PRBS: Pseudo Random Binary Sequences

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PRBS: Pseudo Random Binary Sequences"

Transcript

1 PRBS: Pseudo Random Binary Sequences Chiara Masiero DEI - UniPD 3 Novembre 2 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

2 Motivazione Contesto Nel processo di identificazione il segnale di ingresso gioca un ruolo determinante. Pseudo Random Binary Sequences: perchè utilizzarle? Sono segnali facili da generare (anche con un circuito digitale) 2 Hanno molte affinità statistiche con il rumore bianco 3 Sono persistentemente eccitanti di ordine grande C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 2 / 8

3 PRBS: di cosa si tratta? Le PRBS sono segnali periodici a tempo discreto che possono assumere solo due valori. Plot of a PRBS of period Figura: PRBS di periodo 7 Solitamente si usano i valori e. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 3 / 8

4 Generazione di una PRBS Per generare PRBS di periodo massimo 2 n si può utilizzare uno shift register ad n stati Algoritmo Si inizializzano i valori a,..., a n, con a i {, } i {,..., n}; 2 Si inizializzano gli n stati dello shift register con valori binari in {, }. 3 Aggiornamento dello stato x k+ (t + ) = x k (t), x (t + ) = n i= a ix i (t). 4 Ad ogni istante: u(t) = x n (t). C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 4 / 8

5 Generazione di una PRBS (2) Per ogni i =,..., n, a i {, }. L aggiornamento di x richiede il calcolo di somme modulo-2 (xor): u u 2 u u 2 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 5 / 8

6 Generazione di una PRBS (3) In spazio di stato, a patto di interpretare tutte le somme che intervengono nell aggiornamento di x (t) come somme modulo-2 (xor): a a 2 a 3... a n... x(t + ) =.... x(t) [ u(t) =... ] x(t) In questo modo si ottiene una sequenza u(t) a valori in {, }. Per avere una sequenza a valori in {a, b} basta considerare u ab = a + (b a)u(t). C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 6 / 8

7 PRBS di periodo massimo: ml PBRS Un registro a n stati permette 2 n possibili combinazioni del vettore di stato x(t) Lo stato x(t) = implica x(t + k) = per ogni k, e quindi u(t) = per ogni t, quindi non è accettabile. ml PRBS Segue che periodo massimo della PRBS è M = 2 n. Si può mostrare che, con un opportuna scelta dei coefficienti a i è possibile ottenere una PRBS di periodo massimo (o massima lunghezza, da cui l acronimo ml-prbs) C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 7 / 8

8 PRBS di periodo massimo (2) Con n = 3, a =, a 2 = e a 3 =, si ottiene la sequenza di stato che ha periodo 4. Con a =, a 2 = e a 3 = la sequenza di stato ha periodo 7: C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 8 / 8

9 PRBS di periodo massimo (3) Motivazione L autocorrelazione di una ml-prbs approssima bene quella di un rumore bianco ( = delta di Kronecker) Come noto, un segnale di periodo T è al più persistentemente eccitante di ordine T. Introduciamo il polinomio: A(z ) = a z a 2 z 2... a n z n Se u(t) è la PRBS generata con tali coefficienti, allora A(z )u(t) =. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 9 / 8

10 PRBS di periodo massimo (4) Lemma Come scegliere i coefficienti di modo che la sequenza sia di periodo massimo M = 2 n? L equazione A(z )u(t) = ha soluzione a periodo 2 n se e solo se sono soddisfatte le seguenti condizioni: il polinomio A(z ) è irriducibile (i.e. non è divisibile per polinomi a coefficienti binari); 2 A(z ) è un fattore di ( z M ) ma non di ( z p ), con p < M = 2 n. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

11 PRBS di periodo massimo (5) Grazie al precedente risultato si ottengono i polinomi che seguono: n A (z ) A 2 (z ) 3 z z 3 z 2 z 3 4 z 2 z 4 z 3 z 4 5 z 2 z 5 z 3 z 5 6 z z 6 z 5 z 6 7 z z 7 z 3 z 7 8 z z 2 z 7 z 8 z z 6 z 7 z 8 9 z 4 z 9 z 5 z 9 z 3 z z 7 z C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8

12 Descrizione statistica di una ml-pbrs Proprietà di una ml-prbs u(t) = per 2 n campioni, u(t) = per 2 n campioni (per periodo) 2 u(t) u(t k) = u(t l), per qualche l [, M ] 3 Se x, y {, } allora xy = 2 [x + y (x y)] Con queste proprietà si possono calcolare media e autocorrelazione campionarie della sequenza: m = M M t= u(t) = 2 + 2M, r(τ) = M r() = M M [u(t) m] 2 = M2 4M 2 t= M [u(t + τ) m][u(t) m] = M + 4M 2 t= C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 2 / 8

13 Descrizione statistica di una ml-pbrs (2) Se consideriamo la sequenza u, (t) = 2u(t) otteniamo: m = M, r() = M 2 r(τ) = M M 2 M τ =, 2,..., M Autocorrelation of a PRBS, order C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 3 / 8

14 Descrizione statistica di una ml-pbrs (3) Una PRBS di periodo massimo è persistentemente eccitante (p.e.) di ordine M = 2 n, ma non M +. Infatti la matrice di Toeplitz si ordine k k M... M R k =... M..... M M... M ha rango pieno se e solo se k M. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 4 / 8

15 Descrizione statistica di una ml-pbrs (4) L analogia statistica tra ml-prbs e WN emerge dall analisi statistica dei segnali filtrati: u(t) z.9 u f (t) All aumentare di n la correlazione del segnale d uscita tende a quella ottenuta alimentando il filtro con WN. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 5 / 8

16 In Matlab Nel system identification toolbox è implementata la funzione idinput:» u = idinput(n, prbs ); Costruisce una PRBS di periodo massimo, utilizzando n stati in modo tale che 2 n > N. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 6 / 8

17 Esercitazione Scrivere una funzione che acquisisce in ingresso un intero n [3, ] e genera una PRBS di periodo massimo M = 2 n. Suggerimento: dare un occhiata al comando circshift ed al costrutto cases. Testare questa funzione per diversi valori di n, confrontando la correlazione dei segnali ottenuti con quella di un rumore bianco. Suggerimento: per il calcolo della correlazione della sequenza u usare il comando xcorr(u, biased ). Visualizzare la correlazione di una PRBS filtrata attraverso un filtro IIR del primo ordine, mettendola ancora in confronto con quella di un rumore bianco. C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 7 / 8

18 Riferimenti bibliografici Torsten Soderstrom, Petre Stoica System Identification, Cap. 5 Prentice Hall, 989 W.D.T. Davies System Identification for Self-Adaptive Control Ed. Wiley-Interscience, London, 97 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 8 / 8

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Esercitazioni in Maple

Esercitazioni in Maple Esercitazioni in Maple 6 giugno 2007 Capitolo 1 Prima esercitazione 1.1 Anelli di polinomi Per cominciare bisogna dichiarare un anello di polinomi. Possiamo lavorare con un qualsiasi anello di tipo dove

Dettagli

Tecniche di Simulazione: Introduzione. N. Del Buono:

Tecniche di Simulazione: Introduzione. N. Del Buono: Tecniche di Simulazione: Introduzione N. Del Buono: 2 Che cosa è la simulazione La SIMULAZIONE dovrebbe essere considerata una forma di COGNIZIONE (COGNIZIONE qualunque azione o processo per acquisire

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Autenticazione Vocale

Autenticazione Vocale Autenticazione Vocale (A. Gorziglia) INTRODUZIONE: perché usare i sistemi biometrici per l autenticazione. Il motivo principale è quello di impedire all utente di perdere (o dimenticare) la chiave di autenticazione

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

INTRODUZIONE A EXCEL ESERCITAZIONE I

INTRODUZIONE A EXCEL ESERCITAZIONE I 1 INTRODUZIONE A EXCEL ESERCITAZIONE I Corso di Idrologia e Infrastrutture Idrauliche Prof. Roberto Guercio Cos è Excel 2 Foglio di calcolo o foglio elettronico è formato da: righe e colonne visualizzate

Dettagli

Lezione V. Il foglio elettronico

Lezione V. Il foglio elettronico Informatica di Base Lezione V 1 Lezione V In laboratorio userete prevalentemente Microsoft Excel Ma ce ne sono altri, es. Open Office In aula avete sia office 2003 che Calc. (open office) Contabilità e

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30 Elementi di Architettura e Sistemi Operativi Bioinformatica - Tiziano Villa 22 Giugno 2012 Nome e Cognome: Matricola: Posta elettronica: problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema

Dettagli

Cenni sull'impiego di Matlab. Matrici

Cenni sull'impiego di Matlab. Matrici Cenni sull'impiego di Matlab Il Matlab è un potente valutatore di espressioni matriciali con valori complessi. Lavorando in questo modo il Matlab indica una risposta ad ogni comando od operazione impartitagli.

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net LEZIONE DI MATLAB 2.0 Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net Cos è Matlab Il programma MATLAB si è imposto in ambiente ingegneristico come strumento per la simulazione e l'analisi dei sistemi

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Elaborazione delle Immagini Digitali

Elaborazione delle Immagini Digitali Elaborazione delle Immagini Digitali Parte I Prof. Edoardo Ardizzone A.A. 2-22 La trasformata di Hotelling o di Karhunen-Loeve KLT discreta Questa trasformata detta anche analisi delle componenti principali

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi

DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi Benvenuti al al modulo di: di: ELABORAZIONE NUMERICA DEI SEGNALI 6CFU DIGITAL SIGNAL PROCESSING macroarea: Ingegneria Prof. Marina Ruggieri ruggieri@uniroma2.it Ing. Tommaso Rossi tommaso.rossi@uniroma2.it

Dettagli

COMPITO B - ANALISI DEI DATI PER IL MARKETING OTTOBRE 2009

COMPITO B - ANALISI DEI DATI PER IL MARKETING OTTOBRE 2009 COGNOME E NOME COMPITO B - ANALISI DEI DATI PER IL MARKETING OTTOBRE 2009 Esercizio I MATR. Si è effettuata un indagine di customer satisfaction su un campione di 100 acquirenti d un modello di auto, chiedendo

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

Random number generators

Random number generators Statistica computazionale Random number generators www.cash-cow.it Distribuito sotto licenza Creative Common, Share Alike Attribution 2 Indice I. Introduzione II. Processi fisici per la creazione di numeri

Dettagli

Esercitazione. Dati Strutturati

Esercitazione. Dati Strutturati Dati Strutturati Esercizio 0 (Liste): Esercitazione Scrivere un programma che generi tutti i numeri pari e dispari tra 1 e N. Dove N viene inserito da tastiera. Creare due liste odd e even per salvare

Dettagli

Macchine a stati finiti sincrone

Macchine a stati finiti sincrone Macchine a stati finiti sincrone Modulo 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Macchine a stati finiti Dall

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Computazione per l interazione naturale: macchine che apprendono

Computazione per l interazione naturale: macchine che apprendono Computazione per l interazione naturale: macchine che apprendono Corso di Interazione Naturale! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Generazione di numeri casuali. Daniela Picin

Generazione di numeri casuali. Daniela Picin Daniela Picin Testi di consultazione Gentle I.E. Random Number Generation and Monte Carlo Methods, 2nd ed. Springer Verlag, 2005 Raj Jain - The Art of Computer Systems Performance Analysis: Techniques

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Segnali passa-banda ed equivalenti passa-basso

Segnali passa-banda ed equivalenti passa-basso Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0,

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

PDE Toolbox in Matlab

PDE Toolbox in Matlab PDE Toolbox in Matlab Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 12 Indice 1 Uso di PDE Toolbox con interfaccia grafica Problema e definizioni 2 Esercizi 3 Comandi

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Algoritmi di clustering

Algoritmi di clustering Algoritmi di clustering Dato un insieme di dati sperimentali, vogliamo dividerli in clusters in modo che: I dati all interno di ciascun cluster siano simili tra loro Ciascun dato appartenga a uno e un

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

La generazioni di numeri casuali. Fisica dell Informazione

La generazioni di numeri casuali. Fisica dell Informazione La generazioni di numeri casuali Fisica dell Informazione Cifrari composti Ottenuti dall applicazione sequenziale dei metodi precedentemente visti. Non sempre sono i migliori. Il più popolare tra i cifrari

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

un protocollo è costituito da una serie di passi (step) e coinvolge due o più persone (parti, entità) allo scopo di svolgere un incarico

un protocollo è costituito da una serie di passi (step) e coinvolge due o più persone (parti, entità) allo scopo di svolgere un incarico protocolli un protocollo è costituito da una serie di passi (step) e coinvolge due o più persone (parti, entità) allo scopo di svolgere un incarico proprietà ogni persona coinvolta deve conoscere il protocollo

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

Prima Esercitazione per il corso di Analisi del Segnale per le Telecom A.A. 2009/10 Cambio di frequenza di campionamento

Prima Esercitazione per il corso di Analisi del Segnale per le Telecom A.A. 2009/10 Cambio di frequenza di campionamento Prima Esercitazione per il corso di Analisi del Segnale per le Telecom A.A. 2009/10 Cambio di frequenza di campionamento Riccardo Bernardini bernardini@uniud.it 13 aprile 2010 Indice 1 Descrizione dell

Dettagli

CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica CONTROLLI AUTOMATICI e AZIONAMENTI ELETTRICI INTRODUZIONE A MATLAB Ing. Alberto Bellini Tel. 0522 522626 e-mail: alberto.bellini@unimore.it

Dettagli

Modelli matematici e realtà:

Modelli matematici e realtà: Piano Lauree Scientifiche Matematica e Statistica 2010-11 Modelli matematici e realtà: sulle equazioni differenziali - prima parte R. Vermiglio 1 1 Dipartimento di Matematica e Informatica - Università

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia STATISTICA GIUSEPPE DE NICOLAO Dipartimento di Informatica e Sistemistica Università di Pavia SOMMARIO V.C. vettoriali Media e varianza campionarie Proprietà degli stimatori Intervalli di confidenza Statistica

Dettagli

I Metodi statistici utili nel miglioramento della qualità 27

I Metodi statistici utili nel miglioramento della qualità 27 Prefazione xiii 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento della qualità 1 1.1.1 Le componenti della qualità 2 1.1.2 Terminologia

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri Stima di parametri Il gestore di un sito turistico dove si pratica il bungee-jumping deve fornire alla sovrintendenza municipale un documento che riguarda la sicurezza del servizio fornito. Il documento

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Dipartimento di Ingegneria della Informazione Via Diotisalvi, 2 56122 PISA ALGORITMI GENETICI (GA) Sono usati per risolvere problemi di ricerca

Dettagli

La grafica. La built-in funzione grafica plot. x spezzata poligonale. discretizzato

La grafica. La built-in funzione grafica plot. x spezzata poligonale. discretizzato La grafica. Il Matlab possiede un ambiente grafico abbastanza potente paragonabile a software grafici operanti in altri contesti. In questo corso ci limiteremo ad illustrare solo una funzione grafica,

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

MESSA IN SCALA DI ALGORITMI DIGITALI

MESSA IN SCALA DI ALGORITMI DIGITALI Ingegneria e Tecnologie dei Sistemi di Controllo Laurea Specialistica in Ingegneria Meccatronica MESSA IN SCALA DI ALGORITMI DIGITALI Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calcolo delle corrispondenze Affrontiamo il problema centrale della visione stereo, cioè la ricerca automatica di punti corrispondenti tra immagini Chiamiamo

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

Introduzione. Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache...

Introduzione. Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache... Appunti di Calcolatori Elettronici Concetti generali sulla memoria cache Introduzione... 1 Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache...

Dettagli

Preprocessamento dei Dati

Preprocessamento dei Dati Preprocessamento dei Dati Raramente i dati sperimentali sono pronti per essere utilizzati immediatamente per le fasi successive del processo di identificazione, a causa di: Offset e disturbi a bassa frequenza

Dettagli

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

L'algebra di Boole falso vero livello logico alto livello logico basso Volts

L'algebra di Boole falso vero livello logico alto livello logico basso Volts L algebra di Boole L'algebra di Boole comprende una serie di regole per eseguire operazioni con variabili logiche. Le variabili logiche possono assumere solo due valori. I due possibili stati che possono

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 18 marzo 2011 Problema basato su 10.5 del libro di testo La CINA (Compagnia Italiana per il Noleggio di Automobili) dispone di

Dettagli

Corso di Laurea in Matematica, Università di Roma La Sapienza Corso di ANALISI NUMERICA Esercitazioni in Laboratorio, 16 Maggio 2011

Corso di Laurea in Matematica, Università di Roma La Sapienza Corso di ANALISI NUMERICA Esercitazioni in Laboratorio, 16 Maggio 2011 Corso di Laurea in Matematica, Università di Roma La Sapienza Corso di ANALISI NUMERICA Esercitazioni in Laboratorio, 16 Maggio 2011 Foglio 4: Metodi diretti per i sistemi lineari Scrivere un programma

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Corso di Sistemi di Elaborazione delle informazioni

Corso di Sistemi di Elaborazione delle informazioni Corso di Sistemi di Elaborazione delle informazioni LEZIONE 2 (HARDWARE) a.a. 2011/2012 Francesco Fontanella Tre concetti Fondamentali Algoritmo; Automa (o anche macchina); Calcolo; 2 Calcolatore MACCHINA

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Sistemi di Numerazione un sistema di numerazione è definito da il numero di differenti simboli utilizzati per rappresentare i numeri (BASE) i Sumeri usavano un sistema sessagesimale, basato su 60 simboli

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Dipartimento di Ingegneria della Informazione Via Diotisalvi, 2 56122 PISA ALGORITMI GENETICI (GA) Sono usati per risolvere problemi di ricerca

Dettagli

INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3

INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3 INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3 COGNOME: Montanino NOME: Annaclaudia MATRICOLA: 1056715 DATA: 13 gennaio 2014 email: annaclaudia.montanino@studenti.unipd.it

Dettagli

Elementi di Telelocalizzazione

Elementi di Telelocalizzazione Elementi di Telelocalizzazione Ing. Francesco Benedetto - Prof. Gaetano Giunta Laboratorio di Telecomunicazioni (COMLAB) Università degli Studi Roma Tre 1 Introduzione Proprietà della sequenza di spreading:

Dettagli

INTRODUZIONE A MATLAB Matrix Laboratory

INTRODUZIONE A MATLAB Matrix Laboratory INTRODUZIONE A MATLAB Matrix Laboratory Introduzione Linguaggio di programmazione per applicazioni scientifiche e numeriche Vasto set di funzioni predefininte Interprete di comandi Possibilità di scrivere

Dettagli

LABORATORIO DI PROGRAMMAZIONE 2012 2013 EDIZIONE 1, TURNO B

LABORATORIO DI PROGRAMMAZIONE 2012 2013 EDIZIONE 1, TURNO B LABORATORIO DI PROGRAMMAZIONE 2012 2013 EDIZIONE 1, TURNO B 23.XI.2012 VINCENZO MARRA Indice Esercizio 1 1 Menu 1 Tempo: 35 min. 2 Commento 1 2 Esercizio 2 2 Ordinamento e ricerca binaria con la classe

Dettagli