Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali."

Transcript

1 Reti Logiche Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. - Elaborano informazione rappresentata da segnali digitali, cioe segnali che assumono nel tempo solo un numero finito di valori possibili. - Scambiano informazioni con l esterno attraverso un insieme di connessioni di ingresso (morsetti di ingresso) e di uscita (morsetti in uscita). - Trasformano i segnali di ingresso in segnali di uscita con un comportamento unidirezionale, cioe le uscite non possono alterare l informazione in ingresso. Possono essere collegate tra loro all interno di un sistema digitale piu complesso o scambiare informazioni con il mondo esterno al sistema. Se l ambiente esterno non e digitale ma analogico, cioe produce segnali continui, questi dovranno venir convertiti in forma digitale prima di essere elaborati da una rete logica.

2 Reti Combinatorie e Macchine Sequenziali Una rete logica puo essere composta (o decomposta) in sottoreti (piu piccole e piu semplici). I componenti atomici per tale composizione modulare sono dette blocchi logici. I blocchi logici possono essere suddivisi in due grandi classi a seconda della loro capacita di possedere o meno memoria. Reti combinatorie Sono composte da blocchi logici privi di memoria. L uscita dipende unicamente dagli ingressi in un dato istante. Reti (o Macchine) Sequenziali Hanno capacita di memorizzazione, ovvero di possedere uno stato. L uscita in questo caso dipende dalla sequenza degli ingressi e, in ogni istante, e determinata sia dagli ingressi sui morsetti di entrata che dallo stato in cui si trova la macchina.

3 Algebra di Boole Generalmente le reti logiche elaborano segnali binari, che corrispondono a due livelli di tensione alta (di livello 1) e bassa (di livello 0). Il mezzo matematico fondamentale per descrivere e studiare il funzionamento di una rete logica e l Algebra di Boole. Una rete logica trasforma n segnali digitali in ingresso in un segnale (o piu ) in uscita. Il suo comportamento puo essere descritto da una funzione booleana f: {0,1}n {0,1} Esempio. (n=3) a b c f (a,b,c) N.B. 3 valori in ingresso, 23 terne possibili

4 Operatori booleani NOT(x) AND(x 1, x 2 ) OR(x 1, x 2 ) x x x 1 x 2 x 1 x 2 x 1 x 2 x 1 +x Espressioni booleane x 1 (x 3 + x 2 ) + x 3 x 1 + (x 3 x 2 ) Definizione esplicita di funzioni booleane z 1 = f 1 (x 1, x 2, x 3 ) = x 1 (x 3 + x 2 ) + x 3 z 2 = f 2 (x 1, x 2, x 3 ) = x 1 + (x 2 x 3 ) z 3 = f 3 (x 1, x 2, x 3 ) = (x 1 + x 3 ) (x 1 + x 2 ) Equivalenza tra espressioni booleane Per ogni terna di valori x 1, x 2, x 3 : x 1 + (x 2 x 3 ) = (x 1 + x 3 ) (x 1 + x 2 ) priorità : -,, +

5 Proprietà degli operatori -,, + x 1 + (x 2 x 3 ) (x 1 + x 3 ) (x 1 + x 2 ) x 1 x 2 x 3 x 1 + (x 2 x 3 ) (x 1 + x 3 ) (x 1 + x 2 ) x + 0 = x x 1 = x x + 1 = 1 x 0 = 0 x + x = x x x = x x + x = 1 x x = 0 x1 + x2 = x2 + x1 x1 x2 = x2 x1 (x1 + x2) + x3 = x1 + (x2 + x3) (x1 x2) x3 = x1 (x2 x3) (x1 x2) + (x1 x3) = x1 (x2 + x3) (x1 + x2) (x1 + x3) = x1+ (x2 x3) NOT(NOT(X)) = x x1 x2 + x1 x2 = x1 x1 + (x1 x2) = x1 (x1 + x2) (x1 + x2) = x1 x1 (x1 + x2) = x1 teoremi di De Morgan: NOT(x1 + x2) = NOT(x1) NOT(x2) NOT(x1 x2) = NOT(x1) + NOT(x2)

6 Blocchi logici ( o porte logiche) x1 x2 x1 x2 AND gate x1 x2 x1 + x2 OR gate x1 x1 NOT gate x1 y1 y2 x2 x3 z1 z2 y1 = x1 z1 = y2 + x3 y2 = x1 x2 z2 = y2 x3

7 Completezza funzionale Operatori NAND e NOR Con gli operatori NOT, AND e OR si possono esprimere tutte le funzioni boolene ({0,1}n {0,1}). E facile verificare che due operatori sono sufficienti per esprimere ogni funzione booleana. Infatti,entrambe le coppie (NOT ed AND) e (NOT ed OR) sono funzionalmente complete: X1 + X2 = X1 X2 X1 X2 = X1 + X2 In realtà è sufficiente un solo operatore. Operatore NAND - (X1 X2) x = x x x 1 x 2 x 1 x x x 1 x x Operatore NOR - (X1 X2) x = x x x 1 x 2 x 1 x x x 1 x x

8 Mintermini e Maxtermini Un mintermine pi è una funzione che vale 1 in corrispondenza alla sola configurazione i delle variabili. Un maxtermine si è una funzione che vale 0 in corrispondenza alla sola configurazione i delle variabili. a b c p0 p2 p3 p6 p7 s1 s4 s Ogni mintermine pi puo essere espresso come l AND di tutte le variabili, dove una variabile compare diretta (non negata) se vale 1 nella configurazione i, compare negata se vale 0 nella configurazione i. p 5 = a b c (5 10 = ) Ogni maxtermine si puo essere espresso come l OR di tutte le variabili, dove una variabile compare negata se vale 1 nella configurazione i, diretta se vale 0 nella configurazione i. s 3 = a b c (3 10 = )

9 Forma Canonica - SP Prima forma canonica per una funzione f è l OR di tutti i mintermini pi per le configurazioni i dove f=1. Esempio a b c f (a,b,c) f (a,b,c) = p0 + p2 + p4 +p5 +p6 = a b c + a b c + a b c + a b c + a b c = a c + a b c + a b c + a b c = a c + a b c + a b c + a b c + a b c = a c + a b + a b c + a b c = a c + a b + a c = c + a b NOTA: Ogni mintermine si puo esprimere come un prodotto, quindi una funzione nella prima forma canonica risulta essere una Somma di Prodotti (SP).

10 Forma Canonica - PS Seconda forma canonica per una funzione f è l AND di tutti i maxtermini si per le configurazioni i dove f=0. Esempio a b c f (a,b,c) f (a,b,c) = s1 s3 s7 = (a + b + c ) (a + b + c ) ( a + b + c ) = (a + c ) ( a + b + c ) = (a + c ) (a + c + b ) ( a + b + c ) = (a + c ) (a + b + c ) ( a + b + c ) = (a + c ) (b + c ) NOTA: Ogni maxtermine si puo esprimere come una somma, quindi una funzione nella seconda forma canonica risulta essere un Prodotto di Somme (PS).

11 Reti a due o piu livelli Una rete e di livello h se h e il numero massimo di blocchi logici che un segnale incontra tra un punto di ingresso e quello di uscita. N.B. Generalmente non vengono considerati i blocchi negazione. Utilizzando le forme canoniche si possono costruire reti a due livelli. f(a, b, c) = (a + c ) (b + c ) a b c f(a,b,c)

12 PLA Array Logica Programmabile x1 x1 piano AND x2 x2 x3 x3 z1 piano OR z2 z3 Z1 = Z2 = Z3 =

13 Selettori I selettori sono impiegati per dirottare su una linea di trasmissione messaggi provenienti da sorgenti diverse (selettori di ingresso o multiplexer), o per dirottare su linee diverse il messaggio proveniente da una sorgente (selettori di uscita o demultiplexer), o per combinare entrambi questi effetti (selettori di ingressouscita). Un multiplexer e una rete combinatoria in cui alcuni segnali di ingresso rappresentano i messaggi, e altri, detti di controllo, selezionano le vie attraverso cui instradare i messaggi. S C A 0 0 A C B 1 1 B S A B S

14 Codificatori e decodificatori Trasformano parole rappresentate in un dato codice in un codice diverso. Esempio codificatore con 23 ingressi e 3 uscite (in generale: n uscite e 2n ingressi). x7 x6 x5 x4 x3 x2 x1 x0 z2 z1 z Le configurazioni ammesse in ingresso sono solo quelle che hanno esattamente un 1. L uscita è la rappresentazione binaria del numero che rappresenta la posizione dell unico 1 in ingresso. Esempio decodificatore con 3 ingressi e 23 uscite. x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

Sintesi Combinatoria Uso di componenti diversi dagli operatori elementari. Mariagiovanna Sami Corso di reti Logiche 8 Anno 2007-08

Sintesi Combinatoria Uso di componenti diversi dagli operatori elementari. Mariagiovanna Sami Corso di reti Logiche 8 Anno 2007-08 Sintesi Combinatoria Uso di componenti diversi dagli operatori elementari Mariagiovanna Sami Corso di reti Logiche 8 Anno 27-8 8 Quali componenti, se non AND e OR (e NOT )? Si è detto inizialmente che

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 3 I Discip lina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata e sottoscritta dai docenti: cognome

Dettagli

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X. Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Algebra di Boole e reti logiche. Giovedì 8 ottobre 2015

Algebra di Boole e reti logiche. Giovedì 8 ottobre 2015 Algebra di Boole e reti logiche Giovedì 8 ottobre 2015 Punto della situazione Abbiamo visto le varie rappresentazioni dei numeri in binario e in altre basi e la loro aritmetica Adesso vedremo la logica

Dettagli

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S

Dettagli

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche 3.1 LE PORTE LOGICHE E GLI OPERATORI ELEMENTARI 3.2 COMPORTAMENTO A REGIME E IN TRANSITORIO DEI CIRCUITI COMBINATORI I nuovi

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica, Chimica, Elettrica e Meccanica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011 Docente: Gian

Dettagli

ALGEBRA DELLE PROPOSIZIONI

ALGEBRA DELLE PROPOSIZIONI Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra

Dettagli

Variabili logiche e circuiti combinatori

Variabili logiche e circuiti combinatori Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato

Dettagli

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( )

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( ) Algebra di Boole L algebra di Boole prende il nome da George Boole, matematico inglese (1815-1864), che pubblicò un libro nel 1854, nel quale vennero formulati i principi dell'algebra oggi conosciuta sotto

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Corso di Calcolatori Elettronici I A.A. 20-202 Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Lezione 5 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Introduzione ai microcontrollori

Introduzione ai microcontrollori Introduzione ai microcontrollori L elettronica digitale nasce nel 1946 con il primo calcolatore elettronico digitale denominato ENIAC e composto esclusivamente di circuiti a valvole, anche se negli anni

Dettagli

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it Lezione 2 Circuiti logici Mauro Piccolo piccolo@di.unito.it Bit e configurazioni di bit Bit: una cifra binaria (binary digit) 0 oppure 1 Sequenze di bit per rappresentare l'informazione Numeri Caratteri

Dettagli

U 1 . - - . - - Interfaccia. U m

U 1 . - - . - - Interfaccia. U m Introduzione La teoria delle reti logiche tratta problemi connessi con la realizzazione e il funzionamento di reti per l elaborazione dell informazione (il termine logico deriva dalla stretta parentela

Dettagli

Logica combinatoria. La logica digitale

Logica combinatoria. La logica digitale Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND,

Dettagli

PROGRAMMAZIONE MODULARE

PROGRAMMAZIONE MODULARE PROGRAMMAZIONE MODULARE ANNO SCOLASTICO 2013-2014 Indirizzo: ELETTROTECNICA - SIRIO Disciplina: ELETTRONICA Classe: 3^ Sezione: AES Numero di ore settimanali: 2 ore di teoria + 2 ore di laboratorio Modulo

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli

Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli Sommario Sintesi di reti combinatorie Funzioni Espressioni 1 Teorema di espansione di Shannon (Boole) M. Favalli Engineering Department in Ferrara 2 Forme canoniche 3 Metriche per il costo di una rete

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Programmazione modulare a.s.2015-2016

Programmazione modulare a.s.2015-2016 Programmazione modulare a.s.015-016 Indirizzo:Informatica \Disciplina: Telecomunicazioni Prof. MAIO Patrizia Rosi Filippo Classe:3 A 3 B Informatica ore settimanali 3 di cui di laboratorio) Libro di testo:telecomunicazioni

Dettagli

Componenti combinatori

Componenti combinatori Componenti combinatori Reti combinatorie particolari (5.., 5.3-5.8, 5.) Reti logiche per operazioni aritmetiche Decoder ed encoder Multiplexer Dispositivi programmabili: PROM e PLA Reti combinatorie particolari

Dettagli

PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene

PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene LIBRI DI TESTO: Autore: Conte/Ceserani/Impallomeni Titolo: ELETTRONICA ED ELETTROTECNICA

Dettagli

Architettura degli Elaboratori e delle Reti

Architettura degli Elaboratori e delle Reti Architettura degli Elaboratori e delle Reti Pagina lasciata intenzionalmente bianca i Indice 9 Marzo 006... 1 Insiemi... 1 Funzioni booleane... 1 Mintermini... 4 14 Marzo 006... 5 Logica proposizionale...

Dettagli

Calcolatori Elettronici B a.a. 2006/2007

Calcolatori Elettronici B a.a. 2006/2007 Calcolatori Elettronici B a.a. 2006/2007 RETI LOGICHE: RICHIAMI Massimiliano Giacomin 1 Due tipi di unità funzionali Elementi di tipo combinatorio: - valori di uscita dipendono solo da valori in ingresso

Dettagli

Laurea Specialistica in Informatica

Laurea Specialistica in Informatica Corso di Laurea in FISICA Laurea Specialistica in Informatica Fisica dell informazione 1 Elementi di Architettura degli elaboratori Prof. Luca Gammaitoni Informazioni sul corso: www.fisica.unipg unipg.it/gammaitoni/fisinfoit/gammaitoni/fisinfo

Dettagli

Architettura degli Elaboratori Implementazione di funzioni booleane

Architettura degli Elaboratori Implementazione di funzioni booleane Architettura degli Elaboratori Implementazione di funzioni booleane Giacomo Fiumara giacomo.fiumara@unime.it Anno Accademico 2012-2013 1 / 34 Introduzione /1 Ogni funzione booleana può essere implementata

Dettagli

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013 LGEBR DI BOOLE I.I.S. Primo Levi Badia Polesine.S. 2012-2013 Nel secolo scorso il matematico e filosofo irlandese Gorge Boole (1815-1864), allo scopo di procurarsi un simbolismo che gli consentisse di

Dettagli

A L'operatore NOT si scrive con una linea sopra la lettera indicante la variabile logica A ; 0 1 1 0. NOT di A =

A L'operatore NOT si scrive con una linea sopra la lettera indicante la variabile logica A ; 0 1 1 0. NOT di A = ALGEBRA DI BOOLE L'algebra di Boole è un insieme di regole matematiche; per rappresentare queste regole si utilizzano variabili logiche, funzioni logiche, operatori logici. variabili logiche: si indicano

Dettagli

Macchine combinatorie

Macchine combinatorie Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine combinatorie Lezione 10 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Analisi e Sintesi di un sistema 1/2 Per analisi di

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi)

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi) DISCIPLINA A.S. 2011-12 di dipartimento individuale del/i docenti Sarro Alessandro Mete Nicola per la classe 4TIEL 1) PREREQUISITI Concetti di matematica,fisica ed elettrotecnica. 2) SITUAZIONE DI PARTENZA

Dettagli

Appunti di reti logiche. Ing. Luca Martini

Appunti di reti logiche. Ing. Luca Martini Appunti di reti logiche Ing. Luca Martini 11 aprile 2003 Capitolo 1 Reti combinatorie Sommario In questo breve documento mostreremo sia alcuni concetti base sulle reti combinatorie, che alcuni dei moduli

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

1. Operazioni in logica binaria e porte logiche

1. Operazioni in logica binaria e porte logiche 1. Operazioni in logica binaria e porte logiche Espressione di un numero in base 10 (notare a pedice p.es del numero 21); 21 10 =210 1 +110 0 527,98 10 =5 10 2 +2 10 1 +7 10 0 +9 10 1 +8 10 2 407,563 10

Dettagli

Reti sequenziali sincrone

Reti sequenziali sincrone Reti sequenziali sincrone Un approccio strutturato (7.1-7.3, 7.5-7.6) Modelli di reti sincrone Analisi di reti sincrone Descrizioni e sintesi di reti sequenziali sincrone Sintesi con flip-flop D, DE, T

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Circuiti combinatori slide a cura di Salvatore Orlando, Andrea Torsello, Marta Simeoni 1 Circuiti integrati I circuiti logici sono realizzati come IC (circuiti integrati)! realizzati su chip di silicio

Dettagli

Lezione 3 Prof. Angela Bonifati

Lezione 3 Prof. Angela Bonifati Lezione 3 Prof. Angela Bonifati Complemento a 2 Algebra booleana Le infrastrutture hardware Esercizi sulla codifica dei numeri Eseguire le seguenti conversioni: Da base 2 e 16 in base 10: 110 2 =???? 10

Dettagli

Dispense di elettronica digitale per il corso di LAB 2 B

Dispense di elettronica digitale per il corso di LAB 2 B Dispense di elettronica digitale per il corso di LAB 2 B Prof. Flavio Fontanelli Versione 1.2 5 aprile 2006 Copyright 2000-2005. Questo documento è protetto dalla legge sul diritto di autore, e di proprietà

Dettagli

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie

Dettagli

Istituto Tecnico Industriale Statale E. Majorana

Istituto Tecnico Industriale Statale E. Majorana Istituto Tecnico Industriale Statale E. Majorana Cassino *** Corso Abilitante A034 Elettronica A.S.: 2000/2001 U.D. : Mappe di Karnaugh e minimizzazione delle reti logiche. Proposta di un piano di lavoro

Dettagli

Capitolo 2 Tecnologie dei circuiti integrati 33

Capitolo 2 Tecnologie dei circuiti integrati 33 Indice Prefazione XIII Capitolo 1 Circuiti digitali 1 1.1 Introduzione 1 1.2 Discretizzazione dei segnali 4 1.3 L invertitore ideale 6 1.4 Porte logiche elementari 6 1.4.1 Porte elementari come combinazioni

Dettagli

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Anno Accademico 2013/2014 Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Prof. Riccardo Torlone Università di Roma Tre Semplici elementi alla base di sistemi complessi Riccardo Torlone - Corso

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno Algoritmo = Dati e Azioni Dati: Numeri (naturali, interi, reali, ) Caratteri alfanumerici (a, b, c, ) Dati logici (vero, falso) Vettori di elementi, matrici, ([1,2,3], [[1,1],[1,2], ]) Azioni o istruzioni:

Dettagli

ISTITUTO PROFESSIONALE PER L'INDUSTRIA E L ARTIGIANATO ALESSANDRO VOLTA GUSPINI. PROGRAMMA DIDATTICO con riferimento al programma ministeriale

ISTITUTO PROFESSIONALE PER L'INDUSTRIA E L ARTIGIANATO ALESSANDRO VOLTA GUSPINI. PROGRAMMA DIDATTICO con riferimento al programma ministeriale ISTITUTO PROFESSIONALE PER L'INDUSTRIA E L ARTIGIANATO ALESSANDRO VOLTA GUSPINI ANNO SCOLASTICO 2013-2014 PROGRAMMA DIDATTICO con riferimento al programma ministeriale MATERIA ELETTROTECNICA ED ELETTRONICA

Dettagli

Circuiti logici combinatori

Circuiti logici combinatori Circuiti logici combinatori - Prof. G. Acciari - M.M. Mano C.R.Kime, RETI LOGICHE IV ed, Pearson Prentice Hall Cap..,.,.6,.7,.8,.9 Ing. G. Acciari - Circuiti Logici (ver..) A.A. / Circuiti logici combinatori

Dettagli

Sommario. Teoremi Maxterm Forme Canoniche Mappe di Karnaugh Fine lezione

Sommario. Teoremi Maxterm Forme Canoniche Mappe di Karnaugh Fine lezione Algebra di Boole e Funzioni Binarie Lezione Prima Sommario Variabili Binarie Negazione Somma Logica Prodotto Logico Relazioni- proprietà Funzioni Minterm Teoremi Maxterm Forme Canoniche Mappe di Karnaugh

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

La Logica Proposizionale. (Algebra di Boole)

La Logica Proposizionale. (Algebra di Boole) 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco

Dettagli

PIANO DI LAVORO COMUNE

PIANO DI LAVORO COMUNE PIANO DI LAVORO COMUNE Anno Scolastico 2015 2016 Materia: Elettrotecnica-Elettronica Classe: 3 elettrotecnici DOCENTE FIRMA Cottini Marzio Maulini Stefano Data di presentazione: 11-09-2015 Pagina 1 di

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

Operatori logici e porte logiche

Operatori logici e porte logiche Operatori logici e porte logiche Operatori unari.......................................... 730 Connettivo AND........................................ 730 Connettivo OR..........................................

Dettagli

L'algebra di Boole falso vero livello logico alto livello logico basso Volts

L'algebra di Boole falso vero livello logico alto livello logico basso Volts L algebra di Boole L'algebra di Boole comprende una serie di regole per eseguire operazioni con variabili logiche. Le variabili logiche possono assumere solo due valori. I due possibili stati che possono

Dettagli

Circuiti integrati. Circuiti integrati

Circuiti integrati. Circuiti integrati Circuiti integrati Circuiti integrati Le porte logiche non vengono prodotte isolatamente, ma sono realizzate su circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere:

PROGRAMMA SVOLTO A. SC. 2014 2015 classe III W. Conoscenze, abilità e competenze. Conoscere: Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati Il Livello LogicoDigitale i Blocchi funzionali combinatori Circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati

Dettagli

Sintesi dei circuiti logici:

Sintesi dei circuiti logici: SCUOLA DI SPECIALIZZAZIONE INTERATENEO PER LA FORMAZIONE DEGLI INSEGNANTI DI SCUOLA SECONDARIA INDIRIZZO TECNOLOGICO Tesina finale di abilitazione in Elettronica ( A034 ) Sintesi dei circuiti logici: minimizzazione

Dettagli

Capitolo 2 - Algebra booleana

Capitolo 2 - Algebra booleana ppunti di Elettronica Digitale Capitolo - lgebra booleana Introduzione... Postulati di Huntington... Reti di interruttori... Esempi di algebra booleana... 4 Teoremi ondamentali dell'algebra booleana...

Dettagli

2AE 2BE [Stesura a.s. 2014/15]

2AE 2BE [Stesura a.s. 2014/15] Monte ore annuo Libro di Testo SETTEMBRE PROGRAMMAZIONE COORDINATA TEMPORALMENTE 99 ore di cui 66 di laboratorio Appunti forniti dal docente, G. Chiavola ECDL Syllabus 5.0 Guida all esame per la patente

Dettagli

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I)

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) DIS - Università degli Studi di Napoli Federico II Codifica delle Informazioni T insieme delle informazioni da rappresentare E insieme

Dettagli

Flip-flop Macchine sequenziali

Flip-flop Macchine sequenziali Flip-flop Macchine sequenziali Introduzione I circuiti digitali possono essere così classificati Circuiti combinatori Il valore delle uscite ad un determinato istante dipende unicamente dal valore degli

Dettagli

Istituto Universitario Navale Facoltà di Ingegneria Corso di Laurea in Ingegneria delle Telecomunicazioni

Istituto Universitario Navale Facoltà di Ingegneria Corso di Laurea in Ingegneria delle Telecomunicazioni Istituto Universitario Navale Facoltà di Ingegneria Corso di Laurea in Ingegneria delle Telecomunicazioni Fondamenti di Informatica Modulo 1 Programma dell'a.a. 2003/2004 Luigi Romano Dipartimento di Informatica

Dettagli

Liceo Tecnologico. Indirizzo Elettrico Elettronico. Indicazioni nazionali per Piani di Studi Personalizzati

Liceo Tecnologico. Indirizzo Elettrico Elettronico. Indicazioni nazionali per Piani di Studi Personalizzati Indicazioni nazionali per Piani di Studi Personalizzati Obiettivi Specifici d Apprendimento Discipline con attività di laboratorio 3 4 5 Fisica 99 Gestione di progetto 132 99 *Tecnologie informatiche e

Dettagli

Elenco unità capitalizzabili non presenti nello standard nazionale

Elenco unità capitalizzabili non presenti nello standard nazionale Elenco unità capitalizzabili non presenti nello standard nazionale TITOLO UNITÀ :Utilizzare le tecniche fondamentali della meccanica applicata alle macchine Definire le tecniche per la trasmissione del

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

LA NUMERAZIONE BINARIA

LA NUMERAZIONE BINARIA LA NUMERAZIONE BINARIA 5 I SISTEMI DI NUMERAZIONE Fin dalla preistoria l uomo ha avuto la necessità di fare calcoli, utilizzando svariati tipi di dispositivi: manuali (mani, bastoncini, sassi, abaco),

Dettagli

Le componenti fisiche di un computer: l hardware

Le componenti fisiche di un computer: l hardware Le componenti fisiche di un computer: l hardware In questa sezione ci occuperemo di come è strutturato e come funziona l hardware di un computer. In particolare, nella Sezione ci occuperemo del punto di

Dettagli

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa. Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra

Dettagli

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2 Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 2007-2008 Logica Combinatoria una rete combinatoria

Dettagli

Riferimenti Bibliografici: Paolo Spirito Elettronica digitale, Mc Graw Hill Capitolo 1 Appunti e dispense del corso

Riferimenti Bibliografici: Paolo Spirito Elettronica digitale, Mc Graw Hill Capitolo 1 Appunti e dispense del corso I Circuiti digitali Riferimenti Bibliografici: Paolo Spirito Elettronica digitale, Mc Graw Hill Capitolo 1 Appunti e dispense del corso Caratteristiche dei circuiti digitali pagina 1 Elaborazione dei segnali

Dettagli

Reti logiche e componenti di un elaboratore

Reti logiche e componenti di un elaboratore FONDAMENTI DI INFORMATICA Ing. Davide PIERATTONI Facoltà di Ingegneria Università degli Studi di Udine Reti logiche e componenti di un elaboratore 2000-2007 P.L. Montessoro - D. Pierattoni (cfr. nota di

Dettagli

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch.

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch. Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE Comunicazione importante dalla prossima settimana, la lezione del venerdì si terrà: dalle 15:00 alle 17.15 in aula 311 l orario

Dettagli

ELEMENTI PROGETTAZIONE LOGICA

ELEMENTI PROGETTAZIONE LOGICA UNIVERSITA DEGLI STUDI DI MILANO BICOCCA CORSO DI LAUREA IN INFORMATICA ELEMENTI PROGETTAZIONE DI LOGICA Dispense per il Corso di PROGETTAZIONE LOGICA Prof. Giuliano F. BOELLA 2 i PREMESSA Queste dispense

Dettagli

Materiale didattico per il recupero di Telecomunicazioni. Classe 3D

Materiale didattico per il recupero di Telecomunicazioni. Classe 3D Materiale didattico per il recupero di Telecomunicazioni Classe 3D A.S. 2013-2014 Istruzioni Il seguente file contiene una parte di appunti per il ripasso degli argomenti e una serie di schede con esercizi

Dettagli

Reti combinatorie: Codificatori

Reti combinatorie: Codificatori Reti combinatorie: Codificatori P. Marincola (Rev..2) Come si ricorderà, i decodificatori hanno essenzialmente il compito di convertire un codice binario a n bit in un codice -su-m, dovem =2 n. In molte

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE. SETTORE TECNOLOGICO Indirizzo: Elettrotecnica ed Elettronica

PROGRAMMAZIONE DIDATTICA ANNUALE. SETTORE TECNOLOGICO Indirizzo: Elettrotecnica ed Elettronica ISTITUTO TECNICO INDUSTRIALE STATALE Basilio Focaccia via Monticelli (loc. Fuorni) - Salerno PROGRAMMAZIONE DIDATTICA ANNUALE SETTORE TECNOLOGICO Indirizzo: Elettrotecnica ed Elettronica Anno scolastico:

Dettagli

Memorie ROM (Read Only Memory)

Memorie ROM (Read Only Memory) Memorie ROM (Read Only Memory) Considerando la prima forma canonica, la realizzazione di qualsiasi funzione di m variabili richiede un numero di porte AND pari al numero dei suoi mintermini e di prolungare

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di segnali Unità di misura delle grandezze elettriche Simbologia

Dettagli

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici L1 LOGICA FONDAMENTI DI LOGICA DIGITALE 1 Concetti di logica: teoremi fondamentali dell'algebra booleana Sistema binario Funzioni logiche Descrizione algebrica delle reti logiche e le tavole della verità

Dettagli

MAPPE DI KARNAUGH e sintesi ottima

MAPPE DI KARNAUGH e sintesi ottima MAPPE DI KARNAUGH e sintesi ottima (prima stesura da rivedere) Sappiamo che una funzione logica può essere espressa in diverse forme, tra loro equivalenti e noi siamo già in grado di passare da una all

Dettagli

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento

Dettagli

A.S. 2015/16 CLASSE 3 AEE MATERIA: ELETTRONICA/ELETTROTECNICA UNITA DI APPRENDIMENTO 1: SICUREZZA ELETTRICA

A.S. 2015/16 CLASSE 3 AEE MATERIA: ELETTRONICA/ELETTROTECNICA UNITA DI APPRENDIMENTO 1: SICUREZZA ELETTRICA A.S. 2015/16 CLASSE 3 AEE MATERIA: ELETTRONICA/ELETTROTECNICA UNITA DI APPRENDIMENTO 1: SICUREZZA ELETTRICA Essere consapevole dei rischi e dei pericoli legati all utilizzo della corrente elettrica. Valutazione

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Corso di Laurea in Scienze dell'educazione, 2014-15 Lorenzo Bettini http://www.di.unito.it/~bettini Informazioni generali Ricevimento studenti su appuntamento Dipartimento di

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2014/2015

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2014/2015 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2014/2015 CLASSE 2 I Disciplina: Scienze e tecnologie applicate PROGETTAZIONE DIDATTICA ANNUALE Elaborata e sottoscritta dal docente: cognome

Dettagli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli Sommario Sintesi di reti logiche multilivello M. Favalli Engineering Department in Ferrara 1 2 3 Aspetti tecnologici Sommario Analisi e sintesi dei circuiti digitali 1 / Motivazioni Analisi e sintesi dei

Dettagli

LE RETI COMBINATORIE

LE RETI COMBINATORIE 2-1 CAPITOLO II LE RETI COMBINATORIE 2.1 INTRODUZIONE Le reti combinatorie sono reti logiche caratterizzate dal fatto che lo stato dell'uscita all'istante t dipende solo dallo stato delle entrate allo

Dettagli

Ambiente di apprendimento

Ambiente di apprendimento ELETTROTECNICA ED ELETTRONICA MAIO LINO, PALUMBO GAETANO 3EET Settembre novembre Saper risolvere un circuito elettrico in corrente continua, e saperne valutare i risultati. Saper applicare i teoremi dell

Dettagli

Articolazione Elettronica. Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica. Elettronica ed Elettrotecnica - Classe 3^

Articolazione Elettronica. Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica. Elettronica ed Elettrotecnica - Classe 3^ Articolazione Elettronica Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di Segnali Unità di misura delle grandezze

Dettagli