBITO DEGLI ENTI PUBBLICI LA RISTRUTTURAZIONE DEL DEBITO DEGLI ENTI PUBBLICI A cura di Gian Nereo Mazzocco Verona, 11 febbraio 2006 La ristrutturazione del debito In base al D.M. 1.12.2003 n. 389 sono consentite le seguenti operazioni:

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT Il Forward Rate Agreement (F.R.A.) è un contratto su tassi di interesse in base al quale due controparti si impegnano a scambiare ad una data futura prestabilita un certo ammontare

Dettagli

Bongini,Di Battista, Nieri, Patarnello, Il sistema finanziario, Il Mulino 2004 Capitolo 2. I contratti finanziari. Capitolo 2 I CONTRATTI FINANZIARI

Bongini,Di Battista, Nieri, Patarnello, Il sistema finanziario, Il Mulino 2004 Capitolo 2. I contratti finanziari. Capitolo 2 I CONTRATTI FINANZIARI Capitolo 2 I CONTRATTI FINANZIARI 1 Indice Definizione di contratto finanziario Contratti finanziari bilaterali e multilaterali Contratto di debito Contratto di partecipazione Contratto assicurativo Contratto

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI I TASSI DI INTERESSE TASSO DI RENDIMENTO EFFETTIVO ALLA SCADENZA (TRES) O YIELD-TO- MATURITY (YTM) Lezione 3 1 I PUNTI PRINCIPALI DELLA LEZIONE o o Misurazione dei tassi di interesse

Dettagli

Gli Strumenti Finanziari secondo. i Principi Contabili Internazionali IAS 32-39

Gli Strumenti Finanziari secondo. i Principi Contabili Internazionali IAS 32-39 Gli Strumenti Finanziari secondo i Principi Contabili Internazionali IAS 32-39 Relatore: Dott. Stefano Grumolato Verona, aprile 2008 Overview dell intervento Strumenti finanziari e tecniche di valutazione

Dettagli

Strategie di copertura rischio tasso

Strategie di copertura rischio tasso Contribuiamo allo sviluppo economico del territorio delle Banche di Credito Cooperativo Strategie di rischio tasso (quotazioni indicativi al 2 marzo 2010) 2 Marzo 2010 2 Indice Analisi della posizione

Dettagli

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Vaalore della call/azione al 15 marzo 2014 Ipotizziamo di aver acquistato 1 azione FIAT al prezzo di 5,5.

Dettagli

La gestione e la ristrutturazione del debito. Luca Buccoliero Marco Meneguzzo Università Bocconi Milano

La gestione e la ristrutturazione del debito. Luca Buccoliero Marco Meneguzzo Università Bocconi Milano La gestione e la ristrutturazione del debito 1 Evoluzione nella gestione del debito: Dalla semplice amministrazione del rimborso del debito, stabilendo piano ammortamento, quote capitale, interessi passivi,

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

I DERIVATI: QUALCHE NOTA CORSO PAS. Federica Miglietta Bari, luglio 2014

I DERIVATI: QUALCHE NOTA CORSO PAS. Federica Miglietta Bari, luglio 2014 I DERIVATI: QUALCHE NOTA CORSO PAS Federica Miglietta Bari, luglio 2014 GLI STRUMENTI DERIVATI Gli strumenti derivati sono così denominati perché il loro valore deriva dal prezzo di una attività sottostante,

Dettagli

( ) i. è il Fattore di Sconto relativo alla scadenza (futura) i-esima del Prestito

( ) i. è il Fattore di Sconto relativo alla scadenza (futura) i-esima del Prestito DURATA FINANZIARIA CORRISPONDENTE AL TASSO FINANZIARIAMENTE EQUIVALENTE Il calcolo della Durata Finanziaria Corrispondente (DFC) al Tasso Finanziariamente Equivalente del Prestito () ha come obiettivo

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Introduzione al Corporate Financial Risk Management. Lorenzo Faccincani

Introduzione al Corporate Financial Risk Management. Lorenzo Faccincani Introduzione al Corporate Financial Risk Management Lorenzo Faccincani 1 Il Corporate Financial Risk Management Il Corporate Financial Risk Management può essere definito come il complesso delle attività

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Alcuni strumenti finanziari particolari Alcuni strumenti proposti nel panorama internazionale Gli strumenti ai quali faremo riferimento sono: i financial

Dettagli

Gestione del rischio tasso

Gestione del rischio tasso CAPIRE E GESTIRE I RISCHI FINANZIARI Gestione del rischio tasso Dott. Corso Pecori Giraldi 25 ottobre 2011 - Sala Convegni S.A.F. SCUOLA DI ALTA FORMAZIONE LUIGI MARTINO Rischio tasso nei clienti dei PB

Dettagli

Strumenti derivati e copertura di rischi finanziari di impresa. Quali competenze per il dottore commercialista.

Strumenti derivati e copertura di rischi finanziari di impresa. Quali competenze per il dottore commercialista. Strumenti derivati e copertura di rischi finanziari di impresa. Quali competenze per il dottore commercialista. STEFANIA TANSINI INTESA SANPAOLO DIVISIONE CORPORATE E INVESTMENT BANKING UFFICIO SPECIAL

Dettagli

Mercati e strumenti derivati (2): Swap e Opzioni

Mercati e strumenti derivati (2): Swap e Opzioni Mercati e strumenti derivati (2): Swap e Opzioni A.A. 2008-2009 20 maggio 2009 Agenda I contratti Swap Definizione Gli Interest Rate Swap Il mercato degli Swap Convenienza economica e finalità Le opzioni

Dettagli

OPERAZIONI DI PRESTITO

OPERAZIONI DI PRESTITO APPUNTI DI ESTIMO La matematica finanziaria si occupa delle operazioni finanziarie, delle loro valutazioni, nonché del loro confronto. Si definisce operazione finanziaria, qualsiasi operazione che prevede

Dettagli

Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi. Derivati. Derivati. sciangula@ing.uniroma2.it

Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi. Derivati. Derivati. sciangula@ing.uniroma2.it Dipaimento di Ingegneria dell Impresa Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi A cura di: Ing. Fiorella Sciangula sciangula@ing.uniroma2.it 1 Opzioni: variabili Prezzo Spot, o valore

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

Domanda 1: Valutazione e Analisi di Obbligazioni

Domanda 1: Valutazione e Analisi di Obbligazioni Domanda 1: Valutazione e Analisi di (48 punti) Il Sig. Smith è responsabile per gli investimenti obbligazionari presso una società di consulenza finanziaria, e ha analizzato la curva di rendimento delle

Dettagli

Il modello binomiale ad un periodo

Il modello binomiale ad un periodo Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

RISOLUZIONE N. 58/E. OGGETTO: Operazioni di asset swap su Obbligazioni Generali 6,5% 2010. Interpello art. 11 legge 27-7-2000, n. 212 XY S.p.A.

RISOLUZIONE N. 58/E. OGGETTO: Operazioni di asset swap su Obbligazioni Generali 6,5% 2010. Interpello art. 11 legge 27-7-2000, n. 212 XY S.p.A. RISOLUZIONE N. 58/E Direzione Centrale Normativa e Contenzioso Roma, 06 marzo 2003 OGGETTO: Operazioni di asset swap su Obbligazioni Generali 6,5% 2010. Interpello art. 11 legge 27-7-2000, n. 212 XY S.p.A.

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 3 Piani di ammortamento Esercizio 1. Un prestito di 12000e viene rimborsato in 10 anni con rate

Dettagli

Il rischio di cambio Cenni sugli strumenti di copertura I cambi a termine forwards Le opzioni sui cambi

Il rischio di cambio Cenni sugli strumenti di copertura I cambi a termine forwards Le opzioni sui cambi Il rischio di cambio Cenni sugli strumenti di copertura I cambi a termine forwards Le opzioni sui cambi Verona, 8/4/2006 Dr. Marco Rubini 1 Indice dell intervento Rappresentazione grafica del rischio di

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1 Matematica finanziaria: svolgimento della prova di esame del 4 settembre. Calcolare il montante che si ottiene dopo anni con un investimento di e in regime nominale al tasso annuale del % pagabile due

Dettagli

1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università

Dettagli

Parte prima I prodotti del mercato monetario e obbligazionario 1

Parte prima I prodotti del mercato monetario e obbligazionario 1 00_caparrelli 20-01-2004 13:10 Pagina VII Prefazione XIII Parte prima I prodotti del mercato monetario e obbligazionario 1 Capitolo 1 I prodotti del mercato monetario 3 1.1 Introduzione al mercato monetario

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

PERCORSO FUNZIONALE CREDITO

PERCORSO FUNZIONALE CREDITO MPI PERCORSO FUNZIONALE CREDIO DISPENSA DEI DOCENI MAERIALI INEGRAIVI A SUPPORO DELLE LEZIONI CURAORE: C. ZARA LA GESIONE DEL RISCHIO DI ASSO DI INERESSE Questo materiale è a disposizione esclusiva degli

Dettagli

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%.

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%. ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 16 maggio 2008 Cognome Nome e matr..................................................................................

Dettagli

Opzioni americane. Opzioni americane

Opzioni americane. Opzioni americane Opzioni americane Le opzioni di tipo americano sono simili a quelle europee con la differenza che possono essere esercitate durante tutto l intervallo [0, T ]. Supponiamo di avere un opzione call americana

Dettagli

Moneta, titoli e tasso di interesse. Antonella Stirati

Moneta, titoli e tasso di interesse. Antonella Stirati Moneta, titoli e tasso di interesse Antonella Stirati Principali attività finanziarie Esistono diversi tipi di attività finanziarie che possono essere acquistate e detenute da famiglie, banche e imprese

Dettagli

SOLUZIONI ESERCIZI DA SVOLGERE

SOLUZIONI ESERCIZI DA SVOLGERE Vivere l azienda 2 Ripasso del programma di prima classe Soluzioni pag. 1 di 7 SOLUZIONI ESERCIZI DA SVOLGERE Ripasso del programma di prima classe 1.6 CALCOLO DELLE PERCENTUALI DI COMPOSIZIONE DEI FINANZIAMENTI

Dettagli

COSTITUZIONE DI SOCIETA DI CAPITALI

COSTITUZIONE DI SOCIETA DI CAPITALI COSTITUZIONE DI SOCIETA DI CAPITALI Esempio di costituzione di una S.r.l. Si costituisce il 31 ottobre la S.r.l. Beta, con un capitale sociale di 300.000 sottoscritto dai soci seguenti: - socio A: quota

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 27 maggio 2010 Cognome Nome e matr..................................................................................

Dettagli

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia Titoli indicizzati Flavio Angelini Università di Perugia Titoli indicizzati Tra i principali titoli indicizzati del mercato monetario ci sono: Mutui a Tasso Variabile, Obbligazioni a Tasso Variabile, Forward

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 03/11/2015 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

Gli strumenti di finanza derivata a copertura dei rischi finanziari di impresa

Gli strumenti di finanza derivata a copertura dei rischi finanziari di impresa Gli strumenti di finanza derivata a copertura dei rischi finanziari di impresa Francesca Querci Università di Genova Strumenti derivati e copertura dei rischi finanziari d impresa nel nuovo contesto di

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 10 Contenuti della lezione Valutazione di titoli obbligazionari

Dettagli