PRBS: Pseudo Random Binary Sequences

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PRBS: Pseudo Random Binary Sequences"

Transcript

1 PRBS: Pseudo Random Binary Sequences Chiara Masiero DEI - UniPD 3 Novembre 2 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

2 Motivazione Contesto Nel processo di identificazione il segnale di ingresso gioca un ruolo determinante. Pseudo Random Binary Sequences: perchè utilizzarle? Sono segnali facili da generare (anche con un circuito digitale) 2 Hanno molte affinità statistiche con il rumore bianco 3 Sono persistentemente eccitanti di ordine grande C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 2 / 8

3 PRBS: di cosa si tratta? Le PRBS sono segnali periodici a tempo discreto che possono assumere solo due valori. Plot of a PRBS of period Figura: PRBS di periodo 7 Solitamente si usano i valori e. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 3 / 8

4 Generazione di una PRBS Per generare PRBS di periodo massimo 2 n si può utilizzare uno shift register ad n stati Algoritmo Si inizializzano i valori a,..., a n, con a i {, } i {,..., n}; 2 Si inizializzano gli n stati dello shift register con valori binari in {, }. 3 Aggiornamento dello stato x k+ (t + ) = x k (t), x (t + ) = n i= a ix i (t). 4 Ad ogni istante: u(t) = x n (t). C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 4 / 8

5 Generazione di una PRBS (2) Per ogni i =,..., n, a i {, }. L aggiornamento di x richiede il calcolo di somme modulo-2 (xor): u u 2 u u 2 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 5 / 8

6 Generazione di una PRBS (3) In spazio di stato, a patto di interpretare tutte le somme che intervengono nell aggiornamento di x (t) come somme modulo-2 (xor): a a 2 a 3... a n... x(t + ) =.... x(t) [ u(t) =... ] x(t) In questo modo si ottiene una sequenza u(t) a valori in {, }. Per avere una sequenza a valori in {a, b} basta considerare u ab = a + (b a)u(t). C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 6 / 8

7 PRBS di periodo massimo: ml PBRS Un registro a n stati permette 2 n possibili combinazioni del vettore di stato x(t) Lo stato x(t) = implica x(t + k) = per ogni k, e quindi u(t) = per ogni t, quindi non è accettabile. ml PRBS Segue che periodo massimo della PRBS è M = 2 n. Si può mostrare che, con un opportuna scelta dei coefficienti a i è possibile ottenere una PRBS di periodo massimo (o massima lunghezza, da cui l acronimo ml-prbs) C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 7 / 8

8 PRBS di periodo massimo (2) Con n = 3, a =, a 2 = e a 3 =, si ottiene la sequenza di stato che ha periodo 4. Con a =, a 2 = e a 3 = la sequenza di stato ha periodo 7: C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 8 / 8

9 PRBS di periodo massimo (3) Motivazione L autocorrelazione di una ml-prbs approssima bene quella di un rumore bianco ( = delta di Kronecker) Come noto, un segnale di periodo T è al più persistentemente eccitante di ordine T. Introduciamo il polinomio: A(z ) = a z a 2 z 2... a n z n Se u(t) è la PRBS generata con tali coefficienti, allora A(z )u(t) =. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 9 / 8

10 PRBS di periodo massimo (4) Lemma Come scegliere i coefficienti di modo che la sequenza sia di periodo massimo M = 2 n? L equazione A(z )u(t) = ha soluzione a periodo 2 n se e solo se sono soddisfatte le seguenti condizioni: il polinomio A(z ) è irriducibile (i.e. non è divisibile per polinomi a coefficienti binari); 2 A(z ) è un fattore di ( z M ) ma non di ( z p ), con p < M = 2 n. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

11 PRBS di periodo massimo (5) Grazie al precedente risultato si ottengono i polinomi che seguono: n A (z ) A 2 (z ) 3 z z 3 z 2 z 3 4 z 2 z 4 z 3 z 4 5 z 2 z 5 z 3 z 5 6 z z 6 z 5 z 6 7 z z 7 z 3 z 7 8 z z 2 z 7 z 8 z z 6 z 7 z 8 9 z 4 z 9 z 5 z 9 z 3 z z 7 z C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

12 Descrizione statistica di una ml-pbrs Proprietà di una ml-prbs u(t) = per 2 n campioni, u(t) = per 2 n campioni (per periodo) 2 u(t) u(t k) = u(t l), per qualche l [, M ] 3 Se x, y {, } allora xy = 2 [x + y (x y)] Con queste proprietà si possono calcolare media e autocorrelazione campionarie della sequenza: m = M M t= u(t) = 2 + 2M, r(τ) = M r() = M M [u(t) m] 2 = M2 4M 2 t= M [u(t + τ) m][u(t) m] = M + 4M 2 t= C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 2 / 8

13 Descrizione statistica di una ml-pbrs (2) Se consideriamo la sequenza u, (t) = 2u(t) otteniamo: m = M, r() = M 2 r(τ) = M M 2 M τ =, 2,..., M Autocorrelation of a PRBS, order C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 3 / 8

14 Descrizione statistica di una ml-pbrs (3) Una PRBS di periodo massimo è persistentemente eccitante (p.e.) di ordine M = 2 n, ma non M +. Infatti la matrice di Toeplitz si ordine k k M... M R k =... M..... M M... M ha rango pieno se e solo se k M. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 4 / 8

15 Descrizione statistica di una ml-pbrs (4) L analogia statistica tra ml-prbs e WN emerge dall analisi statistica dei segnali filtrati: u(t) z.9 u f (t) All aumentare di n la correlazione del segnale d uscita tende a quella ottenuta alimentando il filtro con WN. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 5 / 8

16 In Matlab Nel system identification toolbox è implementata la funzione idinput:» u = idinput(n, prbs ); Costruisce una PRBS di periodo massimo, utilizzando n stati in modo tale che 2 n > N. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 6 / 8

17 Esercitazione Scrivere una funzione che acquisisce in ingresso un intero n [3, ] e genera una PRBS di periodo massimo M = 2 n. Suggerimento: dare un occhiata al comando circshift ed al costrutto cases. Testare questa funzione per diversi valori di n, confrontando la correlazione dei segnali ottenuti con quella di un rumore bianco. Suggerimento: per il calcolo della correlazione della sequenza u usare il comando xcorr(u, biased ). Visualizzare la correlazione di una PRBS filtrata attraverso un filtro IIR del primo ordine, mettendola ancora in confronto con quella di un rumore bianco. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 7 / 8

18 Riferimenti bibliografici Torsten Soderstrom, Petre Stoica System Identification, Cap. 5 Prentice Hall, 989 W.D.T. Davies System Identification for Self-Adaptive Control Ed. Wiley-Interscience, London, 97 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 8 / 8

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Lezione V. Il foglio elettronico

Lezione V. Il foglio elettronico Informatica di Base Lezione V 1 Lezione V In laboratorio userete prevalentemente Microsoft Excel Ma ce ne sono altri, es. Open Office In aula avete sia office 2003 che Calc. (open office) Contabilità e

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Elaborazione delle Immagini Digitali

Elaborazione delle Immagini Digitali Elaborazione delle Immagini Digitali Parte I Prof. Edoardo Ardizzone A.A. 2-22 La trasformata di Hotelling o di Karhunen-Loeve KLT discreta Questa trasformata detta anche analisi delle componenti principali

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Random number generators

Random number generators Statistica computazionale Random number generators www.cash-cow.it Distribuito sotto licenza Creative Common, Share Alike Attribution 2 Indice I. Introduzione II. Processi fisici per la creazione di numeri

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calcolo delle corrispondenze Affrontiamo il problema centrale della visione stereo, cioè la ricerca automatica di punti corrispondenti tra immagini Chiamiamo

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

I Digital Signal Processors 1

I Digital Signal Processors 1 I Digital Signal Processors 1 martedì 11 aprile 2006 in termini rozzi possiamo definirli come dei microcontrollori ottimizzati per avere prestazioni spinte nella realizzazione di filtri di segnali analogici,

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

Esercitazioni in Maple

Esercitazioni in Maple Esercitazioni in Maple 6 giugno 2007 Capitolo 1 Prima esercitazione 1.1 Anelli di polinomi Per cominciare bisogna dichiarare un anello di polinomi. Possiamo lavorare con un qualsiasi anello di tipo dove

Dettagli

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi Benvenuti al al modulo di: di: ELABORAZIONE NUMERICA DEI SEGNALI 6CFU DIGITAL SIGNAL PROCESSING macroarea: Ingegneria Prof. Marina Ruggieri ruggieri@uniroma2.it Ing. Tommaso Rossi tommaso.rossi@uniroma2.it

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Tecniche di Simulazione: Introduzione. N. Del Buono:

Tecniche di Simulazione: Introduzione. N. Del Buono: Tecniche di Simulazione: Introduzione N. Del Buono: 2 Che cosa è la simulazione La SIMULAZIONE dovrebbe essere considerata una forma di COGNIZIONE (COGNIZIONE qualunque azione o processo per acquisire

Dettagli

Computazione per l interazione naturale: macchine che apprendono

Computazione per l interazione naturale: macchine che apprendono Computazione per l interazione naturale: macchine che apprendono Corso di Interazione Naturale! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Macchine a stati finiti sincrone

Macchine a stati finiti sincrone Macchine a stati finiti sincrone Modulo 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Macchine a stati finiti Dall

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Generazione di numeri casuali. Daniela Picin

Generazione di numeri casuali. Daniela Picin Daniela Picin Testi di consultazione Gentle I.E. Random Number Generation and Monte Carlo Methods, 2nd ed. Springer Verlag, 2005 Raj Jain - The Art of Computer Systems Performance Analysis: Techniques

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

Anelli a fattorizzazione unica. Domini ad ideali principali. Anelli Euclidei

Anelli a fattorizzazione unica. Domini ad ideali principali. Anelli Euclidei Capitolo 5: Anelli speciali: Introduzione: Gli anelli speciali sono anelli dotati di ulteriori proprietà molto forti che ne rendono agevole lo studio. Anelli euclidei Domini ad ideali principali Anelli

Dettagli

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30 Elementi di Architettura e Sistemi Operativi Bioinformatica - Tiziano Villa 22 Giugno 2012 Nome e Cognome: Matricola: Posta elettronica: problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema

Dettagli

INTRODUZIONE A EXCEL ESERCITAZIONE I

INTRODUZIONE A EXCEL ESERCITAZIONE I 1 INTRODUZIONE A EXCEL ESERCITAZIONE I Corso di Idrologia e Infrastrutture Idrauliche Prof. Roberto Guercio Cos è Excel 2 Foglio di calcolo o foglio elettronico è formato da: righe e colonne visualizzate

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Applicazione della tsvd all elaborazione di immagini

Applicazione della tsvd all elaborazione di immagini Applicazione della tsvd all elaborazione di immagini A cura di: Mauro Franceschelli Simone Secchi Indice pag Introduzione. 1 Problema diretto.. 2 Problema Inverso. 3 Simulazioni.. Introduzione Scopo di

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

Autenticazione Vocale

Autenticazione Vocale Autenticazione Vocale (A. Gorziglia) INTRODUZIONE: perché usare i sistemi biometrici per l autenticazione. Il motivo principale è quello di impedire all utente di perdere (o dimenticare) la chiave di autenticazione

Dettagli

Perché Codificare i Dati? Codifica dei Dati. Tecniche di Codifica del Segnale. Cooperazione Trasmettitore- Ricevitore

Perché Codificare i Dati? Codifica dei Dati. Tecniche di Codifica del Segnale. Cooperazione Trasmettitore- Ricevitore Università degli studi di Salerno Laurea in Informatica I semestre 03/04 Codifica dei Dati Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ 2 Perché Codificare i

Dettagli

Capitolo 4 Tecnica di analisi on-line

Capitolo 4 Tecnica di analisi on-line Capitolo 4:Tecniche di analisi in on-line 70 Capitolo 4 Tecnica di analisi on-line 4.1 Introduzione L analisi in tempo reale di un sistema complesso comporta la scelta di tecniche di analisi di tipo statistico

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

un protocollo è costituito da una serie di passi (step) e coinvolge due o più persone (parti, entità) allo scopo di svolgere un incarico

un protocollo è costituito da una serie di passi (step) e coinvolge due o più persone (parti, entità) allo scopo di svolgere un incarico protocolli un protocollo è costituito da una serie di passi (step) e coinvolge due o più persone (parti, entità) allo scopo di svolgere un incarico proprietà ogni persona coinvolta deve conoscere il protocollo

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net LEZIONE DI MATLAB 2.0 Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net Cos è Matlab Il programma MATLAB si è imposto in ambiente ingegneristico come strumento per la simulazione e l'analisi dei sistemi

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

Identificazione di sistemi dinamici

Identificazione di sistemi dinamici Scuola universitaria professionale della Svizzera italiana SUP SI Dipartimento Tecnologie Innovative Identificazione di sistemi dinamici Ivan Furlan 21 dicembre 2011 Identificazione di sistemi dinamici

Dettagli

BOZZA Introduzione a MATLAB

BOZZA Introduzione a MATLAB BOZZA Introduzione a MATLAB BOZZA BOZZA Matlab sta per Matrix Laboratory ed è un ambiente interattivo e un linguaggio di calcolo tecnico di alto livello per lo sviluppo di algoritmi, la rappresentazione

Dettagli

INTRODUZIONE A MATLAB Matrix Laboratory

INTRODUZIONE A MATLAB Matrix Laboratory INTRODUZIONE A MATLAB Matrix Laboratory Introduzione Linguaggio di programmazione per applicazioni scientifiche e numeriche Vasto set di funzioni predefininte Interprete di comandi Possibilità di scrivere

Dettagli

Corso di Visione Artificiale. Filtri parte I. Samuel Rota Bulò

Corso di Visione Artificiale. Filtri parte I. Samuel Rota Bulò Corso di Visione Artificiale Filtri parte I Samuel Rota Bulò Filtri spaziali Un filtro spaziale è caratterizzato da un intorno e un'operazione che deve essere eseguita sui pixels dell'immagine in quell'intorno.

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan Spline Nurbs IUAV Disegno Digitale Camillo Trevisan Spline e Nurbs Negli anni 70 e 80 del secolo scorso nelle aziende si è iniziata a sentire l esigenza di concentrare in un unica rappresentazione gestita

Dettagli

Stima spettrale CAPITOLO 8

Stima spettrale CAPITOLO 8 CAPITOLO 8 Stima spettrale 8.1. Introduzione In molte applicazioni è fondamentale poter stimare la densità spettrale di potenza di un processo. Si tratta di realizzare un analizzatore di spettro numerico.

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Segnali passa-banda ed equivalenti passa-basso

Segnali passa-banda ed equivalenti passa-basso Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0,

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Preprocessamento dei Dati

Preprocessamento dei Dati Preprocessamento dei Dati Raramente i dati sperimentali sono pronti per essere utilizzati immediatamente per le fasi successive del processo di identificazione, a causa di: Offset e disturbi a bassa frequenza

Dettagli

Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12};

Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12}; ESERCIZI 2 LABORATORIO Problema 1 Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12}; Chiede all'utente un numero e, tramite ricerca

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

Modelli matematici e realtà:

Modelli matematici e realtà: Piano Lauree Scientifiche Matematica e Statistica 2010-11 Modelli matematici e realtà: sulle equazioni differenziali - prima parte R. Vermiglio 1 1 Dipartimento di Matematica e Informatica - Università

Dettagli

4 Risoluzione del modello di Lotka-Volterra

4 Risoluzione del modello di Lotka-Volterra praticata, il parametro ε è positivo e quindi si ha un numero di prede maggiore e un numero di predatori minore rispetto al caso senza pesca. 4 Risoluzione del modello di Lotka-Volterra Il sistema di Lotka-Volterra

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica CONTROLLI AUTOMATICI e AZIONAMENTI ELETTRICI INTRODUZIONE A MATLAB Ing. Alberto Bellini Tel. 0522 522626 e-mail: alberto.bellini@unimore.it

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

L'algebra di Boole falso vero livello logico alto livello logico basso Volts

L'algebra di Boole falso vero livello logico alto livello logico basso Volts L algebra di Boole L'algebra di Boole comprende una serie di regole per eseguire operazioni con variabili logiche. Le variabili logiche possono assumere solo due valori. I due possibili stati che possono

Dettagli

Analisi dei segnali nel dominio della frequenza

Analisi dei segnali nel dominio della frequenza Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 7 Analisi dei segnali nel dominio della frequenza docente L.Verdoliva In questa lezione affrontiamo il problema dell analisi dei segnali tempo

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Orthogonal Frequency-Division Multiplexing

Orthogonal Frequency-Division Multiplexing Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Firenze, 20 Gennaio 2005 Corso di Sistemi Wireless in Area Locale Orthogonal Frequency-Division Multiplexing Un approccio

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006 Prova scritta 16.02.2006 D. 1 Si derivi l espressione dei legami ingresso-uscita, nel dominio del tempo per le funzioni di correlazione nel caso di sistemi LTI e di segnali d ingresso SSL. Si utilizzi

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Complementi di Controllo Digitale

Complementi di Controllo Digitale Complementi di Controllo Digitale Alberto Bemporad Dipartimento di Ingegneria dell Informazione Università degli Studi di Siena bemporad@dii.unisi.it http://www.dii.unisi.it/~bemporad Corso di Laurea in

Dettagli

PROCESSING NEL DOMINIO OMEGA Scardinare la teoria: DFT (Discrete Fourier Transform)

PROCESSING NEL DOMINIO OMEGA Scardinare la teoria: DFT (Discrete Fourier Transform) 1 PROCESSING NEL DOMINIO OMEGA Scardinare la teoria: DFT (Discrete Fourier Transform) Si desidera una rappresentazione delle sequenze in dominio ω «adatta» a fare processing con filtri digitali 2 E stato

Dettagli

Cenni sull'impiego di Matlab. Matrici

Cenni sull'impiego di Matlab. Matrici Cenni sull'impiego di Matlab Il Matlab è un potente valutatore di espressioni matriciali con valori complessi. Lavorando in questo modo il Matlab indica una risposta ad ogni comando od operazione impartitagli.

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Sistemi di Numerazione un sistema di numerazione è definito da il numero di differenti simboli utilizzati per rappresentare i numeri (BASE) i Sumeri usavano un sistema sessagesimale, basato su 60 simboli

Dettagli

CORSO DI ELETTRONICA DEI SISTEMI DIGITALI

CORSO DI ELETTRONICA DEI SISTEMI DIGITALI CORSO DI ELETTRONICA DEI SISTEMI DIGITALI Capitolo 1 Porte logiche in tecnologia CMOS 1.0 Introduzione 1 1.1 Caratteristiche elettriche statiche di un transistore MOS 2 1.1.1 Simboli circuitali per un

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Trasduttore digitale Rettilineo

Trasduttore digitale Rettilineo Trasduttori digitali Un trasduttore digitale fornisce, costruttivamente, in uscita un segnale digitale; I più diffusi trasduttori digitali sono i codificatori di posizione digitale chiamatiencoder. Gli

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

E solo questione di metodo:

E solo questione di metodo: E solo questione di metodo: problemi e algoritmi di matematica elementare Progetto Lauree Scientifiche Scuola Estiva di Matematica (4092015) Stefano Finzi Vita Dipartimento di Matematica - Sapienza Università

Dettagli

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Elaborazione nel dominio della frequenza

Elaborazione nel dominio della frequenza Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza L.Verdoliva In questa esercitazione esamineremo la trasformata di Fourier discreta monodimensionale e bidimensionale.

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

TECNICHE DI COMPRESSIONE DATI

TECNICHE DI COMPRESSIONE DATI TECNICHE DI COMPRESSIONE DATI COMPRESSIONE DATI La compressione produce una rappresentazione più compatta delle informazioni è come se si usassero meno parole per dire la stessa cosa in modo diverso. Esistono

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo

Dettagli

Proprietá dell immagine digitale

Proprietá dell immagine digitale Capitolo 5 Proprietá dell immagine digitale 5.1 Metrica delle immagini 5.1.1 Distanza Euclidea D E Per una immagine digitale, definita come una matrice bidimensionale, rappresenta una misura quantitativa

Dettagli

CORSO DI FORMAZIONE MODELLAZIONE 3D RENDERING ANIMAZIONE

CORSO DI FORMAZIONE MODELLAZIONE 3D RENDERING ANIMAZIONE RHINOCEROS FLAMINGO PENGUIN BONGO CORSO DI FORMAZIONE MODELLAZIONE 3D RENDERING ANIMAZIONE Gabriele Verducci RHINOCEROS FLAMINGO PENGUIN BONGO INDICE:.01 cenni di informatica differenza tra files bitmap

Dettagli

FONDAMENTI di INFORMATICA Prof. Lorenzo Mezzalira

FONDAMENTI di INFORMATICA Prof. Lorenzo Mezzalira FONDAMENTI di INFORMATICA Prof. Lorenzo Mezzalira Appunti del corso 1 Introduzione all informatica: algoritmi, linguaggi e programmi Indice 1. Introduzione 2. Risoluzione automatica di problemi - Algoritmi

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

Design of Experiments

Design of Experiments Design of Experiments Luigi Amedeo Bianchi 1 Introduzione Cominciamo spiegando cosa intendiamo con esperimento, ossia l investigare un processo cambiando i dati in ingresso, osservando i cambiamenti che

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto Fondamenti di Automatica Modellistica dei sistemi dinamici a tempo discreto Sistemi dinamici a tempo discreto I sistemi dinamici a tempo discreto sono sistemi in cui tutte le grandezze variabili sono funzioni

Dettagli