Albez edutainment production. Economia Aziendale I. I calcoli percentuali

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Albez edutainment production. Economia Aziendale I. I calcoli percentuali"

Transcript

1 Albez edutainment production Economia Aziendale I I calcoli percentuali 1

2 Sommario 1. Rapporti e proporzioni 2. Terminologia 3. Proprietà fondamentale 4. Conseguenze della proprietà fondamentale 5. Esempi 6. Proporzionalità diretta e inversa 7. Problemi del tre semplice diretto 8. Problemi del tre semplice inverso 9. E adesso prova tu! 10. Calcoli percentuali 11. Problemi diretti 12. Problemi inversi 13. E ora prova tu! 14. I calcoli sopra cento 15. Esempio di sopra cento diretto 16. Esempio di sopra cento inverso 17. I calcoli sottocento 18. Esempio di sottocento diretto 19. Esempio di sottocento inverso 20. E adesso prova tu! 21. Fonti bibliografiche 2

3 I Rapporti e le proporzioni Si dice rapporto tra due numeri, presi in un certo ordine, il quoziente tra il primo e il secondo. Ad esempio, il rapporto tra 10 e 5 si esprime: 10 : 5 oppure 10 o anche 10/5 5 Si dice proporzione l uguaglianza tra due rapporti: 10 : 5 = 8 : 4 oppure 10/5 = 8/4 3

4 Consideriamo i seguenti rapporti: 10 : 5 = 8 : 4 E una proporzione perché il rapporto tra il primo e il secondo: 10 : 5 =2 E uguale al rapporto tra il terzo e il quarto: 8 : 4 = 2 4

5 Terminologia Data la proporzione 10 : 5 = 8 : 4 10 e 4 si dicono estremi 5 e 8 si dicono medi 10 e 8 si dicono antecedenti 5 e 4 si dicono conseguenti 5

6 Proprietà fondamentale In ogni proporzione il prodotto degli estremi è uguale al prodotto dei medi Verifichiamola con la nostra proporzione 10 : 5 = 8 :4 10*4 = 40 5*8 = 40 6

7 Conseguenze della proprietà fondamentale E possibile determinare uno dei quattro termini se si conoscono gli altri tre Infatti, data la seguente proporzione: A : B = C : D Dove A e D sono estremi e B e C medi 7

8 Conseguenze della proprietà fondamentale 1. Se il termine incognito è un estremo, per trovarlo si esegue il prodotto dei medi e si divide il risultato per l altro estremo B * C B * C A = D = D A 8

9 Conseguenze della proprietà fondamentale 2. Se il termine incognito è un medio, si effettua il prodotto degli estremi e si divide il risultato per l altro medio A * D A * D B = C = C B 9

10 Esempi Data la seguente proporzione 15 : 81 = 25 = x x = 81 * 25/15 = 135 e la seguente 85 : 17 = x : 54 x = 85 * 54/17 =

11 Proporzionalità diretta e inversa Due grandezze variabili e dipendenti tra loro sono direttamente proporzionali quando diventando l una doppia, tripla, quadrupla, ecc. anche l altra diventa doppia, tripla, quadrupla. Due grandezze variabili e dipendenti tra loro sono inversamente proporzionali quando diventando l una doppia, tripla, quadrupla, ecc. l altra diventa la metà, un terzo, un quarto, ecc. 11

12 Problemi del tre semplice diretto Acquistando 48 lattine di olio d oliva, un commerciante ha pagato 96,00. Quanto avrebbe pagato se avesse acquistato 125 lattine? 1 procedimento Si può impostare la proporzione in modo che il primo antecedente sia della stessa specie del secondo antecedente, e quindi analogamente il primo conseguente sia della stessa specie del secondo conseguente. Avremo quindi: quantità spesa 48 a c a c x 12

13 E la proporzione: 48 : 96 = 125 : x quantità spesa quantità spesa Risolvendo la proporzione si ottiene: x = 96 * 125/48 = 250,00 somma spesa 2 procedimento Si può impostare la proporzione in modo tale che i primi due termini siano della stessa specie e allo stesso modo il terzo e il quarto siano tra loro della stessa Specie. Avremo quindi: quantità spesa 48 a a c c x 13

14 E la proporzione: 48 : 125 = 96 : x quantità quantità spesa spesa Risolvendo la proporzione si ottiene: x = 125 * 96/48 = 250,00 somma spesa 14

15 Problemi del tre semplice inverso Una strada può essere costruita in 60 giorni da una squadra di 15 operai. Se venissero utilizzati 20 operai in quanti giorni potrebbe essere terminata? Per impostare correttamente la proporzione occorre ricordare che il secondo Rapporto deve essere invertito rispetto al primo. Cioè i primi due termini Devono essere della stessa specie, pure il terzo e il quarto devono essere della stessa specie ma presi in ordine inverso. Avremo così: operai giorni 15 a c c a x 15

16 Problemi del tre semplice inverso E la proporzione: 15 : 20 = x : 60 operai operai giorni giorni Da cui: x = 15 * 45/20 = 45 giorni 16

17 E adesso prova tu! Un azienda produce 400 pezzi al giorno impiegando 50 operai. Se la produzione venisse aumentata a 600 pezzi al giorno quanti opeai occorrerebbero? (R. 75) Per costruire un muro sono stati utilizzati 6 operai che hanno lavorato per 24 giorni. Quanto tempo sarebbe occorso se gli operai fossero stati 8? (R. 18) La spedizione di una 150 tonnellate di merce è costata Quanto costerebbe la spedizione di 120 tonnellate? (R ) Una merce è stata trasportata con un furgone che ha percorso km 270 in 4 ore ad una media di 70 km/h. Quanto tempo avrebbe impiegato a percorrere la stessa distanza se avesse tenuto una media di 80 km/h? (R. 3,5) 17

18 Calcoli percentuali Una percentuale indica quante unità di una certa grandezza corrispondono a 100 unità di un altra grandezza La percentuale viene espressa con un numero e con il simbolo % Ad esempio se l IVA sulle auto è del 20% significa che ogni 100 euro di valore dell auto si dovranno pagare 20 euro di IVA 18

19 Calcoli percentuali I calcoli percentuali si eseguono impostando e risolvendo una proporzione. Così se indichiamo con: S = somma sulla quale si calcola la percentuale P = valore percentuale totale (percento) r = ragione o tasso o aliquota percentuale Otteniamo la seguente proporzione: 100 : r = S : P Da cui, conoscendo due dei tre termini, cioè S, P, r, si può trovare quello Incognito. 19

20 Problemi diretti In tali problemi si conoscono la somma sulla quale deve essere calcolata la percentuale (S) e la ragione (r). E incognito il valore percentuale (P). ESEMPIO Una partita di mele contenuta in cassette di legno ha un peso lordo di 250 kg. La tara (cassette di legno) corrisponde al 2% del peso lordo. Calcolare la tara. I dati del problema sono: r = 2% S = 250 P = x La proporzione si presenterà così: 100 : 2 = 250 : x dove x = 2 * 250/100 = 5 Kg di tara 20

21 Problemi inversi In tali problemi si conosce il valore percentuale (P) e, oltre da esso, uno degli altri due termini: S (somma sulla quale deve essere calcolata la percentuale), oppure r (ragione o aliquota o tasso percentuale). ESEMPIO 1 Durante il trasporto via mare una partita di merce del peso di 120 quintali ha assorbito umidità ed ha subito un aumento di peso di q. 1,2. Qual è stata la percentuale di aumento? Dati problema r = x incognita S = 120 q. P = 1,2 q. Proporzione da cui otteniamo: 100 : r = S : P 100 : x = 120 : 1,2 X = 100 * 1,2/120 = 1% percentuale di aumento 21

22 Problemi inversi ESEMPIO 2 Su un orologio acquistato per un regalo abbiamo pagato un Imposta sul Valore Aggiunto di 90 pari al 20% del prezzo di acquisto dell orologio. Qual è stato il prezzo di acquisto dell orologio? Dati del problema r = 20% S = x incognita P = 90 euro Proporzione 100 : r = S : P 100 : 20 = x : 90 Da cui otteniamo: X = 100 * 90/20 = 450 prezzo di acquisto dell orologio 22

23 E ora prova tu! In una partita di merce del peso lordo di quintali 180 la tara corrisponde al 5% del peso lordo. Determinare la tara (peso dell imballaggio) e il peso netto (R. 9; 171). Per assicurare l arredamento di un alloggio contro il rischio di furto occorre pagare lo 0,85% del valore assicurato. Calcolare l importo da pagare nel caso che l arredamento dell alloggio si valutato complessivamente a ,00 (R. 161,50). 23

24 E ora prova tu! Un rappresentante di commercio percepisce mensilmente la provvigione del 6% sugli affari conclusi. Determinare il volume degli affari effettuati nel mese di ottobre sapendo che gli è stato liquidato il compenso di 2.400,00 (R ). Abbiamo acquistato un motorino del prezzo di listino di 2.800,00. Sapendo che sul prezzo di listino abbiamo ottenuto uno sconto di 175,00, calcolare la percentuale di sconto che il rivenditore ci ha concesso (R. 6,25%) 24

25 I calcoli sopra cento Vengono applicati nei problemi in cui il valore della percentuale (P) deve essere sommato alla somma (S) sulla quale essa è stata calcolata e la ragione percentuale (r) deve essere sommata a 100. Per eseguire calcoli sopra cento occorre riprendere la proporzione fondamentale: 100 : r = S : P 25

26 I calcoli sopra cento Secondo la proprietà del comporre, puo essere ricavata la seguente proporzione: 100 : (100 + r) = S : (S + P) I simboli della proporzione hanno questo significato: (100+r) = cento aumentato della ragione percentuale S = somma sulla quale viene calcolato il valore percentuale (P) (S+P) = somma aumentata del valore della percentuale 26

27 Esempio sopracento diretto Un impresa acquista una merce al prezzo di 12,50 il chilogrammo. Determiniamo il prezzo di vendita sapendo che l impresa vuole ottenere un guadagno pari al 20% del costo d acquisto. Ricordiamo la proporzione: 100 : (100+r) = S : (S+P) Dove: (100+r) = 120 S = 12,50 (S+P) = x Sostituendo: 100 : 120 = 12,50 : x X = 120*12,50/100 = 15,00 prezzo di vendita della merce I problemi di calcolo del sopra cento sono chiamati diretti quando si vuole trovare il valore di S+P 27

28 Esempio sopracento inverso Il peso lordo di una merce è di kg 28,56, mentre la tara è pari al 2% del peso netto. Determiniamo il peso netto della merce e il peso dell imballaggio. Ricordiamo la proporzione: 100 : (100+r) = S : (S+P) dove: (100+r) = 102 S = x (S+P) = 28,56 sostituendo: 100 : 102 = x : 28,56 x = 100*28,56/102 = kg 28 peso netto Kg (28,56 28) = 0,56 kg tara I problemi di sopra cento sono inversi quando il valore conosciuto è (S+P) e vogliamo individuare le parti che lo compongono, cioè S e P. 28

29 I calcoli sotto cento Per eseguire i calcoli sotto cento occorre applicare la proprietà dello scomporre delle proporzioni: 100 : (100 r) = S : (S - P) Significato dei simboli: (100 r) = cento diminuito della ragione percentuale S = somma sulla quale viene calcolato il valore della percentuale (S P) = somma diminuita del valore della percentuale 29

30 Esempio di sottocento diretto Durante il trasporto una merce che aveva in partenza il peso di 350 kg ha subito un calo del 3% Determiniamo il peso della merce all arrivo. Ricordiamo la proporzione: 100 : (100 r) = S : (S-P) Dove: (100-r) = 97 S = 350 kg (S P) = x Sostituendo: 100 : 97 = 350 : x x = 97*350/100 = kg 339,5 peso della merce all arrivo I problemi di calcolo sotto cento sono diretti quando si vuole determinare il valore di (S P). 30

31 Esempio di sottocento inverso A fine stagione un negozio di abbigliamento espone in vetrina un completo da uomo a 195,00 scontato del 25%. Determiniamo il prezzo di listino dell abito. 100: (100 r) = S : (S P) Dove: (100 r) = 75 S = x (S P) = 195,00 Sostituendo: 100 : 75 = x : 195 x = 100*195/75 = 260,00 prezzo di listino I problemi del sotto cento sono inversi quando si vuole determinare il valore di S e P. 31

32 E adesso prova tu! Una merce che alla partenza pesava quintali 650, durante il trasporto ha subito un calo del 4%. Determinare la quantità arrivata (R. 624 q). Abbiamo acquistato un cellulare pagandolo 320,00, dopo aver ottenuto dal negoziante lo sconto del 20%. Calcolare il prezzo di listino (R. 400,00). Una merce acquistata a 180,00 viene venduta con un guadagno del 30% sul prezzo di acquisto. Determinare il prezzo di vendita (R. 234,00). Una merce acquistata a 360,00 viene venduta con un guadagno del 20% sul prezzo di vendita. Calcolare il prezzo di vendita (R. 450,00). 32

e il calcolo percentuale

e il calcolo percentuale SCHEDA 1 Le proporzioni e il calcolo percentuale Gli obiettivi didattici Conoscere i concetti di proporzionalità diretta e inversa Conoscere il calcolo percentuale Saper applicare il calcolo percentuale

Dettagli

SOLUZIONI ESERCIZI PROGRAMMATI MODULO 1 UNITÀ 2

SOLUZIONI ESERCIZI PROGRAMMATI MODULO 1 UNITÀ 2 Esercizi programmati modulo 1 unità 2 pag. 1 di 6 SOLUZIONI ESERCIZI PROGRAMMATI MODULO 1 UNITÀ 2 I calcoli percentuali riferiti alle imprese CALCOLI PERCENTUALI DIRETTI E INVERSI 1. Completa la seguente

Dettagli

Sommario CORSI DI RIALLINEAMENTO 28/09/2011 ECONOMIA AZIENDALE A.A. 2011-2012. Proporzioni. Proporzioni

Sommario CORSI DI RIALLINEAMENTO 28/09/2011 ECONOMIA AZIENDALE A.A. 2011-2012. Proporzioni. Proporzioni CORSI DI RIALLINEAMENTO Sommario ECONOMIA AZIENDALE A.A. 2011-2012 PROPORZIONI; CALCOLO PERCENTUALE; RIPARTI. Tutor: Dott.ssa Lixi Marta 1 2 Una proporzione è l uguaglianza tra 2 rapporti. Terminologia

Dettagli

Esercitazioni di calcolo computistico, tecnica commerciale e mercantile

Esercitazioni di calcolo computistico, tecnica commerciale e mercantile Cattedra di Contabilità e bilancio I Esercitazioni di calcolo computistico, tecnica commerciale e mercantile a cura del dott. Giuseppe Napoli IL CALCOLO PROPORZIONALE I concetti fondamentali del calcolo

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE VANVITELLI STRACCA ANGELINI ANCONA. CORSO SERALE SIRIO Indirizzo Ragionieri MODULI

ISTITUTO DI ISTRUZIONE SUPERIORE VANVITELLI STRACCA ANGELINI ANCONA. CORSO SERALE SIRIO Indirizzo Ragionieri MODULI ISTITUTO DI ISTRUZIONE SUPERIORE VANVITELLI STRACCA ANGELINI ANCONA CORSO SERALE SIRIO Indirizzo Ragionieri MODULI DI ECONOMIA AZIENDALE e INFORMATICA DI BASE ISTVAS Ancona Indirizzo: RAGIONIERI Proff.

Dettagli

COMPITI PER LE VACANZE DI ECONOMIA AZIENDALE CLASSE PRIMA

COMPITI PER LE VACANZE DI ECONOMIA AZIENDALE CLASSE PRIMA COMPITI PER LE VACANZE DI ECONOMIA AZIENDALE CLASSE PRIMA 1 Il signor Rossi si reca in un supermercato che espone, tra le altre, le seguenti offerte speciali: a) set per scrivania, prezzo euro 150, sconto

Dettagli

I calcoli finanziari: l interesse

I calcoli finanziari: l interesse Albez edutainment production I calcoli finanziari: l interesse Classe II ITC Il concetto di interesse Con le operazioni di credito un soggetto (creditore) concede in prestito una somma di denaro, per un

Dettagli

SOLUZIONI MODULO 1 VERIFICA GUIDATA DI FINE UNITÀ 2

SOLUZIONI MODULO 1 VERIFICA GUIDATA DI FINE UNITÀ 2 Vivere l azienda 1 - Modulo 1 Unità 2 Verifica guidata di fine unità Soluzioni pag. 1 di 6 1. CALCOLI PERCENTUALI DIRETTI c SOLUZIONI MODULO 1 VERIFICA GUIDATA DI FINE UNITÀ 2 I calcoli percentuali riferiti

Dettagli

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE 1. Proporzionalità diretta e proporzionalità inversa Analizziamo le seguenti formule Peso Lordo = Peso Netto + Tara Ricavo = Utile + Costo Rata = Importo + Interesse

Dettagli

Albez edutainment production. Economia Aziendale I. L Imposta sul Valore Aggiunto (IVA)

Albez edutainment production. Economia Aziendale I. L Imposta sul Valore Aggiunto (IVA) Albez edutainment production Economia Aziendale I L Imposta sul Valore Aggiunto (IVA) 1 Sommario L IVA Il valore aggiunto Facciamo un esempio I presupposti dell IVA Riassumendo Le operazioni ai fini IVA

Dettagli

Calcolo percentuale, sopra cento e sotto cento. Prof. Sartirana

Calcolo percentuale, sopra cento e sotto cento. Prof. Sartirana Calcolo percentuale, sopra cento e sotto cento Prof. Sartirana I problemi di calcolo percentuale Si applicano quando si mettono a confronto due quantità di cui una costituisce una parte dell altra Si applicano

Dettagli

Scadenza comune anteriore, posteriore e intermedia alle scadenze di tutti i capitali. Un problema di scadenza comune prefissata: il conto corrente

Scadenza comune anteriore, posteriore e intermedia alle scadenze di tutti i capitali. Un problema di scadenza comune prefissata: il conto corrente Scadenza comune anteriore, posteriore e intermedia alle scadenze di tutti i capitali. Un problema di scadenza comune prefissata: il conto corrente La ditta Alfa di Palermo ha i seguenti debiti per fatture

Dettagli

Calcoli percentuali applicati alle imposte

Calcoli percentuali applicati alle imposte Calcoli percentuali applicati alle imposte Risolvere i seguenti problemi fiscali utilizzando la tecnica dei calcoli percentuali. La banca liquida gli interessi maturati a favore dei risparmiatori operando

Dettagli

Biblioteca di Economia aziendale

Biblioteca di Economia aziendale Approfondimenti I calcoli finanziari Il montante e i problemi inversi I problemi inversi si hanno quando, noto il suo ammontare, l incognita è rappresentata dal capitale iniziale o dal tasso d interesse

Dettagli

Test n. 7 Problemi matematici

Test n. 7 Problemi matematici Test n. 7 Problemi matematici ) Determinare il numero il cui doppio, aumentato di 0, è uguale a 44. A) 6 C) 7 B) 5 D) 8 ) Determinare due numeri tenendo presente che la loro somma è uguale a 8 e la loro

Dettagli

APPLICAZIONI DELLA PROPORZIONALITA

APPLICAZIONI DELLA PROPORZIONALITA APPLICAZIONI DELLA PROPORZIONALITA PROBLEMI DEL TRE SEMPLICE DIRETTO Sono problemi in cui si individuano chiaramente due grandezze variabili direttamente proporzionali di cui si conoscono 3 valori e si

Dettagli

Problemi su proporzioni e percentuali - Giulia Menconi. Proporzioni: Riepilogo sulle proprietà

Problemi su proporzioni e percentuali - Giulia Menconi. Proporzioni: Riepilogo sulle proprietà Problemi su proporzioni e percentuali - Giulia Menconi Proporzioni: Riepilogo sulle proprietà proporzione valida: una proporzione è valida se e solo se il prodotto dei medi è uguale al prodotto degli estremi

Dettagli

Le grandezze proporzionali

Le grandezze proporzionali 1 Le grandezze proporzionali DEFINIZIONE. Due grandezze si dicono proporzionali se il rapporto che le lega può essere espresso mediante una proporzione numerica. Consideriamo il numero di riviste vendute

Dettagli

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8 Facoltà di Scienze Politiche Corso di Economia Politica Esercitazione di Microeconomia sui capitoli 7 e 8 Domanda 1 Dite quale delle seguenti non è una caratteristica di un mercato perfettamente competitivo:

Dettagli

PER GLI STUDENTI DELLE CLASSI PRIME DEL LICEO MURATORI ESERCIZI DI MATEMATICA

PER GLI STUDENTI DELLE CLASSI PRIME DEL LICEO MURATORI ESERCIZI DI MATEMATICA LICEO CLASSICO STATALE L. A. MURATORI con sezioni di Liceo Linguistico Via Cittadella, 50-411 MODENA - Tel. 059-4007 - FAX 059-497186 e-mail: mopc00008@pec.istruzione.it - mopc00008@istruzione.it Codice

Dettagli

era applicato uno sconto del 35%, quale era il prezzo iniziale del vestito?

era applicato uno sconto del 35%, quale era il prezzo iniziale del vestito? QA00001 Un contadino vende 450 Kg di mele per un totale di a) 2,5 b) 2 c) 3 d) 1,60 b 630. Il commerciante che ha acquistato le mele le rivende con un guadagno di 60 centesimi al Kg. A quanto le ha vendute?

Dettagli

SCHEDE PROGRAMMATE PER L APPRENDIMENTO DELLA MATEMATICA. Emidio Tribulato. Centro studi LOGOS - Messina

SCHEDE PROGRAMMATE PER L APPRENDIMENTO DELLA MATEMATICA. Emidio Tribulato. Centro studi LOGOS - Messina SCHEDE PROGRAMMATE PER L APPRENDIMENTO DELLA MATEMATICA Emidio Tribulato Centro studi LOGOS - Messina 1 Emidio Tribulato SCHEDE PROGRAMMATE PER L APPRENDIMENTO DELLA MATEMATICA C 2010- Tutti i diritti

Dettagli

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo.

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo. acroeconomia, Esercitazione 2. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 oneta/1 Sapendo che il PIL reale nel 2008 è pari a 50.000 euro e nel 2009 a 60.000 euro, che dal 2008 al

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Appunti sulla Percentuale Scuola Secondaria di I Grado - Ex Licenza Media

Appunti sulla Percentuale Scuola Secondaria di I Grado - Ex Licenza Media 1 Percentuale ISTITUTO COMPRENSIVO N.7 - VIA VIVALDI - IMOLA Via Vivaldi, 76-40026 Imola (BOLOGNA) Centro Territoriale Permanente: Istruzione Degli Adulti - IDA Appunti sulla Percentuale Scuola Secondaria

Dettagli

TECNICHE PROFESSIONALI DEI SERVIZI COMMERCIALI

TECNICHE PROFESSIONALI DEI SERVIZI COMMERCIALI TECNICHE PROFESSIONALI DEI SERVIZI COMMERCIALI ANNO SCOLASTICO: 2015-2016 INSEGNANTE: ASCHERI Maria Rosa CLASSE: I A c SETTORE: servizi INDIRIZZO: servizi commerciali PROGRAMMAZIONE INIZIALE FINALITA DELLA

Dettagli

Investimenti lordi = 2.000 Investimenti netti = 800

Investimenti lordi = 2.000 Investimenti netti = 800 Macroeconomia, Esercitazione 1. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 PIL/1 Si consideri un sistema economico che produce solo pane. Questo è costituito da tre imprese: una agricola,

Dettagli

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI MAT 3

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI MAT 3 Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI MAT 3 PESO SPECIFICO MISURA DEL TEMPO PERCENTUALE NUMERI PERIODICI STATISTICA CALCOLO DELLE PROBABILITÀ ASSE CARTESIANO

Dettagli

a) 1670 b) 2285 c) 4520 d) 1300 b a) 865000 b) 640000 c) 725000 d) 645000 d a) 1 b) 2 c) 3 d) Non è possibile calcolarlo

a) 1670 b) 2285 c) 4520 d) 1300 b a) 865000 b) 640000 c) 725000 d) 645000 d a) 1 b) 2 c) 3 d) Non è possibile calcolarlo RB00001 Una banca offre un interesse sui suoi conti correnti a) 1.5 euro b) 3 euro c) 150 euro d) 300 euro b dello 0.05% annuo in capitalizzazione semplice. Quanto si ottiene di interessi investendo per

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 96 matematica per l economia Esercizio 65. Consideriamo ancora il problema 63 dell azienda vinicola, aggiungendo la condizione che l azienda non può produrre più di 200 bottiglie al mese. Soluzione. La

Dettagli

Il contratto di compravendita

Il contratto di compravendita Esercitazioni svolte 2014 Scuola Duemila 1 Esercitazione n. 1 Il contratto di compravendita Rosa Sciamanna COMPETENZE DI BASE E DI CITTADINANZA Individuare le strategie appropriate per la soluzione di

Dettagli

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011)

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) D1. Nella tabella che vedi sono riportati i dati relativi alla distribuzione di alunni e insegnanti nella scuola secondaria di primo grado

Dettagli

Rapporti e Proporzioni

Rapporti e Proporzioni Rapporti e Proporzioni (a cura Prof.ssa R. Limiroli) Rapporto tra numeri Il rapporto diretto tra due numeri a e b, il secondo dei quali diverso da zero, si indica con Ricorda a e b sono i termini del rapporto

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA Anno scolastico 2008/09 Prof. Romano Oss Matematica finanziaria è uno strumento di calcolo basato sulla teoria dell interesse,

Dettagli

LIUC-Facoltà di Economia Corso di Scienza delle Finanze I Esercitazione: testo e soluzioni A.A. 2008-2009

LIUC-Facoltà di Economia Corso di Scienza delle Finanze I Esercitazione: testo e soluzioni A.A. 2008-2009 LIUC-Facoltà di Economia Corso di Scienza delle Finanze I Esercitazione: testo e soluzioni A.A. 2008-2009 Esercizio 1 Il sig. A, senza figli e sposato con la signora B la quale non percepisce alcun tipo

Dettagli

KIT DI RECUPERO DI ECONOMIA AZIENDALE CL. 1ATT-ACTT a.s. 2014/2015

KIT DI RECUPERO DI ECONOMIA AZIENDALE CL. 1ATT-ACTT a.s. 2014/2015 KIT DI RECUPERO DI ECONOMIA AZIENDALE CL. 1ATT-ACTT a.s. 2014/2015 il lavoro deve essere svolto su un quaderno nuovo perché verrà ritirato e valutato per tutti gli studenti ammessi al secondo anno Esegui

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 0-05 Classe: B clac, E, F, G, I, L, M Docente: Ferrero, Degrandi, Marchetti, Sartorio, Ganassin Disciplina MATEMATICA Ripasso

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

Caso aziendale 01 Bianchini srl

Caso aziendale 01 Bianchini srl Caso aziendale 01 Bianchini srl In data 10 febbraio la ditta Bianchini srl, che commercializza frutta e verdura al dettaglio, ha acquistato dalla ditta Piano Andrea 300 quintali lordi di frutta e verdura

Dettagli

IIS SELLA AALTO LAGRANGE Sezione associata L.Lagrange a.s. 2013-2014 PROGRAMMAZIONE DI ECONOMIA AZIENDALE BIENNIO TECNICO TURISMO

IIS SELLA AALTO LAGRANGE Sezione associata L.Lagrange a.s. 2013-2014 PROGRAMMAZIONE DI ECONOMIA AZIENDALE BIENNIO TECNICO TURISMO IIS SELLA AALTO LAGRANGE Sezione associata L.Lagrange a.s. 2013-2014 PROGRAMMAZIONE DI ECONOMIA AZIENDALE BIENNIO TECNICO TURISMO CLASSE: 1C 1. CONTENUTI DISCIPLINARI ( suddivisi in moduli e unità didattiche

Dettagli

T = Da questa relazione si può ricavare quella inversa con cui si ottiene il tempo impiegato a percorrere un determinato spazio: S

T = Da questa relazione si può ricavare quella inversa con cui si ottiene il tempo impiegato a percorrere un determinato spazio: S Logica Numerica Approfondimento 2 E. Barbuto pazio, Tempo e Velocità I quesiti sulle distanze mettono alla prova il senso pratico e l acume logico del candidato ed, in generale, non riciedono un grande

Dettagli

PIANO DI LAVORO ANNUALE SVOLTO CONTENUTI

PIANO DI LAVORO ANNUALE SVOLTO CONTENUTI Indirizzo Internet: www.provincia.venezia.it/alga e-mail: alga Classe 1 sez.h materia: ECONOMIA AZIENDALE anno scolastico 2014/2015 1) PROPORZIONI E CALCOLI PERCENTUALI a) rapporti e proporzioni; b) grandezze

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

Modulo 1. Introduzione alla Contabilità Nazionale

Modulo 1. Introduzione alla Contabilità Nazionale Modulo 1 Introduzione alla Contabilità Nazionale 2 Esercizio 1. Si consideri un sistema economico che produce solo pane. Esso è costituito da tre imprese: una agricola, una di trasformazione (un mulino)

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

5 Risparmio e investimento nel lungo periodo

5 Risparmio e investimento nel lungo periodo 5 Risparmio e investimento nel lungo periodo 5.1 Il ruolo del mercato finanziario Il ruolo macroeconomico del sistema finanziario è quello di far affluire i fondi risparmiati ai soggetti che li spendono.

Dettagli

SCIENZA DELLE FINANZE A.A. 2012-2013 CLEAM Esercitazione Attività Finanziarie TESTO E SOLUZIONI

SCIENZA DELLE FINANZE A.A. 2012-2013 CLEAM Esercitazione Attività Finanziarie TESTO E SOLUZIONI SCIENZA DELLE FINANZE A.A. 2012-2013 CLEAM Esercitazione Attività Finanziarie TESTO E SOLUZIONI Tutti gli esercizi, dove pertinente, sono risolti utilizzando la normativa entrata in vigore al 1 Gennaio

Dettagli

EQUIVALENZE, PROPORZIONI, CALCOLI PERCENTUALI E RIPARTI

EQUIVALENZE, PROPORZIONI, CALCOLI PERCENTUALI E RIPARTI ATTIVITÀ DIDATTICHE 1 EQUIVALENZE, PROPORZIONI, CALCOLI PERCENTUALI E RIPARTI di Elena LAMBERTI Materie: DIRITTO E TECNICHE AMMINISTRATIVE DELLA STRUTTURA RICETTIVA (Classe 3 a IP Indirizzo Alberghiero)

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata? Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

Esercitazioni svolte 2010 Scuola Duemila 1. Esercitazione n. 3. Teresa Tardia COMPLETAMENTO QUESITI A RISPOSTA APERTA

Esercitazioni svolte 2010 Scuola Duemila 1. Esercitazione n. 3. Teresa Tardia COMPLETAMENTO QUESITI A RISPOSTA APERTA Esercitazioni svolte 2010 Scuola Duemila 1 Esercitazione n. 3 Compravendita, prefatturazione e primi elementi di fatturazione Risultati attesi Sapere: gli aspetti principali relativi al contratto di compravendita

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

per Mara a) 16% b) 12% c) 11% d) 15% d 3.200, se aspetti 5mesi ci vogliono 200 in più. Che tasso annuo ha applicato il creditore?

per Mara a) 16% b) 12% c) 11% d) 15% d 3.200, se aspetti 5mesi ci vogliono 200 in più. Che tasso annuo ha applicato il creditore? RA00001 Quanti d interesse producono, in capitalizzazione a) 326,4 b) 412,5 c) 132,8 d) 210 a composta, 4000 impiegati al 4% dopo 2 anni? RA00002 Investendo per 6 anni un capitale di 32000, si sono a)

Dettagli

Matematica - Sessione 1 / Servizi Esame di Diploma (IV Livello Europeo) Quarto Anno

Matematica - Sessione 1 / Servizi Esame di Diploma (IV Livello Europeo) Quarto Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Servizi Esame di iploma (IV Livello Europeo) Quarto Anno a.f. 2012/2013 omanda 1 M9003-00 Nel grafico (Fonte INIRE) sono riportati i dati

Dettagli

MATEMATICA - CLASSE TERZA

MATEMATICA - CLASSE TERZA MATEMATICA - CLASSE TERZA I NUMERI NATURALI E LE 4 OPERAZIONI U. A. 1 - IL NUMERO 1. Comprendere la necessità di contare e usare i numeri. 2. Conoscere la struttura dei numeri naturali. 3. Conoscere e

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

Macroeconomia. quindi: C

Macroeconomia. quindi: C Macroeconomia. Modello Keynesiano Politica economica è interna. Quindi le uniche componenti che ci interessano per la domanda aggregata sono il consumo, gli investimenti e la spesa pubblica. (.) D = C

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

Richiesta di rimborso spese anno 2015

Richiesta di rimborso spese anno 2015 Richiesta di rimborso spese anno 05 Rimborso viaggi (tabella mensile allegata) Abitazione Torino Planetario e ritorno+ altri viaggi di servizio Totale km 550 km Costo chilometrico ACI per Auto VOLVO S0

Dettagli

ROMA, 16 NOVEMBRE 2015 CASA DELLA CITTÀ. LE OPPORTUNITA DELL ECODISTRETTO Innovazione, servizi, lavoro e imprese.

ROMA, 16 NOVEMBRE 2015 CASA DELLA CITTÀ. LE OPPORTUNITA DELL ECODISTRETTO Innovazione, servizi, lavoro e imprese. ROMA, 16 NOVEMBRE 2015 CASA DELLA CITTÀ LE OPPORTUNITA DELL ECODISTRETTO Innovazione, servizi, lavoro e imprese Federico Canoppia Il contesto europeo: una nuova dinamica di sfruttamento delle risorse Da

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

Verifica di fine modulo. Il credito e i calcoli finanziari

Verifica di fine modulo. Il credito e i calcoli finanziari ... Nome... Classe... Data... Verifica di fine modulo. Il credito e i calcoli finanziari Scelta multipla Indicare con una crocetta la risposta esatta. 1. Concorre al soddisfacimento del fabbisogno finanziario

Dettagli

Esercizi su domanda e offerta. 24 novembre 2010

Esercizi su domanda e offerta. 24 novembre 2010 Esercizi su domanda e offerta 24 novembre 2010 Domande Domanda 1* Cosa si intende per spesa totale di un consumatore per un dato bene? Descrivete come essa varia quando il prezzo del bene considerato aumenta

Dettagli

CONSEGUENZA PROPORZIONI

CONSEGUENZA PROPORZIONI Corso di laurea: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA CONSEGUENZA PROPORZIONI PROBLEMI DEL TRE SEMPLICE Le conoscenze acquisite sui rapporti e sulle proporzioni possono essere applicate

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

LA COMBINAZIONE DEI FATTORI PRODUTTIVI CAP. 5

LA COMBINAZIONE DEI FATTORI PRODUTTIVI CAP. 5 LA COMBINAZIONE DEI FATTORI PRODUTTIVI CAP. 5 Appunti di estimo Il fine economico dell imprenditore Le motivazioni che spingono un imprenditore ad avviare attività di impresa sono: Produrre beni e servizi,

Dettagli

Aumenti reali del capitale sociale

Aumenti reali del capitale sociale Aumenti reali del capitale sociale Gli aumenti del capitale sociale possono essere: virtuali con gli aumenti virtuali non aumentano i mezzi a disposizione della azienda e il suo patrimonio netto, che si

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli

ESERCIZI PROGRAMMATI MODULO 1 UNITÀ 2

ESERCIZI PROGRAMMATI MODULO 1 UNITÀ 2 Esercizi programmati modulo 1 unità 2 pag. 1 di 6 ESERCIZI PROGRAMMATI MODULO 1 UNITÀ 2 I calcoli percentuali riferiti alle imprese CALCOLI PERCENTUALI DIRETTI E INVERSI 1. Completa la seguente tabella

Dettagli

a) È più conveniente acquistare 3 paia di calzini a dicembre che a gennaio

a) È più conveniente acquistare 3 paia di calzini a dicembre che a gennaio RB0001B Un negozio offre a dicembre in promozione tre paia di calzini al prezzo di due. A gennaio questa offerta è stata sostituita da uno sconto del 35% su ogni singolo prezzo. Sapendo che il prezzo di

Dettagli

SISTEMA PREVIDENZIALE PER LA VECCHIAIA Scheda di lavoro

SISTEMA PREVIDENZIALE PER LA VECCHIAIA Scheda di lavoro Esercizio 1: Domande di controllo sul testo. a. A che età le persone attive sono obbligate a versare i contributi AVS? b. A che età i giovani che NON svolgono alcuna attività professionale devono pagare

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 Rapporto tecnico sulle caratteristiche delle prove INVALSI 2011 Scuola secondaria di secondo grado classe II MATEMATICA Domanda D1 item a D1. Nella tabella che

Dettagli

L IRPEF del 2007 Alcuni esercizi

L IRPEF del 2007 Alcuni esercizi Esercizi L IRPEF del 2007 Alcuni esercizi Capitolo III, Lezione 1 Le aliquote e le detrazioni dell Irpef Capitolo III, Lezione 1 SCALA DELLE ALIQUOTE redditi 2007 Scaglioni Al.legalelegale EURO (%) 0-15.000

Dettagli

Alcuni probelmi risolti

Alcuni probelmi risolti Alcuni probelmi risolti Esercizio 1: Svolgere l esempio 3 a p.115 del testo. Esercizio (Consideriamo nuovamente i dati dell esempio 3 p. 115 del testo.) Il prezzo P unitario ottenuto da un impresa nella

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Macroeconomia, Esercitazione 2.

Macroeconomia, Esercitazione 2. Macroeconomia, Esercitazione 2. A cura di Giuseppe Gori e Gianluca Antonecchia (gianluca.antonecchia@studio.unibo.it) 1.1 Domanda e Offerta aggregate/1 In un sistema economico privo di settore pubblico,

Dettagli

La percentuale e le sue applicazioni

La percentuale e le sue applicazioni La percentuale e le sue applicazioni Il simbolo che usiamo oggi per indicare la percentuale è un acquisizione abbastanza recente. È l evoluzione del simbolo che veniva utilizzato nel XV secolo per identificare

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) COMPETENZE ABILITA CONOSCENZE

MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) COMPETENZE ABILITA CONOSCENZE MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) Utilizzare le tecniche e le procedure del calcolo aritmetico scritto e mentale partendo da contesti reali Rappresentare

Dettagli

Capitolo II. La forma del valore. 7. La duplice forma in cui si presenta la merce: naturale e di valore.

Capitolo II. La forma del valore. 7. La duplice forma in cui si presenta la merce: naturale e di valore. Capitolo II La forma del valore 7. La duplice forma in cui si presenta la merce: naturale e di valore. I beni nascono come valori d uso: nel loro divenire merci acquisiscono anche un valore (di scambio).

Dettagli

Analisi e contabilità dei costi

Analisi e contabilità dei costi Analisi e contabilità dei costi Il franchising 1 Il franchising Concessione di un privilegio (franchigia) Il privilegio viene accordato da un franchisor a dei franchesee Le due figure rappresentano: A)

Dettagli

Candidata/o: Cognome e nome:.. Dipartimento dell educazione, della cultura e dello sport Cantone Ticino Direzione dei Corsi per Adulti

Candidata/o: Cognome e nome:.. Dipartimento dell educazione, della cultura e dello sport Cantone Ticino Direzione dei Corsi per Adulti Candidata/o: Cognome e nome:.. Dipartimento dell educazione, della cultura e dello sport Cantone Ticino Direzione dei Corsi per Adulti ESAME CANTONALE DI CONTABILITÀ II CORSO (Sabato, 17 maggio 2008) TEMPO

Dettagli

PROF. ALBANO SALVATORE

PROF. ALBANO SALVATORE Istituto Statale di Istruzione Superiore Zenale e Butinone Economia aziendale KIT ESTIVO CLASSE 2^BTT PROF. ALBANO SALVATORE Fascicolo A Esercitazioni obbligatorie per tutti gli studenti da consegnare

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

L EQUILIBRIO DEL MERCATO CONCORRENZIALE

L EQUILIBRIO DEL MERCATO CONCORRENZIALE L EQUILIBRIO EL MERCATO CONCORRENZIALE Un mercato concorrenziale è in equilibrio quando la domanda di mercato è uguale all offerta di mercato: p (p) p* (p) q* Il prezzo di equilibrio è tale che ( p* )

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

15. Analisi del rapporto tra costi, volumi e risultati. Ragioneria Generale ed Applicata Sede di Fano

15. Analisi del rapporto tra costi, volumi e risultati. Ragioneria Generale ed Applicata Sede di Fano 15. Analisi del rapporto tra costi, volumi e risultati Ragioneria Generale ed Applicata Sede di Fano UNO STRUMENTO PER L ANALISI CONGIUNTA DELL ANDAMENTO DEI COSTI, RICAVI, RISULTATI B.E.P.= break even

Dettagli

Al Comitato di Presidenza Al Consiglio Direttivo Alla Commissione Legale Alla Commissione Sindacale Alle Associazioni Territoriali

Al Comitato di Presidenza Al Consiglio Direttivo Alla Commissione Legale Alla Commissione Sindacale Alle Associazioni Territoriali Roma, 15 luglio 2015 Al Comitato di Presidenza Al Consiglio Direttivo Alla Commissione Legale Alla Commissione Sindacale Alle Associazioni Territoriali Circolare n. 102/2015 Oggetto: Autotrasporto - Nota

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA Introduzione Definizione. La matematica finanziaria studia le operazioni finanziarie. Definizione. Una operazione finanziaria è un contratto che prevede scambi di danaro (tra i contraenti)

Dettagli

La gestione dell impresa

La gestione dell impresa Albez edutainment production La gestione dell impresa Classe III ITC In questo modulo: La definizione di impresa e di gestione La classificazione delle operazioni di gestione La differenza tra beni a fecondità

Dettagli

ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015

ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015 ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015 Esercizio 1 Si consideri un imposta sul reddito personale con aliquota marginale t costante del 20% e detrazione, f, pari a 1.000 dall imposta dovuta. Nel

Dettagli

PIL : produzione e reddito

PIL : produzione e reddito PIL : produzione e reddito La misura della produzione aggregata nella contabilità nazionale è il prodotto interno lordo o PIL. Dal lato della produzione : oppure 1) Il PIL è il valore dei beni e dei servizi

Dettagli

La politica dell entrata

La politica dell entrata La politica dell entrata Le entrate dello Stato si classificano in: 1.Entrate tributarie: rappresentano la parte più consistente delle entrate statali e sono costituite da: Imposte=sono prelievi obbligatori

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli