Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6"

Transcript

1 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6 Alberto Carraro 30 novembre DAIS, Universitá Ca Foscari Venezia 1 Funzioni Turing-calcolabili Finora abbiamo visto le TM come dispositivi per riconoscere linguaggi. Tuttavia una importantissima loro applicazione è il loro utilizzo al fine di calcolare funzioni. Definition 1 (Funzione Turing-calcolabile). Sia f : Σ Σ una funzione parziale e sia M una TM. Diciamo che M calcola f se per ogni w Σ abbiamo che: se w dom(f), allora esiste uno stato finale p tale che la computazione che inizia in (ɛ, q 0, w) termina in (ɛ, p, f(w)). se w dom(f), allora la computazione che inizia in (ɛ, q 0, w) non termina. Una funzione è Turing-calcolabile se esiste una TM che la calcola. È chiaro quindi dalla Definizione 1 che f è una funzione Turing-calcolabile totale sse esiste un decisore M tale che per ogni w Σ esiste uno stato finale p tale che la computazione che inizia in (ɛ, q 0, w) termina in (ɛ, p, f(w)). Non è difficile ora generalizzare la Definizione 1 al caso di funzioni di arietà maggiore di 1. Sia f : (Σ ) n Σ una funzione parziale n-aria e sia M una TM. Diciamo che M calcola f se per ogni n-upla (w 1,..., w n ) di stringhe abbiamo che: se (w 1,..., w n ) dom(f), allora esiste uno stato finale p tale che la computazione che inizia in (ɛ, q 0, w 1 B Bw n ) termina in (ɛ, p, f(w 1,..., w n )). se (w 1,..., w n ) dom(f), allora la computazione che inizia in (ɛ, q 0, w 1 B Bw n ) non termina. Si noti che scrivendo w 1 B Bw n intendiamo la stringa ottenuta concatenando le stringhe w 1,..., w n intervallate dal simbolo blank. Similmente si può generalizzare la Definizione 1 anche al caso di funzioni che operano su insiemi finiti di stringhe. Sia f : P f (Σ ) Σ una funzione parziale e sia M una TM. Diciamo che M calcola f se per ogni n-upla (w 1,..., w n ) di stringhe abbiamo che: se {w 1,..., w n } dom(f), allora esiste uno stato finale p tale che per ogni permutazione σ dei numeri da 1 ad n, la computazione che inizia in (ɛ, q 0, w σ(1) B Bw σ(n) ) termina in (ɛ, p, f({w 1,..., w n })) (ovvero il risultato non dipende dall ordine in cui scrivo le stringhe di input sul nastro).

2 2 A. Carraro se {w 1,..., w n } dom(f), allora per ogni permutazione σ dei numeri da 1 ad n, la computazione che inizia in (ɛ, q 0, w σ(1) B Bw σ(n) ) non termina. Remark 1. Se f, g : Σ Σ sono funzioni Turing-calcolabili parziali, allora f g è una funzione Turing-calcolabile parziale. Definition 2 (Turing-riduzione). Siano L, L Σ due linguaggi. Diciamo che L è Turing-riducibile a L, notazione L T L, sse esiste una funzione f : Σ Σ Turing-calcolabile totale tale che w L f(w) L. Proposition 1. (i) Se L T L, allora L c T (L ) c. (ii) Se L T L T L, allora L T L. Quindi T è un preordine. Proof. (i) Supponiamo che f sia una funzione Turing-calcolabile totale tale che w L f(w) L. Allora vale anche w L c f(w) (L ) c e pertanto L c T (L ) c. (ii) Se f, g sono funzioni calcolabili e totali tali che w L f(w) L e x L g(x) L, allora g f è una funzione calcolabile e totale (per la Remark 1) e w L g(f(w)) L. Theorem 1. Siano L, L Σ due linguaggi e supponiamo L T L. Allora (i) se L è decidibile, allora anche L lo è; (ii) se L è semi-decidibile, allora anche L lo è; (iii) se (L ) c è decidibile, allora anche L c lo è; (iv) se (L ) c è semi-decidibile, allora anche L c lo è. Proof. Chiamiamo f la funzione Turing-calcolabile totale che permette di ridurre L ad L e chiamiamo N la TM che la calcola. (i) Supponiamo che L sia decidibile. Allora esiste un decisore M tale che L(M ) = L. Costruisco una TM M che fa le seguenti cose: data una stringa w Σ calcola f(w) simulando N (che è un decisore); simula M sull input f(w); se quest ultima simulazione accetta f(w), allora dico che M accetta w, altrimenti M non accetta w. Siccome tutte le TM simulate sono decisori, anche M è un decisore e L(M) = L. (ii) Supponiamo che L sia semi-decidibile. Allora esiste una TM M tale che L(M ) = L. Costruisco una TM M che fa le seguenti cose: data una stringa w Σ calcola f(w) simulando N (che è un decisore); simula M sull input f(w); se quest ultima simulazione accetta f(w), allora dico che M accetta w. Si noti che l ultima simulazione può non terminare. In questo caso chiaramente M non accetta w. Infine M è una TM tale che L(M) = L. (iii) Per il punto (i) e la Proposizione 1. (iv) Per il punto (ii) e la Proposizione 1.

3 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6 3 Concludiamo la sezione con un importante osservazione: se A implica B allora non B implica non A. Pertanto abbiamo gratuitamente il seguente corollario al Teorema 1. Corollary 1. Siano L, L Σ due linguaggi e supponiamo L T L. Allora (i) se L non è decidibile, allora nemmeno L lo è; (ii) se L non è semi-decidibile, allora nemmeno L lo è; (iii) se L c non è decidibile, allora nemmeno (L ) c lo è; (iv) se L c non è semi-decidibile, allora nemmeno (L ) c lo è. 2 Macchina di Turing universale Sappiamo, intuitivamente, che una TM può essere utilizzata per simulare un computer che esegue un singolo programma caricato in memoria. La grande potenza delle TM risiede nel fatto che tale programma può essere uno qualsiasi, e quindi anche una sorta di compilatore che legge codifiche di programmi e input ed esegue i primi dandovi in pasto i secondi. In questa sezione descriveremo in maniera formale il fenomeno sopraccitato. Il nostro prossimo obiettivo è quello di elaborare una codifica per le macchine di Turing in modo che ogni TM possa essere pensata come un semplice numero naturale. È molto comodo utilizzare l insieme N dei numeri naturali perchè abbiamo due importanti biiezioni: P f (N) = N e N N = N. Indichiamo con n, m il numero che codifica la coppia (n, m) e con (X) il numero che codifica l insieme finito X N. Utilizzando la funzione, definiamo codifiche di sequenze finite di naturali ponendo induttivamente n 1,..., n k = n 1,..., n k 1, n k. Prima di tutto è importante dire che si può imporre il vincolo che per ogni TM M = (Q, Σ, Γ, δ, q 0, B, F ) gli insiemi Q, Σ siano sottoinsiemi finiti di N e Γ = {0, 1} (ciò non è affatto restrittivo) e che q 0, B, e le direzioni {L, R} siano numeri naturali. Ora la funzione δ non è altro che un insieme finito della forma δ = {((q 1, X 1 ), (p 1, n 1, D 1 )),..., ((q k, X k ), (p k, n k, D k ))} e quindi si può codificare con un unico numero, diciamo m δ. A questo punto possiamo codificare M in maniera univoca con il numero (Q), (Σ), (Γ ), m δ, q 0, (F ). Scriviamo M i per indicare la TM con codice i. In ciò che segue, sarà comodo assegnare un numero naturale ad ogni stringa binaria (e viceversa) in modo che ogni stringa corrisponda ad uno ed un solo numero naturale. Una maniera molto semplice di farlo è ordinare in maniera totale le stringhe binarie secondo l ordine lessicografico. A questo punto ogni stringa appare nell elenco lessicografico e quindi identificheremo il numero i con l i-esima stringa nell elenco. Pertanto la codifica delle TM esibita qui sopra utilizzando i numeri naturali può essere eseguita utilizzando stringhe binarie. Prima di procedere con l utilizzo effettivo delle codifiche per le Macchine di Turing enunciamo un importante risultato, ma senza dimostrarlo, che è alla base della possibilità di costruire quella che chiameremo una Macchina di Turing Universale.

4 4 A. Carraro Proposition 2. Le biiezioni ( ) : P f (N) N e, : N N N sopraccitate sono Turing-calcolabili (usando la codifica dei naturali in stringhe). Definition 3 (Linguaggio universale). Definiamo L u = {w n,m {0, 1} : w n L(M m )}. Chiamiamo L u il linguaggio universale. Theorem 2 (Macchina di Turing universale). Esiste una TM U tale che L(U) = L u. Una macchina come quella citata nel Teorema 2 è detta macchina universale. Non daremo una prova del Teorema 2: tuttavia possiamo garantire che la redazione di tale dimostrazione è paragonabile alla scrittura di un compilatore per un qualche linguaggio di programmazione. Infine, come conseguenza del Teorema 2, il linguaggio L u è semidecidibile. 3 Linguaggi non ricorsivamente enumerabili Definition 4 (Linguaggio diagonale). Definiamo L d = {w i {0, 1} : w i L(M i )}. Chiamiamo L d il linguaggio diagonale. Theorem 3. Il linguaggio L d non è semidecidibile. Proof. Supponiamo per assurdo che esista una TM D tale che L(D) = L d. Allora esiste un numero i tale che D = M i. Ora vediamo l assurdo: se w i L d allora per definizione w i L(M i ), e quindi w i L d se w i L d allora per definizione w i L(M i ), e quindi w i L d Quindi l ipotesi che L d sia semiecidibile è assurda, perché porta al paradosso w i L d w i L d. Definiamo il linguaggio L ne = {w i {0, 1} : L(M i ) }. Proposition 3. L d T (L u ) c T (L ne ) c. Proof. Definiamo la funzione f : {0, 1} {0, 1} ponendo f(w i ) = w i,i. Chiaramente w L d f(w) (L u ) c e f è Turing-calcolabile e totale: questo dimostra che L d T (L u ) c. Dimostriamo L u T L ne. A tal scopo definiamo la funzione g : {0, 1} {0, 1} ponendo g(w n,m ) = w m. Chiaramente w L u g(w) L ne e g è Turing-calcolabile e totale: questo dimostra che L u T L ne. Infine ciò implica che (L u ) c T (L ne ) c. Theorem 4. I linguaggi (L u ) c e (L ne ) c non sono semi-decidibili.

5 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6 5 Proof. Ora per il Teorema 3 L d non è semi-decidibile e quindi per il Corollario 1 e la Proposizione 3 ciò implica che sia (L u ) c che (L ne ) c non sono semi-decidibili. Theorem 5. Il linguaggio L ne = {w i {0, 1} : L(M i ) } è semidecidibile ma non decidibile. Proof. Tramite un argomento informale, diciamo che è possibile definire una TM M che genera in sequenza tutte le coppie di numeri naturali (i, j) e decodifica i in w i e j in M j ; simula M j con input w i ; accetta w j se w i L(M j ). È evidente che L(M) = L ne. Infine la seconda parte dell enunciato segue immediatamente dal fatto che (L ne ) c non è semi-decidibile.

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 5

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 5 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 5 Alberto Carraro 23 novembre 2011 DAIS, Universitá Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Macchine di Turing Le Macchine d

Dettagli

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili roblemi che i calcolatori non possono risolvere E importante sapere se un programma e corretto, cioe fa quello che ci aspettiamo. E facile

Dettagli

La macchina universale

La macchina universale La macchina universale Una immediata conseguenza della dimostrazione è la seguente Corollario il linguaggio L H = {M (w) M rappresenta una macchina di Turing che si ferma con input w} sull alfabeto {0,1}*

Dettagli

Capitolo 7: Teoria generale della calcolabilitá

Capitolo 7: Teoria generale della calcolabilitá Capitolo 7: Teoria generale della calcolabilitá 1 Differenti nozioni di calcolabilitá (che seguono da differenti modelli di calcolo) portano a definire la stessa classe di funzioni. Le tecniche di simulazione

Dettagli

Prob(CCCCCCCCCC) = 1 2 10

Prob(CCCCCCCCCC) = 1 2 10 12. Contenuto di Informazione Algoritmico (AIC) - 17/05/12 Vogliamo adesso introdurre una nozione di contenuto di informazione di una stringa infinita, prodotta da una sorgente di informazione, che non

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

L interesse nella macchina di Turing

L interesse nella macchina di Turing Aniello Murano Macchina di Turing universale e problema della fermata 6 Lezione n. Parole chiave: Universal Turing machine Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ 1. Definizione di funzione Definizione 1.1. Siano X e Y due insiemi. Una funzione f da X a Y è un sottoinsieme del prodotto cartesiano: f X Y, tale che

Dettagli

Varianti Macchine di Turing

Varianti Macchine di Turing Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Macchine di Turing. a n B B. Controllo Finito

Macchine di Turing. a n B B. Controllo Finito Macchine di Turing Il modello standard di macchina di Turing era un controllo finito, un nastro di input, diviso in celle, e una testina che prende in considerazione una cella del nastro alla volta. Il

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1]

Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1] Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1] Macchine di Turing modello di calcolo introdotto dall ingegner Alan Turing nel 1936, per simulare il processo di calcolo umano

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

un nastro di carta prolungabile a piacere e suddiviso in celle vuote o contenenti al più un unico carattere;

un nastro di carta prolungabile a piacere e suddiviso in celle vuote o contenenti al più un unico carattere; Algoritmi 3 3.5 Capacità di calcolo Il matematico inglese Alan Turing (1912-1954) descrisse nel 1936 un tipo di automi, oggi detti macchine di Turing, e fornì una della prime definizioni rigorose di esecuzione

Dettagli

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 8

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 8 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 8 Alberto Carraro DAIS, Università Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Insiemi e predicati ricorsivi e ricorsivamente enumerabili

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10 Alberto Carraro DAIS, Università Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Teoremi fondamentali della Recursion Theory Theorem

Dettagli

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme ESERCIZI SVOLTI 1) Dimostrare che l insieme Allora notiamo che π non è vuoto perché la funzione ovunque divergente appartiene all insieme avendo per dominio l insieme. Inoltre π non coincide con l insieme

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Algoritmi e Complessità

Algoritmi e Complessità Algoritmi e Complessità Università di Camerino Corso di Laurea in Informatica (tecnologie informatiche) III periodo didattico Docente: Emanuela Merelli Email:emanuela.merelli@unicam.it Lezione 2 Teoria

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Fondamenti di Informatica. Computabilità e Macchine di Turing. Prof. Franco Zambonelli Gennaio 2011

Fondamenti di Informatica. Computabilità e Macchine di Turing. Prof. Franco Zambonelli Gennaio 2011 Fondamenti di Informatica Computabilità e Macchine di Turing Prof. Franco Zambonelli Gennaio 2011 Letture Consigliate: Roger Penrose, La Mente Nuova dell Imperatore, Sansoni Editrice. Martin Davis, Il

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Teoria della computazione Quali problemi sappiamo risolvere. A prima vista la domanda può sembrare troppo

Teoria della computazione Quali problemi sappiamo risolvere. A prima vista la domanda può sembrare troppo 1 Teoria della computazione Quali problemi sappiamo risolvere Con quali macchine In assoluto A prima vista la domanda può sembrare troppo generale: Che cosa intendiamo per problema? Un calcolo matematico;

Dettagli

Fondamenti dei linguaggi di programmazione

Fondamenti dei linguaggi di programmazione Fondamenti dei linguaggi di programmazione Aniello Murano Università degli Studi di Napoli Federico II 1 Riassunto delle lezioni precedenti Prima Lezione: Introduzione e motivazioni del corso; Sintassi

Dettagli

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe

Dettagli

Introduzione ai problemi NP-completi

Introduzione ai problemi NP-completi Corso di Algoritmi e Strutture Dati Introduzione ai problemi NP-completi Nuova versione del capitolo 13 delle dispense (basata sui modelli non deterministici) Anno accademico 2007/2008 Corso di laurea

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

2 Progetto e realizzazione di funzioni ricorsive

2 Progetto e realizzazione di funzioni ricorsive 2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

Cos è un Calcolatore?

Cos è un Calcolatore? Cos è un Calcolatore? Definizione A computer is a machine that manipulates data according to a (well-ordered) collection of instructions. 24/105 Riassumendo... Un problema è una qualsiasi situazione per

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

Le parole dell informatica: modello di calcolo, complessità e trattabilità

Le parole dell informatica: modello di calcolo, complessità e trattabilità Le parole dell informatica: modello di calcolo, complessità e trattabilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

Rappresentazione delle informazioni

Rappresentazione delle informazioni Rappresentazione delle informazioni Abbiamo informazioni (numeri, caratteri, immagini, suoni, video... ) che vogliamo rappresentare (e poter elaborare) in un calcolatore. Per motivi tecnologici un calcolatore

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

Sommario. Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi

Sommario. Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi Sommario Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi 1 Tipi di problemi Nelle teorie della calcolabilità e della complessità si considerano problemi di decisione,

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it Lezione 2 Circuiti logici Mauro Piccolo piccolo@di.unito.it Bit e configurazioni di bit Bit: una cifra binaria (binary digit) 0 oppure 1 Sequenze di bit per rappresentare l'informazione Numeri Caratteri

Dettagli

Hardware, software e periferiche. Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre

Hardware, software e periferiche. Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre Hardware, software e periferiche Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre Riepilogo - Concetti di base dell informatica L'informatica è quel settore scientifico disciplinare

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/2/215 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di

Dettagli

LA RAPPRESENTAZIONE DELLE INFORMAZIONI

LA RAPPRESENTAZIONE DELLE INFORMAZIONI ISTITUTO TECNICO E LICEO SCIENTIFICO TECNOLOGICO ANGIOY LA RAPPRESENTAZIONE DELLE INFORMAZIONI Prof. G. Ciaschetti DATI E INFORMAZIONI Sappiamo che il computer è una macchina stupida, capace di eseguire

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

Linguaggi, Modelli, Complessità

Linguaggi, Modelli, Complessità Linguaggi, Modelli, Complessità Giorgio Ausiello Università di Roma La Sapienza Fabrizio d Amore Università di Roma La Sapienza Giorgio Gambosi Università di Roma Tor Vergata Questo documento è stato scritto

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

2. Semantica proposizionale classica

2. Semantica proposizionale classica 20 1. LINGUAGGIO E SEMANTICA 2. Semantica proposizionale classica Ritorniamo un passo indietro all insieme dei connettivi proposizionali che abbiamo utilizzato nella definizione degli enunciati di L. L

Dettagli

*UDQGH]]HUDSSRUWLPLVXUH

*UDQGH]]HUDSSRUWLPLVXUH $OHVVDQGUR&RUGHOOL *UDQGH]]HJHRPHWULFKH I concetti di grandezza e di misura appartengono all esperienza quotidiana. Detto in termini molto semplici, misurare una grandezza significa andare a vedere quante

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Architettura di un computer

Architettura di un computer Architettura di un computer Modulo di Informatica Dott.sa Sara Zuppiroli A.A. 2012-2013 Modulo di Informatica () Architettura A.A. 2012-2013 1 / 36 La tecnologia Cerchiamo di capire alcuni concetti su

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

Macchine a responsabilità limitata

Macchine a responsabilità limitata Macchine a responsabilità limitata Breve Introduzione alla Teoria della Calcolabilità: Tesi di Turing-Church e Problemi (in-)decidibili Roberto Maieli Università degli Studi Roma Tre maieli@uniroma3.it

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

La Macchina RAM Shepherdson e Sturgis (1963)

La Macchina RAM Shepherdson e Sturgis (1963) La Macchina RAM Shepherdson e Sturgis (963) Nastro di ingresso.......... PROGRAM COUNTER Nastro di uscita PROGRAMMA ACCUMULATORE UNITA' ARITMETICA............... 2 3 4 M E M O R I A Formato delle Istruzioni

Dettagli

Le macchine di Turing

Le macchine di Turing Le macchine di Turing Alan Turing (1912-1954) 1954) Il problema della decisione i L Entscheidungsproblem [il problema della decisione] è risolto se si conosce una procedura che permette di decidere la

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

Corso di Analisi Matematica Serie numeriche

Corso di Analisi Matematica Serie numeriche Corso di Analisi Matematica Serie numeriche Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 25 1 Definizione e primi esempi 2 Serie a

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

Due dimostrazioni alternative nella teoria di Ramsey

Due dimostrazioni alternative nella teoria di Ramsey Due dimostrazioni alternative nella teoria di Ramsey 28 Marzo 2007 Introduzione Teoria di Ramsey: sezione della matematica a metà tra la combinatoria e la teoria degli insiemi. La questione tipica è quella

Dettagli

Appunti di Teoria descrittiva della complessità. Alessandro Achille, Giovanni Paolini

Appunti di Teoria descrittiva della complessità. Alessandro Achille, Giovanni Paolini Appunti di Teoria descrittiva della complessità Alessandro Achille, Giovanni Paolini 19 dicembre 2014 2 Indice 1 Definizioni 5 1.1 Macchine di Turing deterministiche..................... 5 1.2 Macchine

Dettagli

Appunti ed esercizi di combinatoria. Alberto Carraro

Appunti ed esercizi di combinatoria. Alberto Carraro Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza

Dettagli

Indecidibilità, indefinibilità e incompletezza. 1

Indecidibilità, indefinibilità e incompletezza. 1 Indecidibilità, indefinibilità e incompletezza. 1 Possiamo ora trattare unitariamente alcuni dei principali risultati negativi della logica: il teorema di Church sull'indecidibilità della logica, il teorema

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

Semantica Assiomatica

Semantica Assiomatica Semantica Assiomatica Anche nella semantica assiomatica, così come in quella operazionale, il significato associato ad un comando C viene definito specificando la transizione tra stati (a partire, cioè,

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali

Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali 1 Modelli imperativi: le RAM (Random Access Machine) I modelli di calcolo imperativi sono direttamente collegati al modello Von Neumann,

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli