PRBS: Pseudo Random Binary Sequences

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PRBS: Pseudo Random Binary Sequences"

Transcript

1 PRBS: Pseudo Random Binary Sequences Chiara Masiero DEI - UniPD 3 Novembre 2 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

2 Motivazione Contesto Nel processo di identificazione il segnale di ingresso gioca un ruolo determinante. Pseudo Random Binary Sequences: perchè utilizzarle? Sono segnali facili da generare (anche con un circuito digitale) 2 Hanno molte affinità statistiche con il rumore bianco 3 Sono persistentemente eccitanti di ordine grande C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 2 / 8

3 PRBS: di cosa si tratta? Le PRBS sono segnali periodici a tempo discreto che possono assumere solo due valori. Plot of a PRBS of period Figura: PRBS di periodo 7 Solitamente si usano i valori e. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 3 / 8

4 Generazione di una PRBS Per generare PRBS di periodo massimo 2 n si può utilizzare uno shift register ad n stati Algoritmo Si inizializzano i valori a,..., a n, con a i {, } i {,..., n}; 2 Si inizializzano gli n stati dello shift register con valori binari in {, }. 3 Aggiornamento dello stato x k+ (t + ) = x k (t), x (t + ) = n i= a ix i (t). 4 Ad ogni istante: u(t) = x n (t). C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 4 / 8

5 Generazione di una PRBS (2) Per ogni i =,..., n, a i {, }. L aggiornamento di x richiede il calcolo di somme modulo-2 (xor): u u 2 u u 2 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 5 / 8

6 Generazione di una PRBS (3) In spazio di stato, a patto di interpretare tutte le somme che intervengono nell aggiornamento di x (t) come somme modulo-2 (xor): a a 2 a 3... a n... x(t + ) =.... x(t) [ u(t) =... ] x(t) In questo modo si ottiene una sequenza u(t) a valori in {, }. Per avere una sequenza a valori in {a, b} basta considerare u ab = a + (b a)u(t). C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 6 / 8

7 PRBS di periodo massimo: ml PBRS Un registro a n stati permette 2 n possibili combinazioni del vettore di stato x(t) Lo stato x(t) = implica x(t + k) = per ogni k, e quindi u(t) = per ogni t, quindi non è accettabile. ml PRBS Segue che periodo massimo della PRBS è M = 2 n. Si può mostrare che, con un opportuna scelta dei coefficienti a i è possibile ottenere una PRBS di periodo massimo (o massima lunghezza, da cui l acronimo ml-prbs) C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 7 / 8

8 PRBS di periodo massimo (2) Con n = 3, a =, a 2 = e a 3 =, si ottiene la sequenza di stato che ha periodo 4. Con a =, a 2 = e a 3 = la sequenza di stato ha periodo 7: C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 8 / 8

9 PRBS di periodo massimo (3) Motivazione L autocorrelazione di una ml-prbs approssima bene quella di un rumore bianco ( = delta di Kronecker) Come noto, un segnale di periodo T è al più persistentemente eccitante di ordine T. Introduciamo il polinomio: A(z ) = a z a 2 z 2... a n z n Se u(t) è la PRBS generata con tali coefficienti, allora A(z )u(t) =. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 9 / 8

10 PRBS di periodo massimo (4) Lemma Come scegliere i coefficienti di modo che la sequenza sia di periodo massimo M = 2 n? L equazione A(z )u(t) = ha soluzione a periodo 2 n se e solo se sono soddisfatte le seguenti condizioni: il polinomio A(z ) è irriducibile (i.e. non è divisibile per polinomi a coefficienti binari); 2 A(z ) è un fattore di ( z M ) ma non di ( z p ), con p < M = 2 n. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

11 PRBS di periodo massimo (5) Grazie al precedente risultato si ottengono i polinomi che seguono: n A (z ) A 2 (z ) 3 z z 3 z 2 z 3 4 z 2 z 4 z 3 z 4 5 z 2 z 5 z 3 z 5 6 z z 6 z 5 z 6 7 z z 7 z 3 z 7 8 z z 2 z 7 z 8 z z 6 z 7 z 8 9 z 4 z 9 z 5 z 9 z 3 z z 7 z C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

12 Descrizione statistica di una ml-pbrs Proprietà di una ml-prbs u(t) = per 2 n campioni, u(t) = per 2 n campioni (per periodo) 2 u(t) u(t k) = u(t l), per qualche l [, M ] 3 Se x, y {, } allora xy = 2 [x + y (x y)] Con queste proprietà si possono calcolare media e autocorrelazione campionarie della sequenza: m = M M t= u(t) = 2 + 2M, r(τ) = M r() = M M [u(t) m] 2 = M2 4M 2 t= M [u(t + τ) m][u(t) m] = M + 4M 2 t= C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 2 / 8

13 Descrizione statistica di una ml-pbrs (2) Se consideriamo la sequenza u, (t) = 2u(t) otteniamo: m = M, r() = M 2 r(τ) = M M 2 M τ =, 2,..., M Autocorrelation of a PRBS, order C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 3 / 8

14 Descrizione statistica di una ml-pbrs (3) Una PRBS di periodo massimo è persistentemente eccitante (p.e.) di ordine M = 2 n, ma non M +. Infatti la matrice di Toeplitz si ordine k k M... M R k =... M..... M M... M ha rango pieno se e solo se k M. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 4 / 8

15 Descrizione statistica di una ml-pbrs (4) L analogia statistica tra ml-prbs e WN emerge dall analisi statistica dei segnali filtrati: u(t) z.9 u f (t) All aumentare di n la correlazione del segnale d uscita tende a quella ottenuta alimentando il filtro con WN. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 5 / 8

16 In Matlab Nel system identification toolbox è implementata la funzione idinput:» u = idinput(n, prbs ); Costruisce una PRBS di periodo massimo, utilizzando n stati in modo tale che 2 n > N. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 6 / 8

17 Esercitazione Scrivere una funzione che acquisisce in ingresso un intero n [3, ] e genera una PRBS di periodo massimo M = 2 n. Suggerimento: dare un occhiata al comando circshift ed al costrutto cases. Testare questa funzione per diversi valori di n, confrontando la correlazione dei segnali ottenuti con quella di un rumore bianco. Suggerimento: per il calcolo della correlazione della sequenza u usare il comando xcorr(u, biased ). Visualizzare la correlazione di una PRBS filtrata attraverso un filtro IIR del primo ordine, mettendola ancora in confronto con quella di un rumore bianco. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 7 / 8

18 Riferimenti bibliografici Torsten Soderstrom, Petre Stoica System Identification, Cap. 5 Prentice Hall, 989 W.D.T. Davies System Identification for Self-Adaptive Control Ed. Wiley-Interscience, London, 97 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 8 / 8

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Random number generators

Random number generators Statistica computazionale Random number generators www.cash-cow.it Distribuito sotto licenza Creative Common, Share Alike Attribution 2 Indice I. Introduzione II. Processi fisici per la creazione di numeri

Dettagli

BOZZA Introduzione a MATLAB

BOZZA Introduzione a MATLAB BOZZA Introduzione a MATLAB BOZZA BOZZA Matlab sta per Matrix Laboratory ed è un ambiente interattivo e un linguaggio di calcolo tecnico di alto livello per lo sviluppo di algoritmi, la rappresentazione

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Generazione di numeri casuali. Daniela Picin

Generazione di numeri casuali. Daniela Picin Daniela Picin Testi di consultazione Gentle I.E. Random Number Generation and Monte Carlo Methods, 2nd ed. Springer Verlag, 2005 Raj Jain - The Art of Computer Systems Performance Analysis: Techniques

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Elaborazione delle Immagini Digitali

Elaborazione delle Immagini Digitali Elaborazione delle Immagini Digitali Parte I Prof. Edoardo Ardizzone A.A. 2-22 La trasformata di Hotelling o di Karhunen-Loeve KLT discreta Questa trasformata detta anche analisi delle componenti principali

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Computazione per l interazione naturale: macchine che apprendono

Computazione per l interazione naturale: macchine che apprendono Computazione per l interazione naturale: macchine che apprendono Corso di Interazione Naturale! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Lezione V. Il foglio elettronico

Lezione V. Il foglio elettronico Informatica di Base Lezione V 1 Lezione V In laboratorio userete prevalentemente Microsoft Excel Ma ce ne sono altri, es. Open Office In aula avete sia office 2003 che Calc. (open office) Contabilità e

Dettagli

Esercitazioni in Maple

Esercitazioni in Maple Esercitazioni in Maple 6 giugno 2007 Capitolo 1 Prima esercitazione 1.1 Anelli di polinomi Per cominciare bisogna dichiarare un anello di polinomi. Possiamo lavorare con un qualsiasi anello di tipo dove

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

Capitolo 4 Tecnica di analisi on-line

Capitolo 4 Tecnica di analisi on-line Capitolo 4:Tecniche di analisi in on-line 70 Capitolo 4 Tecnica di analisi on-line 4.1 Introduzione L analisi in tempo reale di un sistema complesso comporta la scelta di tecniche di analisi di tipo statistico

Dettagli

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi Benvenuti al al modulo di: di: ELABORAZIONE NUMERICA DEI SEGNALI 6CFU DIGITAL SIGNAL PROCESSING macroarea: Ingegneria Prof. Marina Ruggieri ruggieri@uniroma2.it Ing. Tommaso Rossi tommaso.rossi@uniroma2.it

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calcolo delle corrispondenze Affrontiamo il problema centrale della visione stereo, cioè la ricerca automatica di punti corrispondenti tra immagini Chiamiamo

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto Fondamenti di Automatica Modellistica dei sistemi dinamici a tempo discreto Sistemi dinamici a tempo discreto I sistemi dinamici a tempo discreto sono sistemi in cui tutte le grandezze variabili sono funzioni

Dettagli

Stima spettrale CAPITOLO 8

Stima spettrale CAPITOLO 8 CAPITOLO 8 Stima spettrale 8.1. Introduzione In molte applicazioni è fondamentale poter stimare la densità spettrale di potenza di un processo. Si tratta di realizzare un analizzatore di spettro numerico.

Dettagli

Applicazione della tsvd all elaborazione di immagini

Applicazione della tsvd all elaborazione di immagini Applicazione della tsvd all elaborazione di immagini A cura di: Mauro Franceschelli Simone Secchi Indice pag Introduzione. 1 Problema diretto.. 2 Problema Inverso. 3 Simulazioni.. Introduzione Scopo di

Dettagli

Identificazione di sistemi dinamici

Identificazione di sistemi dinamici Scuola universitaria professionale della Svizzera italiana SUP SI Dipartimento Tecnologie Innovative Identificazione di sistemi dinamici Ivan Furlan 21 dicembre 2011 Identificazione di sistemi dinamici

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

I Digital Signal Processors 1

I Digital Signal Processors 1 I Digital Signal Processors 1 martedì 11 aprile 2006 in termini rozzi possiamo definirli come dei microcontrollori ottimizzati per avere prestazioni spinte nella realizzazione di filtri di segnali analogici,

Dettagli

Preprocessamento dei Dati

Preprocessamento dei Dati Preprocessamento dei Dati Raramente i dati sperimentali sono pronti per essere utilizzati immediatamente per le fasi successive del processo di identificazione, a causa di: Offset e disturbi a bassa frequenza

Dettagli

INTRODUZIONE A EXCEL ESERCITAZIONE I

INTRODUZIONE A EXCEL ESERCITAZIONE I 1 INTRODUZIONE A EXCEL ESERCITAZIONE I Corso di Idrologia e Infrastrutture Idrauliche Prof. Roberto Guercio Cos è Excel 2 Foglio di calcolo o foglio elettronico è formato da: righe e colonne visualizzate

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Tecniche di Simulazione: Introduzione. N. Del Buono:

Tecniche di Simulazione: Introduzione. N. Del Buono: Tecniche di Simulazione: Introduzione N. Del Buono: 2 Che cosa è la simulazione La SIMULAZIONE dovrebbe essere considerata una forma di COGNIZIONE (COGNIZIONE qualunque azione o processo per acquisire

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

Cenni sull'impiego di Matlab. Matrici

Cenni sull'impiego di Matlab. Matrici Cenni sull'impiego di Matlab Il Matlab è un potente valutatore di espressioni matriciali con valori complessi. Lavorando in questo modo il Matlab indica una risposta ad ogni comando od operazione impartitagli.

Dettagli

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30 Elementi di Architettura e Sistemi Operativi Bioinformatica - Tiziano Villa 22 Giugno 2012 Nome e Cognome: Matricola: Posta elettronica: problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema

Dettagli

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan Spline Nurbs IUAV Disegno Digitale Camillo Trevisan Spline e Nurbs Negli anni 70 e 80 del secolo scorso nelle aziende si è iniziata a sentire l esigenza di concentrare in un unica rappresentazione gestita

Dettagli

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006 Prova scritta 16.02.2006 D. 1 Si derivi l espressione dei legami ingresso-uscita, nel dominio del tempo per le funzioni di correlazione nel caso di sistemi LTI e di segnali d ingresso SSL. Si utilizzi

Dettagli

Software di calcolo numerico, analisi, statistica e simulazione. Un esempio pratico: Octave

Software di calcolo numerico, analisi, statistica e simulazione. Un esempio pratico: Octave Software di calcolo numerico, analisi, statistica e simulazione Un esempio pratico: Octave Problemi tradizionali Risoluzione di funzioni matematiche complesse Esecuzione di calcoli matriciali Analisi

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

Fondamenti di Analisi Statistica dei Segnali

Fondamenti di Analisi Statistica dei Segnali Fondamenti di Analisi Statistica dei Segnali Letizia Lo Presti e Fabrizio Sellone Dipartimento di Elettronica Politecnico di Torino Indice 1 Processi casuali a tempo discreto 1 1.1 Definizione...............................

Dettagli

Esempi di uso e applicazioni di Matlab e simulink. 1) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab

Esempi di uso e applicazioni di Matlab e simulink. 1) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab Esempi di uso e applicazioni di Matlab e simulink ) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab Sia dato da integrare una equazione differenziale scalare di

Dettagli

Implementazione in Nu-Tech di un VAD in tempo reale basato sulle statistiche di ordine superiore e sull algoritmo EM Online

Implementazione in Nu-Tech di un VAD in tempo reale basato sulle statistiche di ordine superiore e sull algoritmo EM Online UNIVERSITÀ POLITECNICA DELLE MARCHE FACOLTÀ DI INGEGNERIA Corso di Laurea Specialistica in Ingegneria delle Telecomunicazioni Algoritmi per Applicazioni Multimediali Implementazione in Nu-Tech di un VAD

Dettagli

Capacità di canale in molte salse

Capacità di canale in molte salse Capacità di canale in molte salse. Bernardini 6 maggio 008 Indice 1 Introduzione 1 Modelli di canale 1.1 Matrice di transizione........................................ 1. Funzione aleatoria..........................................

Dettagli

-3-2 -1 0 1 2 3. Time. white noise Questo processo viene utilizzato spesso per descrivere un disturbo casuale.

-3-2 -1 0 1 2 3. Time. white noise Questo processo viene utilizzato spesso per descrivere un disturbo casuale. Lezione 7 Processi stocastici Scopo di questa lezione è presentare: il concetto generale di processo stocastico (tempo discreto e tempo continuo) random walk, white noise, dinamiche discrete il moto browniano

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

è la densità spettrale di potenza, o semplicemente lo spettro di potenza, di x T (t).

è la densità spettrale di potenza, o semplicemente lo spettro di potenza, di x T (t). CAPIOLO 8 ANALISI SPERALE DI UN SEGNALE CASUALE SAZIONARIO 8.1- INRODUZIONE Si è visto nei capitoli precedenti come un processo random possa essere descritto nel dominio del tempo mediante medie statistiche,

Dettagli

Soluzione di equazioni quadratiche

Soluzione di equazioni quadratiche Soluzione di equazioni quadratiche Soluzione sulla Retta Algebrica Inseriamo sulla Retta Algebrica le seguenti espressioni polinomiali x e x 3 e cerchiamo di individuare i valori di x per i quali i punti

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Complementi di Controllo Digitale

Complementi di Controllo Digitale Complementi di Controllo Digitale Alberto Bemporad Dipartimento di Ingegneria dell Informazione Università degli Studi di Siena bemporad@dii.unisi.it http://www.dii.unisi.it/~bemporad Corso di Laurea in

Dettagli

SISTEMI DI TELECOMUNICAZIONI

SISTEMI DI TELECOMUNICAZIONI SISTEMI DI TELECOMUNICAZIONI MODI DI TRASFERIMENTO SERVIZI DI TRASFERIMENTO DELL INFORMAZIONE L informazione da trasferire si ipotizza strutturata in IU Costituita da b bit Da consegnare in t secondi Se

Dettagli

E solo questione di metodo:

E solo questione di metodo: E solo questione di metodo: problemi e algoritmi di matematica elementare Progetto Lauree Scientifiche Scuola Estiva di Matematica (4092015) Stefano Finzi Vita Dipartimento di Matematica - Sapienza Università

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Dispense del corso di Elaborazione di Immagini e Audio Digitali

Dispense del corso di Elaborazione di Immagini e Audio Digitali http://imagelab.ing.unimo.iting it Dispense del corso di Elaborazione di Immagini e Audio Digitali Video Processing Prof. Roberto Vezzani Dall immagine al video Un video può essere visto innanzitutto come

Dettagli

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c Caratteristiche MATLAB Linguaggio di programmazione orientato all elaborazione di matrici (MATLAB=MATrix LABoratory) Le variabili sono matrici (una variabile scalare equivale ad una matrice di dimensione

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS

LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS Laboratory of Automation Systems p. 1/46 LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS Prof. Claudio Bonivento CASY-DEIS, University of Bologna claudio.bonivento@unibo.it Laboratory of Automation

Dettagli

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A)

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) ELABORAZIONE ANALOGICA O DIGITALE DEI SEGNALI ELABORAZIONE ANALOGICA ELABORAZIONE DIGITALE Vantaggi dell elaborazione

Dettagli

INDICE. Sommario pag. 1. Introduzione pag. 8

INDICE. Sommario pag. 1. Introduzione pag. 8 SOMMARIO Questa tesi descrive la valutazione di schede commerciali basate su convertitori analogico-digitali ad alta risoluzione al fine dello sviluppo di applicazioni di sensoristica distribuita a scopo

Dettagli

Elaborazione nel dominio della frequenza

Elaborazione nel dominio della frequenza Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza L.Verdoliva In questa esercitazione esamineremo la trasformata di Fourier discreta monodimensionale e bidimensionale.

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Segnali passa-banda ed equivalenti passa-basso

Segnali passa-banda ed equivalenti passa-basso Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0,

Dettagli

12 Funzioni e Strutture con MATLAB

12 Funzioni e Strutture con MATLAB 12.1 Richiami sulle funzioni Per dichiarare una funzione in MATLAB creo un file con nome nome_funz con al suo interno: 1 function [output1,.., outputn] = nome_funz(input1,.., inputm) 2 % corpo della funzione

Dettagli

Trasduttore digitale Rettilineo

Trasduttore digitale Rettilineo Trasduttori digitali Un trasduttore digitale fornisce, costruttivamente, in uscita un segnale digitale; I più diffusi trasduttori digitali sono i codificatori di posizione digitale chiamatiencoder. Gli

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 14. Controllo con reti di Petri Luigi Piroddi piroddi@elet.polimi.it Uso delle reti di Petri nel controllo di sistemi a eventi discreti Ai fini del controllo

Dettagli

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995).

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). ANALISI DI UNA SERIE TEMPORALE Analisi statistica elementare Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). Si puo' osservare una media di circa 26 C e una deviazione

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo

Dettagli

2. Differenze Finite. ( ) si

2. Differenze Finite. ( ) si . Differenze Finite In questa Nota tratteremo della soluzione numerica di equazioni a derivate parziali scalari attraverso il metodo delle differenze finite. In particolare, affronteremo il problema della

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Introduzione. Ing. Gianmaria De Tommasi A.A. 2008/09. Controllo Digitale. Introduzione. Sommario. Informazioni sul corso.

Introduzione. Ing. Gianmaria De Tommasi A.A. 2008/09. Controllo Digitale. Introduzione. Sommario. Informazioni sul corso. Controllo Ing. Gianmaria De Tommasi A.A. 2008/09 1 2 di un sistema di controllo digitale Segnali tempo continuo e segnali tempo discreto Metodologie di progetto di sistemi di controllo digitali Alcune

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3

INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3 INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3 COGNOME: Montanino NOME: Annaclaudia MATRICOLA: 1056715 DATA: 13 gennaio 2014 email: annaclaudia.montanino@studenti.unipd.it

Dettagli

Capitolo 6 ELABORAZIONE DI IMMAGINI A COLORI

Capitolo 6 ELABORAZIONE DI IMMAGINI A COLORI Capitolo 6 ELABORAZIONE DI IMMAGINI A COLORI Il colore viene utilizzato nelle immagini digitali per due motivi principali: è un descrittore che semplifica l identificazione di un oggetto e la sua estrazione

Dettagli

PDE Toolbox in Matlab

PDE Toolbox in Matlab PDE Toolbox in Matlab Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 12 Indice 1 Uso di PDE Toolbox con interfaccia grafica Problema e definizioni 2 Esercizi 3 Comandi

Dettagli

TEORIA DEI SEGNALI. Introduzione. La Comunicazione

TEORIA DEI SEGNALI. Introduzione. La Comunicazione TEORIA DEI SEGNALI Introduzione L obiettivo principale di un servizio di telecomunicazione è il trasferimento dell'informazione emessa da una sorgente agli utenti cui è destinata, nell'ambito di una particolare

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

teoresi studi&ricerche

teoresi studi&ricerche UN SISTEMA DI CONTROLLO PER ELICOTTERO Realizzazione con Simulink e Direct3D di M. CARIDI e L. DAGA Dipartimento di Informatica e Sistemistica Università degli Studi di Roma La Sapienza via Eudossiana

Dettagli

INTRODUZIONE AL CONTROLLO OTTIMO

INTRODUZIONE AL CONTROLLO OTTIMO INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio

Dettagli

Sommario. 1 Specifiche della soluzione. Davide Anastasia, Nicola Cogotti. 27 dicembre 2005

Sommario. 1 Specifiche della soluzione. Davide Anastasia, Nicola Cogotti. 27 dicembre 2005 Utilizzo delle reti neurali di tipo MLP e RBF per l approssimazione di funzioni reali di variabile reale note mediante coppie di punti (x,y) in presenza di rumore Davide Anastasia, Nicola Cogotti 27 dicembre

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09. Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Analisi dei segnali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Segnali continui e discreti Un segnale tempo-continuo è

Dettagli

Il modello di regressione lineare multivariata

Il modello di regressione lineare multivariata Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria - 2013 1 / 39 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità

Dettagli

1 Introduzione ai comandi di Matlab

1 Introduzione ai comandi di Matlab 1 Introduzione ai comandi di Matlab MATLAB è un linguaggio ad alte prestazioni adatto per effettuare operazioni matematiche. Esso integra calcolo, visualizzazione, e una programmazione semplice dove problemi

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

TRASFORMATA ASSE MEDIANO (MAT)

TRASFORMATA ASSE MEDIANO (MAT) Capitolo 9 - Trasformate per Immagini Binarie 1 TRASFORMATA ASSE MEDIANO (MAT) L informazione contenuta in un immagine binaria può essere codificata ricorrendo a schemi di rappresentazione più compatti

Dettagli

La conversione Analogico-Digitale

La conversione Analogico-Digitale 6 La conversione Analogico-Digitale Introduzione Il concetto di Misura in Fisica Una delle basi concettuali della fisica moderna a partire da Galileo è la nozione di misura. Si può dire che senza misure

Dettagli

Complementi sui filtri

Complementi sui filtri Elaborazione numerica dei segnali Appendice ai capitoli 4 e 5 Complementi sui filtri Introduzione... Caratteristiche dei filtri ideali... Filtri passa-basso...4 Esempio...7 Filtri passa-alto...8 Filtri

Dettagli

FONDAMENTI di INFORMATICA Prof. Lorenzo Mezzalira

FONDAMENTI di INFORMATICA Prof. Lorenzo Mezzalira FONDAMENTI di INFORMATICA Prof. Lorenzo Mezzalira Appunti del corso 1 Introduzione all informatica: algoritmi, linguaggi e programmi Indice 1. Introduzione 2. Risoluzione automatica di problemi - Algoritmi

Dettagli

Perché Codificare i Dati? Codifica dei Dati. Tecniche di Codifica del Segnale. Cooperazione Trasmettitore- Ricevitore

Perché Codificare i Dati? Codifica dei Dati. Tecniche di Codifica del Segnale. Cooperazione Trasmettitore- Ricevitore Università degli studi di Salerno Laurea in Informatica I semestre 03/04 Codifica dei Dati Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ 2 Perché Codificare i

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12};

Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12}; ESERCIZI 2 LABORATORIO Problema 1 Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12}; Chiede all'utente un numero e, tramite ricerca

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

Generatori di numeri pseudo-casuali

Generatori di numeri pseudo-casuali Introduzione ai Generatori di numeri pseudo-casuali Nicola Gigante 26 luglio 2013 Introduzione Life s most important questions are, for the most part, nothing but probability problems. Pierre-Simon Laplace

Dettagli

30 RISONANZE SULLE LINEE DI TRASMISSIONE

30 RISONANZE SULLE LINEE DI TRASMISSIONE 3 RISONANZE SULLE LINEE DI TRASMISSIONE Risuonatori, ovvero circuiti in grado di supportare soluzioni risonanti( soluzioni a regime sinusoidali in assenza di generatori) vengono largamente utilizzati nelle

Dettagli