Logica combinatoria. La logica digitale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Logica combinatoria. La logica digitale"

Transcript

1 Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND, OR, ecc) lcune porte, collegate opportunamente, possono formare una memoria di un bit (bistabile) Combinando N memorie di un bit si può formare un registro capace di memorizzare un numero binario (non più grande di 2 N -1) Combinando le porte si realizzano i circuiti che formano i calcolatori Luciano aresi 2 1

2 Porte logiche Segnali e informazioni Per elaborare informazioni, occorre rappresentarle (o codificarle) Per rappresentare (o codificare) le informazioni si usano segnali I segnali devono essere elaborati, nei modi opportuni, tramite dispositivi di elaborazione Segnale binario una grandezza che può assumere due valori distinti, convenzionalmente indicati con 0 e 1 s {0, 1} Qualsiasi informazione è rappresentabile (o codificabile) tramite uno o più segnali binari (per esempio i caratteri del codice SCII) Luciano aresi 4 2

3 Il segnale binario Rappresentazione fisica del segnale binario: si usano svariate grandezze fisiche tensione elettrica (la più usata!) corrente elettrica potenza ottica altre grandezze fisiche Elaborazione del segnale binario: si usano svariate classi di dispositivi di elaborazione porte logiche reti combinatorie reti sequenziali Sono tutti circuiti digitali (o numerici) Luciano aresi 5 Porte logiche I circuiti digitali sono formati da componenti digitali elementari, chiamati porte logiche Le porte logiche sono i circuiti minimi per l elaborazione di segnali binari L elemento funzionale fondamentale per la costruzione di porte logiche è il transistor Classificazione Per modo di funzionamento: porta NOT, porta porta ND, porta OR (sono le porte logiche fondamentali) Per numero di ingressi: porte a 1 ingresso, porte a 2 ingressi, porte 3 ingressi, e così via... Luciano aresi 6 3

4 La porta NOT (invertitore) Se l ingresso vale 0 Volt, l uscita vale 5 Volt Se l ingresso vale 5 Volt, l uscita vale 0 Volt Se ai valori di tensione 0 e 5 Volt si associano convenzionalmente i valori binari 0 e 1, rispettivamente, si ottiene la cosiddetta tabella delle verità della porta logica, che corrisponde alla tabella di commutazione Luciano aresi 7 Porta NOT (invertitore, negatore) Simbolo funzionale X (a 1 ingresso) X simbolo semplificato Tabella delle verità X L uscita vale 1 se e solo se l ingresso vale 0 Luciano aresi 8 4

5 Porta ND Simbolo funzionale (a 2 ingressi) L uscita vale 1 se e solo se entrambi gli ingressi valgono 1 X Tabella delle verità X Luciano aresi 9 Porta OR Simbolo funzionale (a 2 ingressi) L uscita vale 1 se e solo se almeno un ingresso vale 1 X Tabella delle verità X Luciano aresi 10 5

6 Generalizzazioni lcuni tipi di porte a 2 ingressi si possono generalizzare a 3, 4, ecc ingressi Le due porte a più ingressi maggiormente usate sono la porta ND e la porta OR Tipicamente si usano ND (o OR) a 2, 4 o 8 ingressi (raramente più di 8) L uscita X della porta ND a 3 ingressi vale 1 se e soltanto se tutti e tre gli ingressi, e C valgono 1 L uscita X della porta OR a 3 ingressi vale 1 se e soltanto se almeno uno tra gli ingressi, e C vale 1 Si generalizza a più ingressi nel modo ovvio... Luciano aresi 11 Porta ND a 3 ingressi C Simbolo funzionale L uscita vale 1 se e solo se tutti e 3 gli ingressi valgono 1 X Tabella delle verità C X Luciano aresi 12 6

7 Porta OR a 3 ingressi Simbolo funzionale C L uscita vale 0 se e solo se tutti e 3 gli ingressi valgono 0 X Tabella delle verità C X Luciano aresi 13 Realizzazione ad albero La porta ND a 3 ingressi si realizza spesso come albero di porte ND a 2 ingressi (ma non è l unico modo) C X X C Nota bene: non tutti i tipi di porte a più di 2 ingressi si possono realizzare come alberi di porte a 2 ingressi (funziona sempre con ND e OR) Luciano aresi 14 7

8 lgebra di oole, funzioni e reti combinatorie lgebra di oole L algebra di oole (dal suo inventore G. oole) serve a descrivere matematicamente i circuiti digitali (o circuiti logici) Componenti dell algebra di oole: Operatori booleani Regole di trasformazione ed equivalenza tra operatori booleani Luciano aresi 16 8

9 Operatori booleani Nome Operazione Porta associata Inversione X =! Porta NOT Somma logica X = + Porta OR Prodotto logico X = Porta ND, e X sono variabili booleane,, X {0, 1} Il prodotto ha precedenza sulla somma Luciano aresi 17 Operatori booleani Somma Prodotto Inversione = = 0!0 = = = 0!1 = = = = = 1 Sono le tabelle delle verità della porta logica OR, ND e NOT, rispettivamente Luciano aresi 18 9

10 Proprietà degli op. booleani lcune proprietà degli operatori booleani somigliano a quelle dell algebra numerica tradizionale ltre sono piuttosto diverse (per esempio la proprietà di assorbimento)! Le proprietà degli operatori booleani si possono usare per trasformare espressioni booleane Luciano aresi 19 Proprietà degli op. booleani Legge Prodotto logico (ND) Somma logica (OR) Identità 1 = 0 + = Elemento nullo 0 = = 1 Idempotenza = + = Inverso! = 0 +! = 1 Commutativa = + = + ssociativa ( ) C = ( C) ( + ) + C = + ( + C) Distributiva + C = ( + ) ( + C) ( + C) = + C ssorbimento ( + ) = + = De Morgan!( ) =! +!!( + ) =!! Luciano aresi 20 10

11 Esempi F =!XYZ +!XY!Z + XZ F =!XY(Z +!Z) + XZ F =!XY1 + XZ F =!XY + XZ F = +! +!C F = +!(1+C) F = +!1 F = +! F = ( +!)( + ) F = 1( + ) F = + Luciano aresi 21 Tabella delle verità La tabella delle verità è un modo per rappresentare il comportamento di una funzione combinatoria La tabella delle verità ha due colonne: colonna degli ingressi, le cui righe contengono tutte le combinazioni di valori delle variabili della funzione colonna dell uscita, che riporta i corrispondenti valori assunti dalla funzione Luciano aresi 22 11

12 Esempio n = 3 ingressi colonna ingressi 2 n = 2 3 = 8 righe # riga C + /C F / / / / / / / /1 1 (per comodità nella colonna centrale è riportato anche il calcolo) colonna uscita Luciano aresi 23 Rete combinatoria ogni funzione combinatoria, data come espressione booleana, si può sempre associare un unico circuito digitale, formato da porte logiche, che viene chiamato rete combinatoria Gli ingressi della rete combinatoria sono le variabili della funzione L uscita della rete combinatoria emette il valore assunto dalla funzione Luciano aresi 24 12

13 Esempio F(,, C) = +!C rete combinatoria C / C F Luciano aresi 25 Rete combinatoria Una rete combinatoria è un circuito digitale: dotato di n 1 ingressi principali e di un uscita formato da porte logiche ND, OR e NOT e privo di retroazioni Eventualmente, una rete combinatoria può anche essere formata da porte logiche di altro tipo La tabella delle verità di una rete combinatoria può anche essere ricavata per simulazione del funzionamento circuitale della rete combinatoria stessa Per simulare il funzionamento circuitale di una rete combinatoria, si applicano dei valori agli ingressi, e li si propaga lungo la rete fino all uscita Luciano aresi 26 13

14 Simulazione circuitale (corrisponde alla riga 0 della tabella) C F Risultato della simulazione: F(0, 0, 0) = 1 Luciano aresi 27 Simulazione circuitale # riga C! +!C +! C F !0 0 +!0 +!0 0 1 (per comodità è riportato anche il calcolo) !0 0 +!1 +! !0 1 +!0 +! !0 1 +!1 +! !1 0 +!0 +! !1 0 +!1 +! !1 1 +!0 +! !1 1 +!1 +!1 1 0 Luciano aresi 28 14

15 Sintesi di reti combinatorie La sintesi di una rete combinatoria espressa come tabella delle verità, consiste nel ricavare lo schema logico (il circuito digitale) che calcola la funzione combinatoria In generale, per una data tabella delle verità possono esistere più reti combinatorie (la soluzione al problema di sintesi non è dunque unica) Due funzioni diverse sono le stesse se e solo se hanno la stessa tabella delle verità Luciano aresi 29 Sintesi di reti combinatorie Esistono svariate procedure di sintesi di reti combinatorie, che differiscono per: Complessità della procedura di sintesi Ottimalità della rete combinatoria risultante, per dimensioni e velocità Una tecnica di sintesi semplice e universale, benché non sempre ottimale, è la sintesi in 1a forma canonica, o come somma di prodotti (mintermini) Si considerano le righe della tabella delle verità il cui valore è 1 2a forma canonica: la funzione può essere espressa come il prodotto logico dei termini somma (maxtermini) Si considerano le righe della tabella delle verità il cui valore è 0 Luciano aresi 30 15

16 Sintesi in 1a forma canonica (o sintesi come somma di prodotti) Scrivere la tabella delle verità, a n 1 ingressi, della funzione da sintetizzare Introdurre n invertitori per generare la negazione di ogni segnale di ingresso principale Introdurre una porta ND a n ingressi per ogni 1 presente nella colonna dell uscita della tabella delle verità Collegare gli ingressi delle porte ND così introdotte agli ingressi principali, in forma diretta o negata, in modo appropriato Inviare l uscita di tutte le porte ND a un unica porta OR, dotata di tanti ingressi quante sono le porte ND così introdotte Vale il duale per la seconda forma canonica Si complementano le variabili il cui valore è 1 Luciano aresi 31 Funzione maggioranza Si chiede di sintetizzare (in 1a forma canonica) una funzione combinatoria dotata di 3 ingressi, e C, e di un uscita F, funzionante come segue: Se la maggioranza degli ingressi vale 0, l uscita vale 0 Se la maggioranza degli ingressi vale 1, l uscita vale 1 La tabella delle verità della funzione maggioranza è mostrata a lato L uscita vale 1 se e solo se 2 o tutti e 3 gli ingressi valgono 1 (cioè se e solo se il valore 1 è in maggioranza) # r i g a C F Luciano aresi 32 16

17 Rete combinatoria schema logico C!!!C 0 1 1! C 1 0 1! C F C 1 1 0!C C Luciano aresi 33 Espressione booleana Dallo schema logico della rete combinatoria così sintetizzata, si può ricavare la funzione combinatoria data come espressione booleana F(,, C) =! C +! C +!C + C Nota bene: è una somma di prodotti Luciano aresi 34 17

18 Reti combinatorie equivalenti Una funzione combinatoria, data come tabella delle verità, può ammettere più reti combinatorie differenti che la sintetizzano Reti combinatorie che realizzano la medesima funzione combinatoria si dicono equivalenti Esse hanno tutte la stessa funzione, ma struttura (e costo) differente Luciano aresi 35 Due reti equivalenti C C + C ( + C ) F F F1 = + C F2 = ( + C) Trasformazione: F1 = + C = = ( + C) = = F2 (prop. distributiva) C + C Luciano aresi 36 18

19 Costo e velocità Il costo di una rete combinatoria si valuta in vari modi (criteri di costo): Numero di porte, per tipo di porta e per quantità di ingressi della porta Numero di porte universali (NND o NOR) e altri ancora... La velocità di una rete combinatoria è misurata dal tempo che una variazione di ingresso impiega per modificare l uscita della rete (o ritardo di propagazione) Per calcolare la velocità di una rete combinatoria, occorre conoscere i ritardi di propagazione delle porte logiche componenti la rete, e poi analizzare i percorsi ingressi-uscita Luciano aresi 37 Velocità ns 0 2 ns C 0 1 ns 1 1 ns 3 ns = 5 ns F Ritardo totale = 5 ns = sec Freq. di commutazione = 1 / 5 ns = 200 MHz Luciano aresi 38 19

20 Operatori funzionalmente completi Gli operatori NND e NOR sono funzionalmente completi Significa che con soli NND (NOR) è possibile realizzare qualsiasi funzione logica Combinando opportunamente porte NND è possibile ottenere le funzioni ND, OR e NOT NND NOR X X X Y!(XY) X Y!(X + Y) Luciano aresi 39 ltri operatori XOR OR esclusivo L uscita vale uno solo quando uno dei due ingressi vale uno F = X Y =!XY + X!Y XNOR La negazione del precedente L uscita vale uno solo quando gli ingressi hanno il medesimo valore F = X Y =!X!Y + XY X Y (X Y) X Y (X Y) X X Luciano aresi 40 20

21 Mappe di Karnaugh Due mintermini o maxtermini sono logicamente adiacenti se differiscono per un unico letterale Mappe di karnaugh Per realizzare reti combinatorie su due livelli Utili per funzioni booleane con non più di 5/6 variabili Contengono la stessa informazione delle tabelle delle verità CD Luciano aresi 41 Sintesi con mappe di Karnaugh C D N CD N =!!C +!CD +!!D + D Luciano aresi 42 21

22 Rappresentazioni e aritmetica binaria Rappresentazione in modulo e segno Dato un numero intero N, codificato su n bit, il bit più significativo rappresenta il segno (0 significa positivo e 1 negativo) I restanti n-1 bit rappresentano il valore assoluto del numero N = 6 3 bit + 1 per il segno 0110 N = Problemi con le operazioni aritmetiche elementari nalisi del segno Confronto dei valori assoluti Luciano aresi 44 22

23 Somma tra due numeri NO segno = segno NO > SI RIS = + RIS = - RIS = - segno RIS = segno segno RIS = segno segno RIS = segno Luciano aresi 45 Rappresentazione in complemento a 1 Codifica diversa per semplificare l algoritmo di calcolo Non si distingue più il segno dal modulo Dato un numero N, il suo opposto si calcola complementando ad uno ad uno tutti i bit che compongono il numero N = N = Somma e sottrazione richiedono solo sommatori e negatori (per il calcolo dell opposto) Il risultato è corretto a meno di un 1 nel caso in cui si verifichi un riporto nella somma stessa Quindi si usa sempre una seconda somma per sommare il riporto generato (fosse zero la somma sarebbe inutile) Luciano aresi 46 23

24 Esempio N = (+25) e M = (+3) N + M = = (+28) K = (-3) N + K = = (1) = (+22) I due numeri devono essere rappresentati con lo stesso numero di cifre Sempre due somme Non è la soluzione ottima, ma è la meno costosa Luciano aresi 47 Rappresentazione in complemento a 2 Ulteriore miglioramento, ma rappresentazione sempre più complicata Somme algebriche con una sola addizione Notazione non simmetrica (-2 n-1 N 2 n-1-1) Una sola codifica per il numero zero Numeri positivi stessa codifica Numeri negativi -N è quel numero che sommato a N produce una configurazione di tutti zero e un bit di riporto che si trascura Operativamente Complemento a 1 e poi si somma uno Si scorre il numero da destra a sinistra, lasciando inalterate le cifre fino al primo uno (compreso) e complementando le altre Luciano aresi 48 24

25 Esempio N = (+25) -N = = oppure -N = Salvo solo il primo uno e complemento tutto il resto N = (+25) e M = (+3) K = (-3) N + K = = (1) = (+22) M N = = (-22) ttenzione a leggere i numeri negativi Luciano aresi 49 Confronto Codifica Modulo e segno Complemento a 1 Complemento a Luciano aresi 50 25

26 Circuiti integrati Circuiti integrati Le porte logiche non vengono prodotte isolatamente, ma sono realizzate su circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati transistor e dunque porte logiche, che complessivamente realizzano uno o più circuiti digitali La piastrina di silicio di un circuito integrato ha solitamente dimensioni comprese tra: 5 5 mm e 1 1 cm (di rado superiore) La piastrina di silicio integra i transistor, i collegamenti tra i transistor e i collegamenti con i morsetti di ingresso/uscita del chip Luciano aresi 52 26

27 Famiglie di circuiti integrati I circuiti integrati sono classificati in base alle loro dimensioni, cioè al numero di porte logiche contenute: SSI (Small Scale Integrated): IC a scala di integrazione piccola, da 1 a 10 porte MSI (Medium Scale Integrated): IC a scala di integrazione media, da 10 a 100 porte LSI (Large Scale Integrated): IC a scala di integrazione grande, da 100 a porte VLSI (Very Large Scale Integrated): IC a scala di integrazione molto grande, > porte Ogni famiglia ha degli usi caratteristici nei calcolatori e in generale nei dispositivi elettronici, che dipendono dalle sue dimensioni, ovvero dalla quantità di porte presenti sul circuito integrato stesso Luciano aresi 53 Metodi di progetto logico Nessuno progetta un circuito integrato contenente 10 milioni di transistor, equivalenti a circa 2 milioni di porte logiche ND a 2 ingressi, trattandolo come un unica rete combinatoria (o sequenziale) di dimensioni enormi! Per progettare circuiti digitali di tali dimensioni, si usano tecniche modulari, per scomporre il problema Luciano aresi 54 27

28 Matrici logiche programmabili Esistono circuiti integrati programmabili, chiamati PL (Programmable Logic rray, matrici logiche programmabili), che permettono di realizzare qualsiasi rete combinatoria Il solo limite della PL è dato da: Il numero di piedini (che è fisso) Il numero massimo di porte logiche disponibili sulla PL Il produttore produce e commercializza PL vergini : esse non hanno a bordo alcun circuito digitale definito Spetta al compratore programmare la PL vergine, installandole a bordo una o più reti combinatorie (o anche sequenziali), secondo le esigenze Per programmare la PL occorre un apposito apparato programmatore Luciano aresi 55 Come funziona un PL La PL vergine contiene già un numero fissato di porte logiche ND, OR e NOT (o anche NND, ecc) Nella PL vergine i collegamenti tra queste porte logiche sono però indefiniti La PL vergine contiene delle matrici di microinterruttori a transistor: bruciandoli o lasciandoli intatti si realizzano collegamenti tra le porte L apparato programmatore di PL è in grado di bruciare selettivamente i microinterruttori presenti sulla PL Per farlo, esso applica ad alcuni piedini della PL (piedini di programmazione), speciali valori di tensione elettrica, che agiscono sui microinterruttori L operazione è del tutto automatica e relativamente veloce, e irreversibile Luciano aresi 56 28

29 29 Luciano aresi 57 C D M I C R O I N T E R R U T T O R I M I C R O I N T E R R U T T O R I C F p o r t a n o n u s a t a p o r t a n o n u s a t a D i n g r e s s o n o n u s a t o Funzione maggioranza a tre ingressi Circuiti combinatori elementari

30 Circuiti combinatori elementari Esiste una ben nota e ormai stabilizzata libreria di blocchi funzionali predefiniti di tipo combinatorio Essa contiene blocchi funzionali per tutte le funzioni combinatorie di base Questi blocchi appartengono alle famiglie MSI e (alcuni di essi) LSI La libreria contiene anche blocchi funzionali di tipo sequenziale Luciano aresi 59 Multiplexer Il blocco funzionale multiplexer ha: n 1 ingressi di selezione 2 n 2 ingressi dati un uscita Gli ingressi dati sono numerati a partire da 0: k = 0, 1, 2,, 2 n -1 Se sugli ingressi di selezione è presente il numero binario k, il kesimo ingresso dati viene inviato in uscita Luciano aresi 60 30

31 Un solo ingresso di controllo Ctrl OUT OUT =!!Ctrl +!Ctrl +!Ctrl + Ctrl Ctrl Possibilità di ingressi di più bit OUT = Ctrl +!Ctrl OUT Luciano aresi 61 Multiplexer a 2 ingressi di controllo S 0 S 1 Tabella delle verità I 1 I 2 I 3 I 4 MUX U # riga S1 S0 I1 I2 I3 I4 U X X X X X X X 0 X X X 1 X X X X 0 X X X 1 X X X X X X X 1 1 Luciano aresi 62 31

32 Demultiplexer Circuito logico che effettua l operazione inversa rispetto al MUX (multiplexer) Il blocco funzionale demultiplexer (DEMUX) ha: n 1 ingressi di selezione un ingresso dati 2n 2 uscite Selezione Uscite I S1 S2 O1 O2 O3 O4 D 0 0 D D D 0 0 D D 0 O1 =!S 1!S 2 I O2 = S 1!S 2 I O3 =!S 1 S 2 I O4 = S 1 S 2 I D D Luciano aresi 63 Demultiplexer O1 =!S 1!S 2 I O2 = S 1!S 2 I O3 =!S 1 S 2 I O4 = S 1 S 2 I S 1 S 2 S 1 S 2 O 1 O 1 (00) I O 2 I O 2 (10) O 3 O 3 (01) O 4 DMUX O 4 (11) Luciano aresi 64 32

33 Decoder Il blocco funzionale decoder ha: n 1 ingressi 2 n 2 uscite Le uscite sono numerate a partire da 0: k = 0, 1, 2,, 2 n - 1 Se sugli ingressi è presente il numero binario k, la kesima uscita assume il valore 1 e le restanti uscite assumono il valore 0 Luciano aresi 65 Decoder F1 F2 F3 F F1 =!! F2 =! F3 =! F4 = F 1 F 1 F 2 F 2 F 3 F 4 DECODER F 3 F 4 Luciano aresi 66 33

34 Shifter Effettua lo scorrimento verso sinistra o destra del valore presente agli ingressi Esempio: Sinistra: Destra: sinistra destra S/D 1 0 OUTn INn-1 Nuovo bit OUTi INi-1 INi+1 OUT0 Nuovo bit IN1 Luciano aresi 67 Shifter S/D nuovo bit nuovo I 4 I 3 I 2 I 0 I 1 bit 0 1 MUX 0 1 MUX 0 1 MUX 0 1 MUX 0 1 MUX O 4 O 3 O 2 O 1 O 0 Luciano aresi 68 34

35 Sommatore È la generalizzazione del sommatore completo: addizione di numeri interi binari naturali (positivi) a n bit Ha in ingresso due numeri interi binari naturali e da n 1 bit ciascuno In uscita presenta la somma a n bit dei due numeri interi e Può avere un riporto in ingresso e un riporto in uscita, non sempre usati Luciano aresi 69 Half-adder!! Somma! Carry! 0! 0! 0! 0! 0! 1! 1! 0!!! 1! 0! 1! 0! 1! 1! 0! 1! Carry! Somma =! +! = ±! Carry =! HLF-DDER! Somma! Luciano aresi 70 35

36 Full-hadder Carry in Somma Carry out Carry in Somma = ± ± CarryIn CarryOut = + CarryIn + CarryIn + CarryIn( + ) Carry out Somma FULL-DDER Luciano aresi 71 Sommatore per dati a 3 bit F F H R2 R1 R F F F 0 R2 R1 R0 Luciano aresi 72 36

37 Esempio di progetto in stile funzionale Si chiede di progettare un circuito digitale combinatorio, che abbia: in ingresso due numeri interi binari naturali (positivi) e da n 1 bit ciascuno in ingresso un segnale di comando C in uscita un numero intero binario naturale Z da n 1 bit Su Z deve uscire la somma + se C = 0, la differenza - se C = 1 Luciano aresi 73 Schema logico della soluzione n X + Y X C + S n Y n I 0 S n X - Y X n M U X U I 1 n Z - D n Y (si usa un multiplatore a 2 gruppi di ingressi dati; ciascun gruppo è da n bit) Luciano aresi 74 37

38 Unità ritmetico-logica c o m a n d i d d S u b R i n, P i n L U o p e r a n d i n n C L U E U n r i s u l t a t o e s i t i = 0 < = > R u s c P u s c Luciano aresi 75 Unità ritmetico-logica # riga Comando Operazione R Esito 0 dd somma e + + R in riporto in uscita R usc 1 Sub sottrae da P in prestito in uscita P usc 2 3 Pass Pass passa in uscita passa in uscita 4 Zero annulla uscita 0-5 Shift Left scorre a SX 2 bit più significativo di 6 Shift Right scorre a DX / 2 bit meno significativo di 7 8 Null Compare Confronta con 0 Confronta con - = 0 - <, =, > 9 Multiply prodotto di e riporto in uscita 10 Divide divisione / / divisione per 0? Luciano aresi

39 Schema logico di una LU da 1 bit Luciano aresi 77 Esercizio F0 F1 Output CarryOut LU che effettua ND, OR, NOT e somma algebrica F0 F1 Operazione 0 0 and 0 1 or 1 0! Luciano aresi 78 39

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

CIRCUITI INTEGRATI ESEMPI: INTEL

CIRCUITI INTEGRATI ESEMPI: INTEL CIRCUITI INTEGRATI Costruzione di circuiti (logici e non) su un substrato di silicio. Non solo la parte attiva, ma anche le connessioni tra le porte. Incredibile miglioramento nelle prestazioni, nell affidabilità

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Nella prima lezione... Che cos è il Digitale. Prima parte: Che cos è il Digitale. Che cos è il Digitale. Che cos è il Digitale

Nella prima lezione... Che cos è il Digitale. Prima parte: Che cos è il Digitale. Che cos è il Digitale. Che cos è il Digitale !"$#%!" #% Nella prima lezione... Definizione di Informatica Cosa è una soluzione algoritmica Esempi di algoritmi cicalese@dia.unisa.it 2 Prima parte: Società dell informazione Ma cosa vuol dire società

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

Guida rapida all uso di ECM Titanium

Guida rapida all uso di ECM Titanium Guida rapida all uso di ECM Titanium Introduzione Questa guida contiene una spiegazione semplificata del funzionamento del software per Chiputilizzare al meglio il Tuning ECM Titanium ed include tutte

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org.

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Nuovo documento Anteprima di stampa Annulla Galleria Apri Controllo ortografico Ripristina Sorgente dati Salva Controllo

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo Generatori di segnale Generatore sinusoidale BF Generatori di funzione Generatori sinusoidali a RF Generatori a battimenti Oscillatori a quarzo Generatori per sintesi indiretta 2 2006 Politecnico di Torino

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse Cos è Excel Uno spreadsheet : un foglio elettronico è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse I dati contenuti nelle celle possono essere elaborati ponendo

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

CALCOLATORI ELETTRONICI 15 aprile 2014

CALCOLATORI ELETTRONICI 15 aprile 2014 CALCOLATORI ELETTRONICI 15 aprile 2014 NOME: COGNOME: MATR: Scrivere nome, cognome e matricola chiaramente in caratteri maiuscoli a stampa 1 Di seguito è riportato lo schema di una ALU a 32 bit in grado

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Introduzione ad Access

Introduzione ad Access Introduzione ad Access Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Access E un programma di gestione di database (DBMS) Access offre: un supporto transazionale

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Arduino: Programmazione

Arduino: Programmazione Programmazione formalmente ispirata al linguaggio C da cui deriva. I programmi in ARDUINO sono chiamati Sketch. Un programma è una serie di istruzioni che vengono lette dall alto verso il basso e convertite

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

GENERALITA SUI CONVERTITORI DAC E ADC CONVERTITORI DIGITALE-ANALOGICO DAC

GENERALITA SUI CONVERTITORI DAC E ADC CONVERTITORI DIGITALE-ANALOGICO DAC I.T.I. Modesto PANETTI A R I ia Re David, 86-8-54.54. - 75 ARI Fax 8-54.64.3 Internet http://www.itispanetti.it email : ATF5C@istruzione.it Tesina sviluppata dall alunno Antonio Gonnella della classe 5

Dettagli

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento.

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. Excel: le funzioni Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. DEFINIZIONE: Le funzioni sono dei procedimenti

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA 1. I PROBLEMI E LA LORO SOLUZIONE DAL PROBLEMA AL PROGRAMMA L'uomo, per affrontare gli innumerevoli problemi postigli dallo sviluppo della civiltà, si è avvalso della scienza e della tecnica, i cui destini

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici ELEMENTI DI PROBABILITA Media : migliore stima del valore vero in assenza di altre info. Aumentare il numero di misure permette di approssimare meglio il valor medio e quindi ridurre l influenza degli

Dettagli

Sensori di Posizione, Velocità, Accelerazione

Sensori di Posizione, Velocità, Accelerazione Sensori di Posizione, Velocità, Accelerazione POSIZIONE: Sensori di posizione/velocità Potenziometro Trasformatore Lineare Differenziale (LDT) Encoder VELOCITA Dinamo tachimetrica ACCELERAZIONE Dinamo

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO SCHEMA DELL AZIONAMENTO A CATENA APERTA AZIONAMENTO L azionamento a catena aperta comprende il motore asincrono e il relativo convertitore statico che riceve

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

LE VALVOLE PNEUMATICHE

LE VALVOLE PNEUMATICHE LE VALVOLE PNEUMATICHE Generalità Le valvole sono apparecchi per il comando, per la regolazione della partenza, arresto e direzione, nonché della pressione e passaggio di un fluido proveniente da una pompa

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli