Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri"

Transcript

1 Stima di parametri Il gestore di un sito turistico dove si pratica il bungee-jumping deve fornire alla sovrintendenza municipale un documento che riguarda la sicurezza del servizio fornito. Il documento chiede in particolare che siano stimate la costante di rigidità della corda (approssimata in questo caso a una molla) e il coefficiente di frizione dell aria durante la caduta (si assume che non ci sia vento). Il gestore dispone di un campionamento di 10 osservazioni (prese in vari istanti temporali) che riguardano posizione verticale, velocità e accelerazione di un corpo da 75kg in caduta, come da tavola seguente. Campione Posizione Velocità Accelerazione Si formuli un modello di programmazione matematica senza vincoli per risolvere il problema, e si risolva l istanza considerata per mezzo di Matlab. Documento preparato da Leo Liberti 1

2 Soluzione Le forze agenti sul corpo in caduta sono: la gravità F 1 (t) = mg (dove m è la massa del corpo e g è l accelerazione di gravità), la tensione della corda elastica (si assume l utilizzo della forza di Hooke con coefficiente k) F 2 (t) = kx(t) e l attrito dell aria con coefficiente f, che dipende dal quadrato della velocità: F 3 (t) = fv(t) 2, dove x(t) e v(t) sono la posizione verticale (si assume che la direzione positiva sia verso il basso) e la velocità del corpo al tempo t. L equazione di moto del corpo è: F (t) = 3 F i (t) = ma(t), dove a(t) è l accelerazione del corpo al tempo t. Di qui si ottiene ẍ = g k m x f mẋ2, dove ẋ = v e ẍ = a. Le costanti g, k, f sono tutte non negative. Il problema chiede di usare le osservazioni campionate per effettuare una stima di k e f. Riscriviamo l equazione di moto usando i simboli (x, v, a); otteniamo a + k m x + f m v2 g = 0. (1) In altre parole, le triple (x i, v i, a i ) campionate (per i n, con n = 10) devono obbedire approssimativamente al modello lineare (1). Avremo dunque, per ogni i n, a i + k m xi + f m (vi ) 2 g = ɛ i, dove ɛ i è un errore sperimentale. L errore accumulato su tutti i campionamenti è dato da ɛ = n ɛ i 2. Il problema da risolvere è quello di minimizzare l errore accumulato come funzione dei parametri da stimare k, f: min k,f n a i + k m xi + f m (vi ) 2 g 2. (2) Dato che la funzione norma è convessa (si veda il Riquadro 1), che il quadrato di una funzione non-negativa convessa è convesso (si veda il Riquadro 2) e che la somma di funzioni convesse è convessa (si veda il Riquadro 3), il problema (2) è un problema nonlineare convesso. Dato infine che in un problema convesso ogni ottimo locale è anche un ottimo globale (si veda il Riquadro 4), il problema può essere risolto mediante un algoritmo di ottimizzazione locale come per esempio il metodo di Newton (si veda il Riquadro 5). Dato che per ogni i n si ha che a i + k m xi + f m (vi ) 2 g 2 = = (a i g) 2 + 2xi m (ai g)k + 2(vi ) 2 m (ai g)f + (x i /m) 2 k 2 + ( 2xi (v i ) 2 m 2 )kf + ((v i ) 2 /m) 2 f 2, Documento preparato da Leo Liberti 2

3 Riquadro 1. Una funzione f : S R n R si dice convessa su S se per ogni x, y S e per ogni λ [0, 1] si ha: f(λx + (1 λ)y) λf(x) + (1 λ)f(y). (3) Geometricamente, questo significa che il segmento tra (x, f(x)) e (y, f(y)) si trova sopra il valore di f valutato per ogni punto del segmento. Consideriamo ora f(x) = x, dove è una norma (non si assume necessariamente la norma Euclidea). Si ha λx + (1 λ)y λx + (1 λ)y per la disuguaglianza triangolare; dato che la norma è lineare rispetto alla moltiplicazione scalare, si ha anche che prova la convessità della norma. λx + (1 λ)y λ x + (1 λ) y, Figura 1: Convessità della norma. Riquadro 2. Sia f : S R n R + una funzione convessa su S a valori non-negativi; si ha dunque che per x, y S e λ [0, 1], f(λx+(1 λ)y) λf(x)+(1 λ)f(y). Sia ora g : R R data da g(x) = x 2 (si dimostri, come esercizio, che g è convessa su R). Si consideri la funzione h data dalla composizione di g e f: dimostriamo che h = g f è una funzione convessa. Siano x, y S e λ [0, 1]. Per la convessità di f, si ha f(λx + (1 λ)y) λf(x) + (1 λ)f(y). Dato che f ha valori non-negativi, g è non decrescente (il quadrato di quantità positive è una funzione strettamente crescente), quindi mantiene la direzione delle disuguaglianze. In particolare, g(f(λx + (1 λ)y)) g(λf(x) + (1 λ)f(y)). Ora, dato che g è convessa, si ha g(λf(x) + (1 λ)f(y)) λg(f(x)) + (1 λ)g(f(y)). Dalle due disuguaglianze si desume che h(λx + (1 λ)y) λh(x) + (1 λ)h(y), che implica che h è convessa. Si noti che questa dimostrazione vale per ogni coppia di funzioni convesse f, g con g non descrescente e tali che la composizione g f possa essere definita. Figura 2: Il quadrato di una funzione convessa è convesso. la funzione obiettivo di (2) può essere scritta come F (k, f) = c 1 +c 2 k +c 3 f +c 4 k 2 +c 5 kf + c 6 f 2, dove c 1 = n (a i g) 2, c 2 = n c 4 = n (x i /m) 2, c 5 = n 2x i (a i g) m, c 3 = n 2x i (v i ) 2 2(v i ) 2 (a i g) m,, c m 2 6 = n (v i ) 4 /m 2. Dunque il problema min F (k, f) è un problema di minimizzazione della forma quadratica convessa in due variabili raffigurata in Fig. 7. Verifichiamo ora che il metodo di Newton può essere utilizzato per la soluzione del Documento preparato da Leo Liberti 3

4 Riquadro 3. Siano f, g : S R n R due funzioni convesse su S, e siano x, y S e λ [0, 1]. Si ha allora che f(λx + (1 λ)y) λf(x) + (1 λ)f(y) g(λx + (1 λ)y) λg(x) + (1 λ)g(y) da cui f(λx + (1 λ)y) + g(λx + (1 λ)y) λf(x) + (1 λ)f(y) + λg(x) + (1 λ)g(y), e quindi (f + g)(λx + (1 λ)y) λ(f + g)(x) + (1 λ)(f + g)(y), che dimostra la convessità di f + g. Figura 3: La somma di funzioni convesse è convessa. Riquadro 4. Sia f : S R n R una funzione convessa su S. Dimostriamo che se x S è un minimo locale, allora è anche un minimo globale. Il fatto che x sia un minimo locale di f rispetto a S implica che esiste una sfera B(x, ε) S (con centro in x e raggio ε > 0) tale che x B(x, ε (f(x ) f(x)). Si consideri ora un qualsiasi punto x S tale che x x. È facile verificare che possiamo scegliere un punto x x sul segmento tra x e x tale che x B(x, ε); cioè che esiste λ (0, 1] tale che x = λx + (1 λ)x. Per la convessità di f si ottiene f( x) λf(x ) + (1 λ)f(x), che può essere scritto come f(x) f( x) λf(x ). 1 λ Dato che x B(x, ε), per la minimalità locale di x, si ha f( x) f(x ), e quindi f(x) f(x ) λf(x ) 1 λ = f(x ). Abbiamo quindi mostrato che per ogni x x in S si ha f(x ) f(x), che prova che x è un minimo globale. Figura 4: Ogni ottimo locale di un problema convesso è anche globale. ( ) problema. L Hessiana è H = 2 2c4 c F = 5. Si ottengono facilmente i valori c 5 2c 6 numerici per c = (c 1,..., c 6 ) e per gli autovalori λ 1, λ 2 di H: c = (881.74, , , , , 0.221) λ 1 = λ 2 = , da cui si desume che l Hessiana è definita positiva (quindi il metodo di Newton converge per quanto detto nel Riquadro 5). Inoltre, dato che la funzione obiettivo è quadratica, è sufficiente effettuare una sola iterazione del metodo di Newton (Riquadro 6). Documento preparato da Leo Liberti 4

5 Riquadro 5. In generale, i metodi di programmazione nonlineare per problemi senza vincoli nella forma min x f(x) sono dei metodi iterativi in cui viene mantenuta una soluzione x all iterazione corrente, e la soluzione x all iterazione successiva viene definita come x = x γd f(x), (4) dove D è una matrice definita positiva. In questo modo, si ha che la retta tra x e x ha direzione d = D f(x). Dato che D è definita positiva, per ogni vettore v si ha v Dv > 0, e quindi ( f(x)) D f(x) > 0, da cui ( f(x)) d < 0, e quindi d è una direzione di diminuzione per il valore della funzione obiettivo. Il metodo così definito converge a un ottimo locale. L ordine di convergenza dipende dalla scelta della matrice D. Nel metodo di Newton si utilizza D = ( 2 f(x)) 1, ovvero l inversa dell Hessiana della funzione obiettivo. Se f è due volte differenziabile e convessa su S, si può dimostrare che l Hessiana è semidefinita positiva per ogni punto in S, ma non definita positiva; perciò il metodo di Newton potrebbe anche non convergere. Vedremo però che nel caso del problema (2) l Hessiana è definita positiva, e quindi il metodo di Newton converge. Figura 5: Metodo di Newton per problemi senza vincoli. Riquadro 6. Si dimostra inoltre che il metodo di Newton, con γ = 1, applicato a una funzione quadratica convessa, converge in una iterazione. Si consideri l espansione di Taylor al secondo ordine ˆf(x+d) = f(x)+ f(x) d+ 1 2 d ( 2 f(x)) 1 d di f a x. Se f è quadratica convessa, si ha che f(x + d) = ˆf(x + d). Le condizioni di ottimalità per f(x + d) sono f(x + d) = 0, che significa f(x) + 2 f(x)d = 0. Ne segue che d = ( 2 f(x)) 1 f(x); dunque d è tale che f ha un minimo a x + d. Dato che alla prima iterazione del metodo di Newton si ha l aggiornamento x x + d, la tesi è dimostrata. Figura 6: Convergenza del metodo di Newton per funzioni quadratiche convesse. A questo punto possiamo scrivere il codice Matlab. objfun.m: calcola il valore della funzione obiettivo in un punto x = (k, f). % objfun.m function F = objfun(x, c) c1 = c(1); cprime = [c(2) c(3)]; H = [2*c(4), c(5) ; c(5), 2*c(6)]; F = c1 + cprime*x * x *H*x; %end function gradobjfun.m: calcola il gradiente della funzione obiettivo in un punto x = (k, f). Documento preparato da Leo Liberti 5

6 f k Figura 7: La funzione obiettivo. % gradobjfun.m function gof = gradobjfun(x, c) gf1 = c(2) + 2*c(4)*x(1) + c(5)*x(2); gf2 = c(3) + c(5)*x(1) + 2*c(4)*x(2); gof = [gf1; gf2]; %end function newton.m: risolve il problema. % newton.m function [xstar, fstar, k] = newton(x) OPTIONS = [ ]; maxiterations = 1; c = [ ]; cprime = [c(2), c(3)]; H = [ 2*c(4), c(5) ; c(5), 2*c(6) ]; Hinv = H^(-1); termination = 0; counter = 1; while termination == 0 gradf = gradobjfun(x, c); d = -Hinv*gradF; if (counter > maxiterations) termination = 1; xstar = x; fstar = objfun(x, c); k = counter; else lambda = 1; x = x + lambda*d; counter = counter + 1; end end %end function Documento preparato da Leo Liberti 6

7 Scegliamo arbitrariamente il punto di partenza x = (0, 0); lanciamo il codice con il comando: [xstar, fstar, k] = newton([0;0]) Si ottiene xstar = fstar = k = 2 Quindi l ottimo 1 è x = (k, f ) = ( , ). Il valore della funzione obiettivo è negativo per via di errori numerici nei calcoli in floating point. 1 I dati sono stati ottenuti mediante una simulazione con k = e f = 22.5, dunque l errore è dell ordine di grandezza di Documento preparato da Leo Liberti 7

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2 3.1 Ottimizzazione lungo direzioni coniugate. Risolvere il seguente problema: minimize f(x 1,x 2 ) = 12x 2 + 4x 2 1 + 4x 2 2 4x 1 x 2 manualmente, utilizzando il metodo delle direzioni coniugate: determinare

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Selezione di un portafoglio di titoli in presenza di rischio. Testo

Selezione di un portafoglio di titoli in presenza di rischio. Testo Selezione di un portafoglio di titoli in presenza di rischio Testo E ormai pratica comune per gli operatori finanziari usare modelli e metodi basati sulla programmazione non lineare come guida nella gestione

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

VERIFICA A ALUNNO. CLASSE I^. DATA...

VERIFICA A ALUNNO. CLASSE I^. DATA... VERIFICA A ALUNNO. CLASSE I^. DATA... N.B. SCHEMATIZZARE LA SITUAZIONE CON UN DISEGNO IN TUTTI GLI ESERCIZI INDICARE TUTTE LE FORMULE E TUTTE LE UNITA DI MISURA NEI CALCOLI 1-Quando spingi un libro di

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

Matematica e Statistica I Anno Accademico 2009-2010 Foglio di esercizi settimana 2

Matematica e Statistica I Anno Accademico 2009-2010 Foglio di esercizi settimana 2 Matematica e Statistica I Anno Accademico 9- Foglio di esercizi settimana Funzioni di variabile reale: modelli, grafici, composizione, invertibilità; relazioni lineari. ESERCIZIO. In una città sono stati

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi. Giochi ed equilibri di Nash Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.it 1 1 Notazione e definizione di equilibrio di Nash Si supponga

Dettagli

Procedure di calcolo implicite ed esplicite

Procedure di calcolo implicite ed esplicite Procedure di calcolo implicite ed esplicite Il problema della modellazione dell impatto tra corpi solidi a medie e alte velocità. La simulazione dell impatto tra corpi solidi in caso di urti a media velocità,

Dettagli

Lezioni di Ottimizzazione

Lezioni di Ottimizzazione Lezioni di Ottimizzazione Italo Capuzzo Dolcetta Flavia Lanzara Dipartimento di Matematica Guido Castelnuovo Sapienza Università di Roma A.A. 2007-2008 Ultimo aggiornamento: October 5, 2007 1 Indice 1

Dettagli

5 10 17 26 37 2,,,,,,... 2 3 4 5 6

5 10 17 26 37 2,,,,,,... 2 3 4 5 6 MATEMATICA GENERALE 2014 - CTF Funzioni e successioni - Esercizi Docente: ALESSANDRO GAMBINI 1. a) Rappresenta mediante espressione analitica la seguente successione numerica. Motiva la tua risposta. 5

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

DINAMICA, LAVORO, ENERGIA. G. Roberti

DINAMICA, LAVORO, ENERGIA. G. Roberti DINAMICA, LAVORO, ENERGIA G. Roberti 124. Qual è il valore dell'angolo che la direzione di una forza applicata ad un corpo deve formare con lo spostamento affinché la sua azione sia frenante? A) 0 B) 90

Dettagli

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi:

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: Funzioni Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la temperatura

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Condizionamento del problema

Condizionamento del problema Condizionamento del problema x 1 + 2x 2 = 3.499x 1 + 1.001x 2 = 1.5 La soluzione esatta è x = (1, 1) T. Perturbando la matrice dei coefficienti o il termine noto: x 1 + 2x 2 = 3.5x 1 + 1.002x 2 = 1.5 x

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

, 2 e si vede che ci sono coppie di punti che danno lo stesso valore, a causa della radice quadrata.

, 2 e si vede che ci sono coppie di punti che danno lo stesso valore, a causa della radice quadrata. 2 LEZIONE 2 Esercizio 2.1. Stabilire se le sequenti funzioni sono iniettive (a) 1+4x x 2. Cercando di ottenere l inversa si ha che y =1+4x x 2 da cui x = 4 ± 16 4(y 1), 2 e si vede che ci sono coppie di

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Esercizio 1: Automobili

Esercizio 1: Automobili Esercizio 1: Automobili Le variabili decisionali sono i quattro pesi da attribuire alle quattro caratteristiche. Si tratta di variabili intere maggiori o uguali a 1, minori o uguali a 5, che sommate devono

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Verifica sperimentale del principio di conservazione dell'energia meccanica totale Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

FISICA. MECCANICA: La Cinematica unidimensionale. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: La Cinematica unidimensionale. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: La Cinematica unidimensionale Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MECCANICA La Meccanica è quella parte della fisica che studia il movimento e si compone

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA A.A. 204/5 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Energia potenziale Problema 26 Una molla ha una costante elastica k uguale a 440 N/m. Di quanto

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Una immagine (digitale) permette di percepire solo una rappresentazione 2D del mondo La visione 3D si pone lo scopo di percepire il mondo per come è in 3 dimensioni

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Funzioni con dominio in R 2

Funzioni con dominio in R 2 0.1 Grafici e curve di livello Politecnico di Torino. Funzioni con dominio in R 2 Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto Il dominio U di una funzione f e

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J. Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

LEZIONE ICO 12-10-2009

LEZIONE ICO 12-10-2009 LEZIONE ICO 12-10-2009 Argomento: introduzione alla piattaforma Matlab. Risoluzione numerica di problemi di minimo liberi e vincolati. Lucia Marucci marucci@tigem.it http://www.mathworks.com/access/helpdesk/help/toolbo

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010 Note sull esperienza Misura di g versione 1, Francesco, 7/05/010 L esperienza, basata sullo studio di una molla a spirale in condizioni di equilibrio e di oscillazione, ha diversi scopi e finalità, tra

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli