Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali."

Transcript

1 Reti Logiche Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. - Elaborano informazione rappresentata da segnali digitali, cioe segnali che assumono nel tempo solo un numero finito di valori possibili. - Scambiano informazioni con l esterno attraverso un insieme di connessioni di ingresso (morsetti di ingresso) e di uscita (morsetti in uscita). - Trasformano i segnali di ingresso in segnali di uscita con un comportamento unidirezionale, cioe le uscite non possono alterare l informazione in ingresso. Possono essere collegate tra loro all interno di un sistema digitale piu complesso o scambiare informazioni con il mondo esterno al sistema. Se l ambiente esterno non e digitale ma analogico, cioe produce segnali continui, questi dovranno venir convertiti in forma digitale prima di essere elaborati da una rete logica.

2 Reti Combinatorie e Macchine Sequenziali Una rete logica puo essere composta (o decomposta) in sottoreti (piu piccole e piu semplici). I componenti atomici per tale composizione modulare sono dette blocchi logici. I blocchi logici possono essere suddivisi in due grandi classi a seconda della loro capacita di possedere o meno memoria. Reti combinatorie Sono composte da blocchi logici privi di memoria. L uscita dipende unicamente dagli ingressi in un dato istante. Reti (o Macchine) Sequenziali Hanno capacita di memorizzazione, ovvero di possedere uno stato. L uscita in questo caso dipende dalla sequenza degli ingressi e, in ogni istante, e determinata sia dagli ingressi sui morsetti di entrata che dallo stato in cui si trova la macchina.

3 Algebra di Boole Generalmente le reti logiche elaborano segnali binari, che corrispondono a due livelli di tensione alta (di livello 1) e bassa (di livello 0). Il mezzo matematico fondamentale per descrivere e studiare il funzionamento di una rete logica e l Algebra di Boole. Una rete logica trasforma n segnali digitali in ingresso in un segnale (o piu ) in uscita. Il suo comportamento puo essere descritto da una funzione booleana f: {0,1}n {0,1} Esempio. (n=3) a b c f (a,b,c) N.B. 3 valori in ingresso, 23 terne possibili

4 Operatori booleani NOT(x) AND(x 1, x 2 ) OR(x 1, x 2 ) x x x 1 x 2 x 1 x 2 x 1 x 2 x 1 +x Espressioni booleane x 1 (x 3 + x 2 ) + x 3 x 1 + (x 3 x 2 ) Definizione esplicita di funzioni booleane z 1 = f 1 (x 1, x 2, x 3 ) = x 1 (x 3 + x 2 ) + x 3 z 2 = f 2 (x 1, x 2, x 3 ) = x 1 + (x 2 x 3 ) z 3 = f 3 (x 1, x 2, x 3 ) = (x 1 + x 3 ) (x 1 + x 2 ) Equivalenza tra espressioni booleane Per ogni terna di valori x 1, x 2, x 3 : x 1 + (x 2 x 3 ) = (x 1 + x 3 ) (x 1 + x 2 ) priorità : -,, +

5 Proprietà degli operatori -,, + x 1 + (x 2 x 3 ) (x 1 + x 3 ) (x 1 + x 2 ) x 1 x 2 x 3 x 1 + (x 2 x 3 ) (x 1 + x 3 ) (x 1 + x 2 ) x + 0 = x x 1 = x x + 1 = 1 x 0 = 0 x + x = x x x = x x + x = 1 x x = 0 x1 + x2 = x2 + x1 x1 x2 = x2 x1 (x1 + x2) + x3 = x1 + (x2 + x3) (x1 x2) x3 = x1 (x2 x3) (x1 x2) + (x1 x3) = x1 (x2 + x3) (x1 + x2) (x1 + x3) = x1+ (x2 x3) NOT(NOT(X)) = x x1 x2 + x1 x2 = x1 x1 + (x1 x2) = x1 (x1 + x2) (x1 + x2) = x1 x1 (x1 + x2) = x1 teoremi di De Morgan: NOT(x1 + x2) = NOT(x1) NOT(x2) NOT(x1 x2) = NOT(x1) + NOT(x2)

6 Blocchi logici ( o porte logiche) x1 x2 x1 x2 AND gate x1 x2 x1 + x2 OR gate x1 x1 NOT gate x1 y1 y2 x2 x3 z1 z2 y1 = x1 z1 = y2 + x3 y2 = x1 x2 z2 = y2 x3

7 Completezza funzionale Operatori NAND e NOR Con gli operatori NOT, AND e OR si possono esprimere tutte le funzioni boolene ({0,1}n {0,1}). E facile verificare che due operatori sono sufficienti per esprimere ogni funzione booleana. Infatti,entrambe le coppie (NOT ed AND) e (NOT ed OR) sono funzionalmente complete: X1 + X2 = X1 X2 X1 X2 = X1 + X2 In realtà è sufficiente un solo operatore. Operatore NAND - (X1 X2) x = x x x 1 x 2 x 1 x x x 1 x x Operatore NOR - (X1 X2) x = x x x 1 x 2 x 1 x x x 1 x x

8 Mintermini e Maxtermini Un mintermine pi è una funzione che vale 1 in corrispondenza alla sola configurazione i delle variabili. Un maxtermine si è una funzione che vale 0 in corrispondenza alla sola configurazione i delle variabili. a b c p0 p2 p3 p6 p7 s1 s4 s Ogni mintermine pi puo essere espresso come l AND di tutte le variabili, dove una variabile compare diretta (non negata) se vale 1 nella configurazione i, compare negata se vale 0 nella configurazione i. p 5 = a b c (5 10 = ) Ogni maxtermine si puo essere espresso come l OR di tutte le variabili, dove una variabile compare negata se vale 1 nella configurazione i, diretta se vale 0 nella configurazione i. s 3 = a b c (3 10 = )

9 Forma Canonica - SP Prima forma canonica per una funzione f è l OR di tutti i mintermini pi per le configurazioni i dove f=1. Esempio a b c f (a,b,c) f (a,b,c) = p0 + p2 + p4 +p5 +p6 = a b c + a b c + a b c + a b c + a b c = a c + a b c + a b c + a b c = a c + a b c + a b c + a b c + a b c = a c + a b + a b c + a b c = a c + a b + a c = c + a b NOTA: Ogni mintermine si puo esprimere come un prodotto, quindi una funzione nella prima forma canonica risulta essere una Somma di Prodotti (SP).

10 Forma Canonica - PS Seconda forma canonica per una funzione f è l AND di tutti i maxtermini si per le configurazioni i dove f=0. Esempio a b c f (a,b,c) f (a,b,c) = s1 s3 s7 = (a + b + c ) (a + b + c ) ( a + b + c ) = (a + c ) ( a + b + c ) = (a + c ) (a + c + b ) ( a + b + c ) = (a + c ) (a + b + c ) ( a + b + c ) = (a + c ) (b + c ) NOTA: Ogni maxtermine si puo esprimere come una somma, quindi una funzione nella seconda forma canonica risulta essere un Prodotto di Somme (PS).

11 Reti a due o piu livelli Una rete e di livello h se h e il numero massimo di blocchi logici che un segnale incontra tra un punto di ingresso e quello di uscita. N.B. Generalmente non vengono considerati i blocchi negazione. Utilizzando le forme canoniche si possono costruire reti a due livelli. f(a, b, c) = (a + c ) (b + c ) a b c f(a,b,c)

12 PLA Array Logica Programmabile x1 x1 piano AND x2 x2 x3 x3 z1 piano OR z2 z3 Z1 = Z2 = Z3 =

13 Selettori I selettori sono impiegati per dirottare su una linea di trasmissione messaggi provenienti da sorgenti diverse (selettori di ingresso o multiplexer), o per dirottare su linee diverse il messaggio proveniente da una sorgente (selettori di uscita o demultiplexer), o per combinare entrambi questi effetti (selettori di ingressouscita). Un multiplexer e una rete combinatoria in cui alcuni segnali di ingresso rappresentano i messaggi, e altri, detti di controllo, selezionano le vie attraverso cui instradare i messaggi. S C A 0 0 A C B 1 1 B S A B S

14 Codificatori e decodificatori Trasformano parole rappresentate in un dato codice in un codice diverso. Esempio codificatore con 23 ingressi e 3 uscite (in generale: n uscite e 2n ingressi). x7 x6 x5 x4 x3 x2 x1 x0 z2 z1 z Le configurazioni ammesse in ingresso sono solo quelle che hanno esattamente un 1. L uscita è la rappresentazione binaria del numero che rappresenta la posizione dell unico 1 in ingresso. Esempio decodificatore con 3 ingressi e 23 uscite. x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

Gli array. Gli array. Gli array. Classi di memorizzazione per array. Inizializzazione esplicita degli array. Array e puntatori

Gli array. Gli array. Gli array. Classi di memorizzazione per array. Inizializzazione esplicita degli array. Array e puntatori Gli array Array e puntatori Laboratorio di Informatica I un array è un insieme di elementi (valori) avente le seguenti caratteristiche: - un array è ordinato: agli elementi dell array è assegnato un ordine

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Condizione di sincronizzazione Qualora si voglia realizzare una determinata politica di gestione delle risorse,la decisione se ad

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

MODELLISTICA DINAMICA DI SISTEMI FISICI

MODELLISTICA DINAMICA DI SISTEMI FISICI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLISTICA DINAMICA DI SISTEMI FISICI Ing. Federica Grossi Tel. 059 2056333

Dettagli

Trasmissione Seriale e Parallela. Interfacce di Comunicazione. Esempio di Decodifica del Segnale. Ricezione e Decodifica. Prof.

Trasmissione Seriale e Parallela. Interfacce di Comunicazione. Esempio di Decodifica del Segnale. Ricezione e Decodifica. Prof. Interfacce di Comunicazione Università degli studi di Salerno Laurea in Informatica I semestre 03/04 Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ 2 Trasmissione

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Trattamento aria Regolatore di pressione proporzionale. Serie 1700

Trattamento aria Regolatore di pressione proporzionale. Serie 1700 Trattamento aria Serie 7 Serie 7 Trattamento aria Trattamento aria Serie 7 Serie 7 Trattamento aria +24VDC VDC OUTPUT MICROPROCESS. E P IN EXH OUT Trattamento aria Serie 7 Serie 7 Trattamento aria 7 Trattamento

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE

PROGRAMMAZIONE DIDATTICA DISCIPLINARE MOD PROGRAMMAZIONEDISCIPLINARE REV.00del27.09.13 Pag1di5 PROGRAMMAZIONEDIDATTICADISCIPLINARE Disciplina:_SISTEMIELETTRONICIAUTOMATICIa.s.2013/2014 Classe:5 Sez.A INDIRIZZO:ELETTRONICAPERTELECOMUNICAZIONI

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici ELEMENTI DI PROBABILITA Media : migliore stima del valore vero in assenza di altre info. Aumentare il numero di misure permette di approssimare meglio il valor medio e quindi ridurre l influenza degli

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 2 Marzo 2005, ore 14.30

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 2 Marzo 2005, ore 14.30 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 2 Marzo 2005, ore 14.30 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette.

Dettagli

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti Dai sistemi concorrenti ai sistemi distribuiti Problemi nei sistemi concorrenti e distribuiti I sistemi concorrenti e distribuiti hanno in comune l ovvio problema di coordinare le varie attività dei differenti

Dettagli

UNIVERSITÀ DEGLI STUDI DI TRENTO DOCUMENTO ELETTRONICO, FIRMA DIGITALE E SICUREZZA IN RETE.

UNIVERSITÀ DEGLI STUDI DI TRENTO DOCUMENTO ELETTRONICO, FIRMA DIGITALE E SICUREZZA IN RETE. UNIVERSITÀ DEGLI STUDI DI TRENTO DOCUMENTO ELETTRONICO, FIRMA DIGITALE E SICUREZZA IN RETE. INTRODUZIONE ALL ARGOMENTO. A cura di: Eleonora Brioni, Direzione Informatica e Telecomunicazioni ATI NETWORK.

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Sottoprogrammi: astrazione procedurale

Sottoprogrammi: astrazione procedurale Sottoprogrammi: astrazione procedurale Incapsulamento di un segmento di programma presente = false; j = 0; while ( (j

Dettagli

2 Rappresentazioni grafiche

2 Rappresentazioni grafiche asi di matematica per la MPT 2 Rappresentazioni grafiche I numeri possono essere rappresentati utilizzando i seguenti metodi: la retta dei numeri; gli insiemi. 2.1 La retta numerica Domanda introduttiva

Dettagli

SIMATIC S7. Primi passi ed esercitazioni con STEP 7. Benvenuti in STEP 7, Contenuto. Introduzione a STEP 7 1

SIMATIC S7. Primi passi ed esercitazioni con STEP 7. Benvenuti in STEP 7, Contenuto. Introduzione a STEP 7 1 s SIMATIC S7 Primi passi ed esercitazioni con STEP 7 Getting Started Benvenuti in STEP 7, Contenuto Introduzione a STEP 7 1 SIMATIC Manager 2 Programmazione con nomi simbolici 3 Creazione di un programma

Dettagli

LE VALVOLE PNEUMATICHE

LE VALVOLE PNEUMATICHE LE VALVOLE PNEUMATICHE Generalità Le valvole sono apparecchi per il comando, per la regolazione della partenza, arresto e direzione, nonché della pressione e passaggio di un fluido proveniente da una pompa

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Processi di business sovra-regionali relativi ai sistemi regionali di FSE. Versione 1.0 24 Giugno 2014

Processi di business sovra-regionali relativi ai sistemi regionali di FSE. Versione 1.0 24 Giugno 2014 Processi di business sovra-regionali relativi ai sistemi regionali di FSE Versione 1.0 24 Giugno 2014 1 Indice Indice... 2 Indice delle figure... 3 Indice delle tabelle... 4 Obiettivi del documento...

Dettagli

Manipolazione di testi: espressioni regolari

Manipolazione di testi: espressioni regolari Manipolazione di testi: espressioni regolari Un meccanismo per specificare un pattern, che, di fatto, è la rappresentazione sintetica di un insieme (eventualmente infinito) di stringhe: il pattern viene

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Determinare la grandezza della sottorete

Determinare la grandezza della sottorete Determinare la grandezza della sottorete Ogni rete IP possiede due indirizzi non assegnabili direttamente agli host l indirizzo della rete a cui appartiene e l'indirizzo di broadcast. Quando si creano

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Arduino: Programmazione

Arduino: Programmazione Programmazione formalmente ispirata al linguaggio C da cui deriva. I programmi in ARDUINO sono chiamati Sketch. Un programma è una serie di istruzioni che vengono lette dall alto verso il basso e convertite

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Procedura corretta per mappare con ECM Titanium

Procedura corretta per mappare con ECM Titanium Procedura corretta per mappare con ECM Titanium Introduzione: In questo documento troverete tutte le informazioni utili per mappare correttamente con il software ECM Titanium, partendo dalla lettura del

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni Funzioni Le funzioni Con il termine funzione si intende, in generale, un operatore che, applicato a un insieme di operandi, consente di calcolare un risultato, come avviene anche per una funzione matematica

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

Le variabili. Olga Scotti

Le variabili. Olga Scotti Le variabili Olga Scotti Cos è una variabile Le variabili, in un linguaggio di programmazione, sono dei contenitori. Possono essere riempiti con un valore che poi può essere riletto oppure sostituito.

Dettagli

Procedura accesso e gestione Posta Certificata OlimonTel PEC

Procedura accesso e gestione Posta Certificata OlimonTel PEC Procedura accesso e gestione Posta Certificata OlimonTel PEC Informazioni sul documento Revisioni 06/06/2011 Andrea De Bruno V 1.0 1 Scopo del documento Scopo del presente documento è quello di illustrare

Dettagli

REGOLAMENTO PER LA PRESENTAZIONE DI ISTANZE E DICHIARAZIONI PER VIA TELEMATICA

REGOLAMENTO PER LA PRESENTAZIONE DI ISTANZE E DICHIARAZIONI PER VIA TELEMATICA COMMUNE DE GRESSAN REGOLAMENTO PER LA PRESENTAZIONE DI ISTANZE E DICHIARAZIONI PER VIA TELEMATICA Approvazione deliberazione del Consiglio comunale n. 10 del 13/01/2012 del Consiglio comunale n. del Art.

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Modello OSI e architettura TCP/IP

Modello OSI e architettura TCP/IP Modello OSI e architettura TCP/IP Differenza tra modello e architettura - Modello: è puramente teorico, definisce relazioni e caratteristiche dei livelli ma non i protocolli effettivi - Architettura: è

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Introduzione agli oscilloscopi

Introduzione agli oscilloscopi o s c i l l o s c o p i Indice Introduzione...3 Integrità del segnale Significato dell integrità del segnale..................................4 Perché l integrità del segnale è un problema?...........................4

Dettagli

I sistemi di acquisizione dati

I sistemi di acquisizione dati I sistemi di acquisizione dati L'utilizzo dei computers, e dei PC in particolare, ha notevolmente aumentato la produttività delle attività sperimentali. Fenomeno fisico Sensore/ trasduttore Acquisizione

Dettagli

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI G. FANO (Torino - Italia) SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI 1. - La distinzione, che pareva tradizionale, tra scienze di ragionamento e scienze sperimentali è ormai

Dettagli

1. Determinazione del valore di una resistenza mediante misura voltamperometrica

1. Determinazione del valore di una resistenza mediante misura voltamperometrica 1. Determinazione del valore di una resistenza mediante misura voltamperometrica in corrente continua Si hanno a disposizione : 1 alimentatore di potenza in corrente continua PS 2 multimetri digitali 1

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

Accesso all Area di Lavoro

Accesso all Area di Lavoro Accesso all Area di Lavoro Una volta che l Utente ha attivato le sue credenziali d accesso Username e Password può effettuare il login e quindi avere accesso alla propria Area di Lavoro. Gli apparirà la

Dettagli

Guida alle FM 35x. Siemens S.p.A. I IA AS PLC

Guida alle FM 35x. Siemens S.p.A. I IA AS PLC . Guida alle FM 35x. 1 ... 1 Guida alle FM 35x.... 1 Tipologie d Encoder... 4 Acquisizione degli encoder con S7-300 e S7-400.... 4 Conteggio e misura.... 6 Modalità di conteggio... 6 Posizionamento con

Dettagli

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN FCA D PNCP D KCHHOFF, DL PNCPO D SOAPPOSZON DGL FFTT, DL TOMA D MLLMAN Un qualunque circuito lineare (in cui agiscono più generatori) può essere risolto applicando i due principi di Kirchhoff e risolvendo

Dettagli

Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof.

Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof. Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica Programmazione I - corso B a.a. 009-10 prof. Viviana Bono Blocco 9 Metodi statici: passaggio parametri, variabili locali, record

Dettagli

Oggetti Lezione 3. aspetti generali e definizione di classi I

Oggetti Lezione 3. aspetti generali e definizione di classi I Programmazione a Oggetti Lezione 3 Il linguaggio Java: aspetti generali e definizione di classi I Sommario Storia e Motivazioni Definizione di Classi Campi e Metodi Istanziazione di oggetti Introduzione

Dettagli

Architetture CISC e RISC

Architetture CISC e RISC FONDAMENTI DI INFORMATICA Prof. PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine Architetture CISC e RISC 2000 Pier Luca Montessoro (si veda la nota di copyright alla slide n.

Dettagli

TB-SMS. Combinatore telefonico GSM-SMS Manuale di installazione ed uso. Ver. 1.6.10 31/07/07

TB-SMS. Combinatore telefonico GSM-SMS Manuale di installazione ed uso. Ver. 1.6.10 31/07/07 TB-SMS Combinatore telefonico GSM-SMS Manuale di installazione ed uso Ver. 1.6.10 31/07/07 MANUALE DI INSTALLAZIONE ED USO INTRODUZIONE. Il combinatore TB-SMS offre la possibilità di inviare sms programmabili

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

Cos è una stringa (1) Stringhe. Leggere e scrivere stringhe (1) Cos è una stringa (2) DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247

Cos è una stringa (1) Stringhe. Leggere e scrivere stringhe (1) Cos è una stringa (2) DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247 Cos è una stringa (1) Stringhe DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247 Una stringa è una serie di caratteri trattati come una singola unità. Essa potrà includere lettere, cifre, simboli e caratteri

Dettagli

Descrizioni VHDL Behavioral

Descrizioni VHDL Behavioral 1 Descrizioni VHDL Behavioral In questo capitolo vedremo come la struttura di un sistema digitale è descritto in VHDL utilizzando descrizioni di tipo comportamentale. Outline: process wait statements,

Dettagli

I file di dati. Unità didattica D1 1

I file di dati. Unità didattica D1 1 I file di dati Unità didattica D1 1 1) I file sequenziali Utili per la memorizzazione di informazioni testuali Si tratta di strutture organizzate per righe e non per record Non sono adatte per grandi quantità

Dettagli

Corso di Informatica Medica Esercitazione 1I 2013-2014.! Alessandro A. Nacci nacci@elet.polimi.it - alessandronacci.com

Corso di Informatica Medica Esercitazione 1I 2013-2014.! Alessandro A. Nacci nacci@elet.polimi.it - alessandronacci.com Corso di Informatica Medica Esercitazione 1I 2013-2014! Alessandro A. Nacci nacci@elet.polimi.it - alessandronacci.com 1 2 Esercizio 1 Scrivere un programma che legga due array di interi da tastiera dica

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

TEORIA DELL INFORMAZIONE E CODICI. Sandro Bellini. Politecnico di Milano

TEORIA DELL INFORMAZIONE E CODICI. Sandro Bellini. Politecnico di Milano TEORIA DELL INFORMAZIONE E CODICI Sandro Bellini Politecnico di Milano Prefazione Queste brevi note sono state scritte per gli studenti del corso di Teoria dell informazione e codici da me tenuto presso

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

CONNESSIONI IN MORSETTIERA. Caratteristiche generali. Morsettiere a 6 pioli per motori

CONNESSIONI IN MORSETTIERA. Caratteristiche generali. Morsettiere a 6 pioli per motori CONNESSIONI IN MORSETTIERA Morsettiere a 6 pioli per motori -monofase -monofase con condensatore di spunto -bifase -trifase a singola velocità -trifase dahlander -trifase bipolari -trifase tripolari forniti

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Le Reti di Calcolatori (parte 2) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente: Daniela

Dettagli

SIMATIC. SCL per S7-300/400 Programmazione di blocchi. Prefazione, Contenuto. Parte 1: Sviluppo di programmi. Parte 2: Uso e test

SIMATIC. SCL per S7-300/400 Programmazione di blocchi. Prefazione, Contenuto. Parte 1: Sviluppo di programmi. Parte 2: Uso e test Prefazione, Contenuto Parte 1: Sviluppo di programmi Parte 2: Uso e test SIMATIC Parte 3: Descrizione del linguaggio Programmazione di blocchi Appendici Glossario, Indice analitico Manuale Numero di ordinazione

Dettagli

Semplici Algoritmi di Ordinamento

Semplici Algoritmi di Ordinamento Fondamenti di Informatica Semplici Algoritmi di Ordinamento Fondamenti di Informatica - D. Talia - UNICAL 1 Ordinamento di una sequenza di elementi Esistono molti algoritmi di ordinamento. Tutti ricevono

Dettagli

Esercizio 1 Soluzione Esercizio 2 Soluzione

Esercizio 1 Soluzione Esercizio 2 Soluzione Esercizio 1 Si specifichi, mediante una formula del prim ordine un apparato che funziona nel modo seguente: All istante 0 esso emette un segnale s, che può essere uno 0 o un 1. Se, dopo l emissione di

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA

COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA Pagina 1 di 5 COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA AREA DISCIPLINARE : Indirizzo Informatica e Telecomunicazioni, articolazione Informatica.

Dettagli

MANUALE TECNICO 080406 E SMS

MANUALE TECNICO 080406 E SMS IT MANUALE TECNICO 080406 E SMS MANUALE DI INSTALLAZIONE ED USO INTRODUZIONE. Il combinatore E-SMS offre la possibilità di inviare sms programmabili a numeri telefonici preimpostati e di attivare uscite

Dettagli