Semantica Assiomatica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Semantica Assiomatica"

Transcript

1 Semantica Assiomatica Anche nella semantica assiomatica, così come in quella operazionale, il significato associato ad un comando C viene definito specificando la transizione tra stati (a partire, cioè, da uno stato iniziale per arrivare a uno finale) generata da C. Ciò che contraddistingue, quindi, una particolare definizione semantica rispetto ad un altra è il formalismo scelto per definire un generico stato del sistema. Nell approccio assiomatico, lo stato è definito da un predicato logico che stabilisce l insieme degli enunciati che sono veri all interno del sistema in un determinato momento. Dati due predicati Q, R e un comando C, definiamo tripla di Hoare per il comando C con precondizione Q e postcondizione R, il predicato {Q} C {R} che risulta vero se e solo se l esecuzione del comando C a partire da uno stato in cui è vero il predicato Q produce uno stato in cui risulta vero il predicato R. Scrivere un programma in un qualsiasi linguaggio si riconduce al seguente schema di attività: dato un insieme di informazioni iniziali (input), determinare una sequenza di comandi che, una volta eseguiti, producano un risultato che soddisfi certe proprietà (output). Usando le triple di Hoare, dati due predicati Q e R, vogliamo determinare C tale che {Q} C {R} risulti vero a partire da ogni stato in cui Q è vera. Come determinare C? Un approccio più semplice dal quale partire è quello di risolvere il problema della verifica di un programma, ovvero dati Q, R e C, stabilire se {Q} C {R} risulta vero a partire da ogni stato in cui Q è vera. Questo problema si può ridurre ad un altro, più semplice, che consiste nel calcolare, a partire da C e R, un predicato W tale che {Q} C {R} sia vera se e solo se Q implica W. Il predicato W si chiama precondizione più debole (weakest precondition) di C rispetto a R e si indica con wp[c]r. La precondizione più debole risulta quindi così definita. Definizione. Per ogni predicato R e comando C, la precondizione più debole di C rispetto a R è il predicato wp[c]r tale che, per ogni predicato Q, vale che {Q} C {R} Q wp[c]r. Dalla definizione di precondizione più debole segue direttamente che, se si esegue C in uno stato in cui è vera wp[c]r, si arriva in uno stato in cui è vera la postcondizione R, come dimostrato nella seguente proposizione.

2 Proposizione1. Per ogni predicato R e comando C, vale {wp[c]r} C {R}. Dimostrazione. {wp[c]r} C {R} wp[c]r wp[c]r true. La precondizione più debole è dunque un predicato tale che, partendo da uno stato che lo soddisfa, l esecuzione di C porta in uno stato in cui R è soddisfatta. In particolare, possono esistere infiniti stati che verificano questa proprietà. La precondizione più debole identifica l insieme più ampio di stati a partire dai quali l esecuzione di C porta in uno stato che soddisfa R. Chiariamo questo concetto con un piccolo esempio. Consideriamo le due triple di Hoare: {c = 1 ٨ b = 4} a = c {a + b = 5} {c = 2 ٨ b = 3} a = c {a + b = 5} Come vedremo in seguito, si ha che wp[a = c](a + b = 5) c + b = 5. Abbiamo che c = 1 ٨ b = 4 c + b = 5, c = 2 ٨ b = 3 c + b = 5. Si può apprezzare come la condizione espressa dal predicato c + b = 5 catturi l insieme di tutti i possibili stati di partenza per i quali, dopo aver assegnato il valore c alla variabile a, si ottiene che a + b = 5. Diamo ora un insieme di postulati riguardanti le precondizioni più deboli e che assumiamo implicitamente veri. Postulato 1 (Congiuntività). Per ogni coppia di predicati Q, R e per ogni comando C si ha wp[c](q ٨ R) wp[c]q ٨ wp[c]r. Postulato 2 (Disgiuntività). Per ogni coppia di predicati Q, R e per ogni comando C si ha wp[c](q ٧ R) wp[c]q ٧ wp[c]r. Postulato 3 (Nessun Miracolo). Per ogni comando C si ha wp[c]false false. Siano S(C,Q) e S(C,R) l insieme degli stati a partire dai quali, dopo aver eseguito C, si raggiunge uno stato che soddisfa rispettivamente Q e R. Intuitivamente, il postulato 1 dice che l insieme degli stati dai quali, dopo aver eseguito C, si può raggiungere uno stato che soddisfi contemporaneamente Q e R equivale all intersezione di S(C,Q) e S(C,R); mentre il postulato 2 dice che l insieme degli stati dai quali, dopo aver eseguito C, si può raggiungere uno stato che soddisfi almeno uno tra Q e R equivale all unione tra S(C,Q) e S(C,R). Infine, il postulato 3 dice che, siccome nessuno stato può soddisfare il falso, l insieme più ampi degli stati che soddisfano il falso deve essere vuoto.

3 Le precondizioni più deboli verificano, tra le altre, le seguenti proprietà fondamentali. Proprietà 1 (Monotonicità). Per ogni coppia di predicati Q, R e per ogni comando C si ha (Q R) (wp[c]q wp[c]r). Dimostrazione. wp[c]q [sfruttando (Q R) Q Q ٨ R] wp[c](q ٨ R) [sfruttando Congiuntività] wp[c]q ٨ wp[c]r [sfruttando P ٨ Q Q] wp[c]r. Proprietà 2 (Regola della Postcondizione). Per ogni tripla di predicati Q, R, A e per ogni comando C si ha {Q} C {A} ٨ (A R) {Q} C {R}. Dimostrazione. {Q} C {A} [per definizione di wp] Q wp[c]a [sfruttando A R e Monotonicità] Q wp[c]a wp[c]r [sfruttando la transitività di ] Q wp[c]r {Q} C {R}. Proprietà 3 (Regola della Precondizione). Per ogni tripla di predicati Q, R, A e per ogni comando C si ha {A} C {R} ٨ (Q A) {Q} C {R}. Dimostrazione. {A} C {R} [per definizione di wp] A wp[c]r [sfruttando Q A] Q A wp[c]r [sfruttando la transitività di ] Q wp[c]r {Q} C {R}. Semantica dei Comandi Specifichiamo ora le precondizioni più deboli associate ai comandi del nostro mini linguaggio di riferimento. 1. wp[skip]r R 2. wp[c 1 ;c 2 ]R wp[c 1 ](wp[c 2 ]R) Vediamo come il comando skip si comporti da operatore unitario nell ambito della sequenza di comandi. wp[c;skip]r [wp della sequenza di comandi] wp[c](wp[skip]r) [wp di skip] wp[c]r [wp di skip] wp[skip](wp[c]r) [wp della sequenza di comandi] wp[skip;c]r.

4 Data un espressione a AExp BExp, introduciamo un predicato Def[a] che risulta vero se e solo se l espressione a è ben definita. In particolare, ricordando la natura del nostro linguaggio di riferimento, ci preoccuperemo di verificare che l operazione di differenza tra due termini sia sempre tale che il minuendo sia maggiore uguale del sottraendo. 3. wp[x = a]r R a X ٨ Def[a] 4. wp[if b then c 1 else c 2 ]R Def[b] ٨ ((b ٨ wp[c 1 ]R ) ٧ ( b ٨ wp[c 2 ]R)) Vediamo un esempio di applicazione della precondizione più debole relativa al commando condizionale. wp[if X 1 X 2 then X 3 = X 1 else X 3 = X 2 ](X 3 = max{x 1 ;X 2 }) Def[X 1 X 2 ] ٨ ((X 1 X 2 ٨ wp[x 3 = X 1 ] (X 3 = max{x 1 ;X 2 })) ٧ (X 1 < X 2 ٨ wp[x 3 = X 2 ] (X 3 = max{x 1 ;X 2 }))) (X 1 X 2 ٨ wp[x 3 = X 1 ] (X 3 = max{x 1 ;X 2 })) ٧ (X 1 < X 2 ٨ wp[x 3 = X 2 ] (X 3 = max{x 1 ;X 2 })) (X 1 X 2 ٨ X 1 = max{x 1 ;X 2 }) ٧ (X 1 < X 2 ٨ X 2 = max{x 1 ;X 2 }) X 1 X 2 ٧ X 1 < X 2 True. Quindi, tutti i possibili stati iniziali soddisfano la postcondizione, indipendentemente dai valori di X 1 e X 2. Per quanto riguarda il ciclo while, il generico predicato che definisce la sua wp è così complesso da renderlo preticamente inutilizzabile in pratica. Saremo costretti, quindi, ad utilizzare il risultato di un teorema la cui applicazione, però, richiede l invenzione, da parte del programmatore, di una formula (detta invariante) che risulti sempre vera durante l intera esecuzione del while. Questa situazione riflette esattamente il fatto che la creazione di cicli risulta l attività più complessa nell ambito della programmazione imperativa. Sia t una funzione a valori interi e INV un predicato, enunciamo il seguente teorema. Teorema di iterazione finita. {INV ٨ E} C {INV ٨ Def[E]} (invarianza) ٨ {INV ٨ E ٨ t = T} C {t < T} (progresso) ٨ INV ٨ E t > 0 (terminazione) {INV ٨ Def[E]} while E do C {INV ٨ E}.

5 Il teorema afferma che nelle tre ipotesi di invarianza, progresso e terminazione, allora INV ٨ Def[E] e INV ٨ E possono essere assunte come precondizione e postcondizione del while. Per poter risolvere il problema di costruire un while che soddisfi la tripla {P} while E do C {R}, bisogna quindi trovare INV e t che verifichino le ipotesi del teorema, con INV tale che P INV ٨ Def[E] e INV ٨ E R. Questo per le regole della precondizione e della postcondizione. Vediamo ora un esempio. Voglio scrivere un programma che dati due numeri interi non negativi A e B li sommi e memorizzi il risultato in una variabile di nome z. Risolviamo il problema attraverso il seguente programma P: z = A; u = B; while (u!= 0) do {z = z + 1; u = u - 1;} Verifichiamo la correttezza formale del nostro programma provando che la tripla di Hoare {A 0 ٨ B 0} P {z = A + B} è vera. Per prima cosa dobbiamo risolvere il problema del ciclo while. Definiamo come funzione t il valore della variabile u e come invariante INV il predicato z + u = A + B ٨ u 0. Mostriamo che soddisfano le condizioni di invarianza, progresso e terminazione. Per la condizione di invarianza abbiamo: wp[z = z + 1; u = u 1](z + u = A + B ٨ u 0) wp[z = z + 1]((z + u = A + B ٨ u 0) u-1 u ٨ Def[u - 1]) wp[z = z + 1](z + u = A + B + 1 ٨ u 1) (z + u = A + B + 1 ٨ u 1) z+1 z ٨ Def[z+1] z + u = A + B ٨ u 1 INV ٨ u 0 INV ٨ E Per la condizione di progresso abbiamo: wp[z = z + 1; u = u 1](u < T) wp[z = z + 1]((u < T + 1) u-1 u ٨ Def[u - 1]) wp[z = z + 1+](u < T + 1 ٨ u 1) u < T + 1 ٨ u 1 INV ٨ E ٨ t = T

6 La condizione di terminazione, infine, è banalmente implicata da E. Dato, inoltre, che INV ٨ E implica z = A + B, per la regola della postcondizione possiamo concludere che la tripla di Hoare {z + u = A + B ٨ u 0} while (u!= 0) do {z = z + 1; u = u - 1;} {z = A + B} è vera. Procedendo con il calcolo abbiamo che wp[z = A; u = B](z + u = A + B ٨ u 0) wp[z = A](z + u = A + B ٨ u 0) B u ٨ Def[B] wp[z = A](z = A ٨ B 0) (z = A ٨ B 0) A z ٨ Def[A] A 0 ٨ B 0 che equivale all input del programma P. Abbiamo quindi dimostrato che P è corretto.

Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma.

Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica dei programmi La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica operazionale: associa ad ogni programma la sequenza delle sue

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Fasi del ciclo di vita del software (riassunto) Progetto: generalità. Progetto e realizzazione (riassunto)

Fasi del ciclo di vita del software (riassunto) Progetto: generalità. Progetto e realizzazione (riassunto) Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Sede di Latina Laurea in Ingegneria dell Informazione Fasi del ciclo di vita del software (riassunto) Corso di PROGETTAZIONE DEL SOFTWARE

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Interpretazione astratta

Interpretazione astratta Interpretazione astratta By Giulia Costantini (819048) e Giuseppe Maggiore (819050) Contents Interpretazione astratta... 2 Idea generale... 2 Esempio di semantica... 2 Semantica concreta... 2 Semantica

Dettagli

regola(1,[e,f],b) regola(2,[m,f],e) regola(3,[m],f) regola(4,[b,f],g) regola(5,[b,g],c) regola(6,[g,q],a)

regola(1,[e,f],b) regola(2,[m,f],e) regola(3,[m],f) regola(4,[b,f],g) regola(5,[b,g],c) regola(6,[g,q],a) ESERCIZIO1 PREMESSA Per risolvere problemi spesso esistono delle regole che, dai dati del problema, permettono di calcolare o dedurre la soluzione. Questa situazione si può descrivere col termine regola(,

Dettagli

La selezione binaria

La selezione binaria Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per

Dettagli

Descrizione di un algoritmo

Descrizione di un algoritmo Descrizione di un algoritmo Un algoritmo descrive due tipi fondamentali di oper: calcoli ottenibili tramite le oper primitive su tipi di dato (valutazione di espressioni) che consistono nella modifica

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Elementi di semantica operazionale

Elementi di semantica operazionale Elementi di semantica operazionale 1 Contenuti sintassi astratta e domini sintattici un frammento di linguaggio imperativo semantica operazionale domini semantici: valori e stato relazioni di transizione

Dettagli

Gli algoritmi: definizioni e proprietà

Gli algoritmi: definizioni e proprietà Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Gli algoritmi: definizioni e proprietà La presente dispensa e da

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Introduzione ai Metodi Formali

Introduzione ai Metodi Formali Intruzione ai Meti Formali Sistemi software anche molto complessi regolano la vita quotidiana, anche in situazioni life-critical (e.g. avionica) e business-critical (e.g. operazioni bancarie). Esempi di

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Introduzione Ordini parziali e Reticoli Punti fissi

Introduzione Ordini parziali e Reticoli Punti fissi Introduzione Ordini parziali e Reticoli Punti fissi By Giulia Costantini (819048) & Giuseppe Maggiore (819050) Table of Contents ORDINE PARZIALE... 3 Insieme parzialmente ordinato... 3 Diagramma di Hasse...

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico Processo di risoluzione di un problema ingegneristico 1. Capire l essenza del problema. 2. Raccogliere le informazioni disponibili. Alcune potrebbero essere disponibili in un secondo momento. 3. Determinare

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Permutazione degli elementi di una lista

Permutazione degli elementi di una lista Permutazione degli elementi di una lista Luca Padovani padovani@sti.uniurb.it Sommario Prendiamo spunto da un esercizio non banale per fare alcune riflessioni su un approccio strutturato alla risoluzione

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Fondamenti dei linguaggi di programmazione

Fondamenti dei linguaggi di programmazione Fondamenti dei linguaggi di programmazione Aniello Murano Università degli Studi di Napoli Federico II 1 Riassunto delle lezioni precedenti Prima Lezione: Introduzione e motivazioni del corso; Sintassi

Dettagli

Arduino: Programmazione

Arduino: Programmazione Programmazione formalmente ispirata al linguaggio C da cui deriva. I programmi in ARDUINO sono chiamati Sketch. Un programma è una serie di istruzioni che vengono lette dall alto verso il basso e convertite

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

*UDQGH]]HUDSSRUWLPLVXUH

*UDQGH]]HUDSSRUWLPLVXUH $OHVVDQGUR&RUGHOOL *UDQGH]]HJHRPHWULFKH I concetti di grandezza e di misura appartengono all esperienza quotidiana. Detto in termini molto semplici, misurare una grandezza significa andare a vedere quante

Dettagli

Verifica parte IIA. Test (o analisi dinamica) Mancanza di continuità. Esempio

Verifica parte IIA. Test (o analisi dinamica) Mancanza di continuità. Esempio Test (o analisi dinamica) Verifica parte IIA Rif. Ghezzi et al. 6.3-6.3.3 Consiste nell osservare il comportamento del sistema in un certo numero di condizioni significative Non può (in generale) essere

Dettagli

Artifact Centric Business Processes (I)

Artifact Centric Business Processes (I) Introduzione Autore: Docente: Prof. Giuseppe De Giacomo Dipartimento di Informatica e Sistemistica SAPIENZA - Universitá di Roma 16 Novembre 2008 Una visione assiomatica La modellazione dei processi di

Dettagli

Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente.

Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente. Algoritmo Formalmente, per algoritmo si intende una successione finita di passi o istruzioni che definiscono le operazioni da eseguire su dei dati (=istanza del problema): in generale un algoritmo è definito

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Linguaggi e Paradigmi di Programmazione

Linguaggi e Paradigmi di Programmazione Linguaggi e Paradigmi di Programmazione Cos è un linguaggio Definizione 1 Un linguaggio è un insieme di parole e di metodi di combinazione delle parole usati e compresi da una comunità di persone. È una

Dettagli

DAL DIAGRAMMA AL CODICE

DAL DIAGRAMMA AL CODICE DAL DIAGRAMMA AL CODICE Un diagramma di flusso Appare, come un insieme di blocchi di forme diverse che contengono le istruzioni da eseguire, collegati fra loro da linee orientate che specificano la sequenza

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi:

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: Funzioni Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la temperatura

Dettagli

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( )

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( ) Algebra di Boole L algebra di Boole prende il nome da George Boole, matematico inglese (1815-1864), che pubblicò un libro nel 1854, nel quale vennero formulati i principi dell'algebra oggi conosciuta sotto

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Come ragiona il computer. Problemi e algoritmi

Come ragiona il computer. Problemi e algoritmi Come ragiona il computer Problemi e algoritmi Il problema Abbiamo un problema quando ci poniamo un obiettivo da raggiungere e per raggiungerlo dobbiamo mettere a punto una strategia Problema Strategia

Dettagli

Punti Fissi. Mappe tra insiemi parz. ordinati. Siano (P, P ) e (Q, Q ) due insiemi parzialmente ordinati. Una funzione ϕ da P a Q si dice:

Punti Fissi. Mappe tra insiemi parz. ordinati. Siano (P, P ) e (Q, Q ) due insiemi parzialmente ordinati. Una funzione ϕ da P a Q si dice: Punti Fissi Mappe tra insiemi parz. ordinati Siano (P, P ) e (Q, Q ) due insiemi parzialmente ordinati. Una funzione ϕ da P a Q si dice: monotona (preserva l ordine) se p 1 P p 2 ϕ(p 1 ) Q ϕ(p 2 ) embedding

Dettagli

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base:

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base: LA STRUTTURA DI RIPETIZIONE La ripetizione POST-condizionale La ripetizione PRE-condizionale INTRODUZIONE (1/3) Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice.

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice. Convalida: attività volta ad assicurare che il SW sia conforme ai requisiti dell utente. Verifica: attività volta ad assicurare che il SW sia conforme alle specifiche dell analista. Goal: determinare malfunzionamenti/anomalie/errori

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

Metodi e Modelli Matematici di Probabilità per la Gestione

Metodi e Modelli Matematici di Probabilità per la Gestione Metodi e Modelli Matematici di Probabilità per la Gestione Prova scritta del 30/1/06 Esercizio 1 Una banca ha N correntisti. Indichiamo con N n il numero di correntisti esistenti il giorno n-esimo. Descriviamo

Dettagli

2. Semantica proposizionale classica

2. Semantica proposizionale classica 20 1. LINGUAGGIO E SEMANTICA 2. Semantica proposizionale classica Ritorniamo un passo indietro all insieme dei connettivi proposizionali che abbiamo utilizzato nella definizione degli enunciati di L. L

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa E01 Esempi di programmi A. Miola Ottobre 2011 1 Contenuti Vediamo in questa lezione alcuni primi semplici esempi di applicazioni

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Rappresentazione della conoscenza Lezione 11 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Sommario Pianificazione Deduttiva nel calcolo delle situazioni (Reiter 3.3) Teoria del calcolo

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6 Alberto Carraro 30 novembre DAIS, Universitá Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Funzioni Turing-calcolabili Finora abbiamo

Dettagli

Metodologie di programmazione in Fortran 90

Metodologie di programmazione in Fortran 90 Metodologie di programmazione in Fortran 90 Ing. Luca De Santis DIS - Dipartimento di informatica e sistemistica Anno accademico 2007/2008 Fortran 90: Metodologie di programmazione DIS - Dipartimento di

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica Laboratorio di Informatica Introduzione a Python Dottore Paolo Parisen Toldin - parisent@cs.unibo.it Argomenti trattati Che cosa è python Variabili Assegnazione Condizionale Iterazione in una lista di

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa E04 Esempi di algoritmi e programmi C. Limongelli - A. Miola Novembre 2011 1 Contenuti q Somma di una sequenza di numeri interi

Dettagli

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m = Una ricetta per il calcolo dell asintoto obliquo Se f() è asintotica a m+q allora abbiamo f() m q = o(1), da cui (dividendo per ) m = f() q + 1 f() o(1) = + o(1), mentre q = f() m = o(1). Dunque si ha

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli