( x) ( x) 0. Equazioni irrazionali
|
|
- Antonina Antonietta Volpi
- 4 anni fa
- Visualizzazioni
Transcript
1 Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza per radicali: se ho n f ( ) ( ) f ; se ho n f ( ) essere positivo o negativo);, con n pari, allora l argomento deve essere maggiore o uguale a zero, cioè, con n dispari, allora non ho condizioni di esistenza per l argomento (può se ho n f ( ) allora f ( ) ; n ( ) f non può mai essere uguale ad un numero negativo. Esempio Sia data l equazione Allora C.E. -
2 Allora le soluzioni del sistema che mi da il campo di esistenza sono. Per risolvere un equazione irrazionale il procedimento consiste nel trasformare tale equazione da irrazionale in razionale, in modo tale che l incognita non compaia più come argomento del radicale. Per poter ottenere quanto detto si deve elevare ad una opportuna potenza sia primo che secondo membro dell equazione una o più volte, ma seguendo questo procedimento può capitare che l equazione così ottenuta non sia più equivalente a quella data, cioè l equazione razionale può contenere soluzioni che non sono proprie dell equazione originaria. Infatti, data la seguente uguaglianza ( ) g( ) f Se elevo al quadrato primo e secondo membro, ottengo [ f ( ) ] [ g( ) ] L equazione così ottenuta contiene pertanto le soluzioni del testo iniziale, ma, ricordando i prodotti notevoli: [ f ( ) ] [ g( ) ] [ f ( ) ] [ g( ) ] [ ( ) g( ) ][ f ( ) g( ) ] f da cui segue f ( ) g( ) Prima soluzione f ( ) g( ) f ( ) g( ) Seconda soluzione f ( ) g( ) Cioè l equazione [ f ( ) ] [ g( ) ] contiene anche le soluzioni di f ( ) g( ) testo iniziale., che è diversa dal Osservazione: in genere l innalzamento al quadrato dei due membri di un equazione trasforma l equazione data in un altra equazione non equivalente. Risoluzione di equazioni irrazionali Primo metodo
3 Per risolvere un equazione irrazionale possiamo procedere come segue: i) si determina il dominio dell equazione, cioè le condizioni di esistenza per l incognita; ii) si eleva ad una opportuna potenza sia primo che secondo membro dell equazione una o più volte sino ad ottenere un equazione razionale; iii) si risolve l equazione così ottenuta; iv) si verifica che i risultati siano compatibili con quanto ottenuto ad primo punto relativamente al campo di esistenza, accettando le soluzioni compatibili e scartando quelle che non lo sono. Secondo metodo i) si eleva ad una opportuna potenza sia primo che secondo membro dell equazione una o più volte sino ad ottenere un equazione razionale; ii) si risolve l equazione così ottenuta; iii) si verifica l accettabilità delle soluzioni ottenute sostituendole nel testo dell equazione irrazionale originaria per stabilire quali soluzioni dell equazione razionale sono o non sono soluzioni dell equazione irrazionale originaria. Osservazione il primo metodo ha come svantaggio il fatto di dover risolvere una disequazione o un sistema di disequazioni per calcolare le condizioni di esistenza e ha come vantaggio il fatto di che alla fine non è richiesto nessun calcolo per verificare l accettabilità delle soluzioni; il secondo metodo ha come vantaggio il fatto di non dover risolvere disequazioni per determinare le condizioni di esistenza, ma ha lo svantaggio che alla fine sono richiesti calcoli per verificare l accettabilità delle soluzioni. In genere viene utilizzato maggiormente il secondo metodo per risolvere le equazioni irrazionali. Esempi Caso : equazione intera con un solo radicale
4 ( ) ( ) 6 Verifica accettabile Caso : equazione intera con due radicali quadratici 6 6 ( ) ( 6) 6 ± Verifica 6 8
5 8 8 accettabile ( ) 6 accettabile Caso : equazione intera con tre o quattro radicali quadratici ( ) ( ) ( )( ) ( 6) ( ) ( ) , ± ± Verifica
6 accettabile 6 non accettabile Caso : equazione irrazionale fratta Primo metodo: porto a primo membro tutte le radici e svolgo tra loro denominatore comune, tale operazione mi permette di eliminare i radicali a numeratore ( )( ) C.E. sempre verificato ( ) ( ) ( ) ( ) [ ( )] ( ( ) )
7 ( ) 8 8 ( 8 ) ( 8 ) Verifica
8 accettabile Secondo metodo: razionalizzo i radicali, svolgo denominatore comune e poi elevo a potenza per eliminare la radice. ( ) ( ) poi si procede come visto in precedenza. Osservazioni i) Nel secondo caso è opportuno separare le radici, una a primo membro, l altra a secondo membro, così elevando alla seconda non ho un doppio prodotto radicale e l equazione diventa subito razionale; ii) Nel terzo caso è indifferente se tenere due radicali a primo o a secondo membro, bisogna tener presente che quando elevo alla seconda ho un doppio prodotto radicale i conseguenza del quadrato di binomio che si deve svolgere, successivamente, tutti i termini senza radice si portano da una parte, il termine con la radice dall altra, si eleva ancora a potenza per ottenere così un equazione razionale; iii) Indici diversi 6 l indice comune tra e è 6, pertanto elevo alla sesta per eliminare 6 ( ) ( ) 6 6 ( ) ( 6 ) entrambe le radici. poi si procede come visto in precedenza; iv) Radici multiple
9 ( ) elevo alla seconda per eliminare le radici più esterne. ( ) ( ) ( ) poi si procede come visto in precedenza. Disequazioni irrazionali Definizione: una disequazione si definisce irrazionale se è costituita da radicali il cui argomento contiene l incognita. Una disequazione irrazionale si dice quadratica se contiene soltanto radicali quadratici. Analizzeremo disequazioni del tipo f ( ) < g( ) e f ( ) > g( ), dove f ( ) e g ( ) rappresentano dei polinomi. Le considerazioni riguardo l esistenza della radice, il segno del polinomio g ( ), il verso della disuguaglianza ci portano alla conclusione che per le condizioni di esistenza e per la disuguaglianza espressa dalla disequazione, risolvere una disequazione irrazionale è equivalente a risolvere dei sistemi di disequazioni. Un sistema infatti ha come condizione per le sue soluzioni che verifichino contemporaneamente determinate condizioni regolate da opportune disequazioni. Primo caso ( ) g( ) f < ( la radice ha verso di sé il minore ) Risolvere una disequazione irrazionale del tipo ( ) g( ) equivalente di tre disequazioni: Infatti si richiede: f f < corrisponde a risolvere un sistema f ( ) g( ) > ( ) < [ g( ) ] i) prima disequazione: l argomento della radice f ( ) deve essere positivo;
10 ii) iii) seconda disequazione: considerato che la radice restituisce un valore positivo deve essere g ( ) > ; infatti analizzando la disequazione ( ) g( ) f < risulta che a primo membro si ha una quantità positiva che può essere minore soltanto di una quantità a sua volta positiva, pertanto se g ( ) fosse negativo la disequazione assegnata non potrebbe mai essere verificata (si avrebbe infatti una disuguaglianza, ad esempio, del tipo < che è ovviamente impossibile); terza disequazione: si cercano i valori, compatibili con la prima e la seconda disequazione che soddisfano la disequazione assegnata. Il fatto poi di mettere a sistema le tre disequazioni significa ottenere quei valori per l incognita che soddisfano la disequazione assegnata, tenendo conto delle condizioni di esistenza. Secondo caso ( ) g( ) f > ( la radice ha verso di sé il maggiore ) Risolvere una disequazione irrazionale del tipo ( ) g( ) due disequazioni e unire le soluzioni così ottenute: f > corrisponde a risolvere due sistemi di f g( ) ( ) > [ g( ) ] f g Infatti si deve distinguere tra i possibili valori positivi e negativi per il secondo membro g ( ), infatti: ) primo sistema prima disequazione g ( ) seconda disequazione: la radice, che rappresenta valori positivi, deve essere maggiore di un valore positivo rappresentato appunto da g ( ), per trovare gli intervalli che soddisfano la disequazione assegnata ( ) g( ) ( ) ( ) < f > possiamo elevare al quadrato entrambi i membri per ottenere una disequazione senza radici, cioè ( ) [ g( ) ] f >, quest ultima disequazione, inoltre è più restrittiva della condizione di esistenza per la radice f ( ) scrivere f ( ) > [ g( ) ], infatti possiamo, quindi la condizione di esistenza per la radice è contenuta nella seconda disequazione, pertanto non è necessario in questo caso procedere allo studio della condizione f ( ) >
11 ) secondo sistema prima disequazione g ( ) < seconda disequazione: poiché il secondo membro è negativo basta individuare dove sia definita la radice in quanto essa restituisce un valore positivo, pertanto a primo membro si ha una quantità positiva che è sempre maggiore di una quantità negativa, pertanto dove g ( ) assume valori negativi è sufficiente cercare i valori per cui ( ) Lo studio dei due casi per g ( ), cioè: g ( ) g ( ) < f. esaurisce le possibilità da considerare, rimane ora il fatto di determinare le soluzioni, unendo le soluzione parziali dei due sistemi. Per unire le soluzioni parziali si procede come segue: ) si traccia una linea orizzontale; ) su di essa si tracciano tutti i valori che compaiono nelle soluzioni del primo e del secondo sistema; ) si riportano le soluzioni del primo e del secondo sistema (utilizzando le serpentine) sulla line orizzontale; ) l insieme tratteggiato rappresenta le soluzioni finali della disequazione f ( ) > g( ) assegnata. Osservazione Nel caso in cui un valore in cui gli intervalli si uniscono fosse compreso per un intervallo ed escluso per l altro intervallo, nelle soluzioni finale esso è compreso, vale a dire che gli intervalli si saldano senza interruzioni. (cioè tra valore escluso e valore compreso, vince il valore compreso ). Esempio [ ;] ],7] [ ;7] Esempio 8 > Risoluzione 8 >
12 ( ) < > 8 8 Primo sistema > 8 > < 6, ± ± Soluzioni < < Il sistema è impossibile Secondo sistema < 8
13 < 8 > 8, 9 ± ± Soluzioni 9 9. Pertanto le soluzioni della disequazione iniziale sono l unione delle soluzioni del primo sistema(cioè ) e del secondo sistema 9 9.
14
Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,
L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.
EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la
B9. Equazioni di grado superiore al secondo
B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.
Esercizi di Matematica. Funzioni e loro proprietà
www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale
Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un
FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas
FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre
SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.
SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno
FUNZIONI / ESERCIZI SVOLTI
ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si
Esercizi svolti sui numeri complessi
Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =
Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R
Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.
SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:
CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}
IL CONCETTO DI FUNZIONE
IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione
Studio di una funzione. Schema esemplificativo
Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi
Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento
TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una
Appunti sulle disequazioni
Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire
ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009
ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)
la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.
1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero
Funzioni. Parte prima. Daniele Serra
Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1
Esercizi di Analisi Matematica
Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1
4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI
119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO
STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO
STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO CLASSE 1^ CONOSCENZE Insiemi numerici N, Z, Q, R; rappresentazioni, operazioni, ordinamento Espressioni algebriche; principali operazioni Equazioni
Anno 4 Grafico di funzione
Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che
DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte.
DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. Tutorial di Barberis Paola - 2009 Definizioni: FUNZIONE e DOMINIO LA FUNZIONE
31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando
FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria
0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y
INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).
0. Piano cartesiano 1
0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine
Elementi di topologia della retta
Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme
Anno 5 4 Funzioni reali. elementari
Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire
Guida pratica per la prova scritta di matematica della maturità scientifica
Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti
Metodi risolutivi per le disequazioni algebriche
Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo
Coordinate Cartesiane nel Piano
Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,
Funzione reale di variabile reale
Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................
Ripasso delle matematiche elementari: esercizi svolti
Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore
11) convenzioni sulla rappresentazione grafica delle soluzioni
2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi
Questionario per casa 6 Febbraio 2012
1 Il numero 4 2004 + 2 4008 è uguale a a) 4 4012 b) 4 4008 c) 4 2004 d) 2 4009 e) 2 2012 Questionario per casa 6 Febbraio 2012 2 La statura media dei 20 studenti di una certa classe è 163,5 cm. Se ciascuno
APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI
APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................
Indice generale. Modulo 1 Algebra 2
Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi
Vademecum studio funzione
Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla
Pre Test 2008... Matematica
Pre Test 2008... Matematica INSIEMI NUMERICI Gli insiemi numerici (di numeri) sono: numeri naturali N: insieme dei numeri interi e positivi {1; 2; 3; 4;...} numeri interi relativi Z: insieme dei numeri
Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI
Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;
Studio di una funzione ad una variabile
Studio di una funzione ad una variabile Lo studio di una funzione ad una variabile ha come scopo ultimo quello di pervenire a un grafico della funzione assegnata. Questo grafico non dovrà essere preciso
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 COMPETENZE ABILITA /CAPACITA CONOSCENZE
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA/SECONDA PROFESSIONALE CORSO SERALE DOCENTE: LUBRANO LOBIANCO ANIELLO Legenda: In
EQUAZIONI E DISEQUAZIONI LOGARITMICHE Esercizi risolti Classi quarte
EQUAZIONI E DISEQUAZIONI LOGARITMICHE Esercizi risolti Classi quarte La presente dispensa riporta la risoluzione di alcuni esercizi inerenti equazioni e disequazioni logaritmiche. N.B. In questa dispensa,
FUNZIONE REALE DI UNA VARIABILE
FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A
Studio grafico-analitico delle funzioni reali a variabile reale
Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera
MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)
1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche
STUDIO DI UNA FUNZIONE
STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)
PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI
PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione
Generalità sulle funzioni
Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni
Grafico qualitativo di una funzione reale di variabile reale
Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
Studio di funzioni ( )
Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente
Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1
Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato
EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6
EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)
Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti
L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che
Anno 3. Funzioni: dominio, codominio e campo di esistenza
Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse
UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x
UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo
Appunti e generalità sulle funzioni reali di variabili reali.
Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti
I.T.G. <<G.C.Gloriosi>> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE
I.T.G. Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO Prof. Lucia D Aniello, CLASSI 3 A, 4 A, 5 A GEOMETRI- SIRIO RELAZIONE Premesse La programmazione è stata redatta
EQUAZIONI CON VALORE ASSOLUTO
VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione
PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO
9 PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO Il capitolo che sta per iniziare presenta alcuni argomenti dall aspetto un po arido. Tuttavia, nelle facoltà
APPUNTI DI ANALISI MATEMATICA PER LA CLASSE QUINTA T.G.A. (5^B) E LA CLASSE QUINTA T.I.T. (5^C) a.s. 2003/2004 a cura di prof.ssa Mina Maria Letizia
\ I[ è la scrittura matematica che esprime un legame tra la variabile y e la variabile x; tale legame consiste in una serie di operazioni da eseguirsi su x per ottenere y (f indica l insieme delle operazioni
PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO
PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo
~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE
STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.
DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia
DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti
G6. Studio di funzione
G6 Studio di funzione G6 Come tracciare il grafico di una funzione data Nei capitoli precedenti si sono svolti tutti gli argomenti necessari per tracciare il grafico di una funzione In questo capitolo
Modelli di Ottimizzazione
Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo
Anno 5 4. Funzioni reali: il dominio
Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado
Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.
Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l
modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3
livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento
Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6
Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6 Classe: 1 a A AFM GLI INSIEMI NUMERICI E LE OPERAZIONI Ripasso del calcolo numerico: espressioni
SCHEDA DI RECUPERO SUI NUMERI RELATIVI
SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo
Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari
Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni
1 Principali funzioni e loro domini
Principali funzioni e loro domini Tipo di funzione Rappresentazione Dominio Polinomio intero p() = a n + + a n R p() Polinomio fratto q() 6= q() 2n Radici pari p f() f() 2n+ Radici dispari p f() R Moduli
ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI
ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI ------------------------------------------- Piazza IV Novembre 33038 SAN DANIELE DEL FRIULI (prov. di Udine) Telefono n. 0432 955214 Fax n. 0432
Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:
Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato
CLASSE 1ª Manutenzione e Assistenza Tecnica
CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,
Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?
Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile
FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA
FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo
LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.
7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,
razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti
4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}
PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA
PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze
VALLAURI L ASSE MATEMATICO
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it
NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.
NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico
Basi di matematica per il corso di micro
Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione
Fondamenti di Automatica
Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:
PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica
PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica Modulo n. 1: Insiemi Collocazione temporale: settembre-dicembre Strategie didattiche: L insegnamento dei
Esponenziali e logaritmi
Istituto d Istruzione Superiore A Tilgher Ercolano (Na) Prof Amendola Alfonso Premessa Esponenziali e logaritmi Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento,
Formule trigonometriche
Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli
CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO
DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione
COGNOME... NOME... Classe... Data... 1.a Calcolare le seguenti espressioni: 3. 220 245
Capitolo I radicali Risoluzione algebrica erifica per la classe seconda Espressioni numeriche Equazioni lineari Esistenza Operazioni Espressioni letterali.a Calcolare le seguenti espressioni:. 5. 8 3.
Matematica 3. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [2015-16]
Matematica 3 Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [05-6] Indice I Numeri e Funzioni Numeri 3. Premessa............................................. 3. Tipi di numeri..........................................
G3. Asintoti e continuità
G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei
Studio grafico analitico delle funzioni reali a variabile reale y = f(x)
Studio grafico analitico delle funzioni reali a variabile reale y = f() 1 Ecco i passi utili allo studio di una funzione reale: Determinare il dominio della funzione Ricercare l eventuale intersezione
STUDIO DEL SEGNO DI UNA FUNZIONE
STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,
EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE
EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere