matematica per le quinte

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "matematica per le quinte"

Transcript

1 istituto professionale versari-macrelli, cesena lorenzo pantieri matematica per le quinte corso serale Dipartimento di Matematica Anno scolastico

2 Questo lavoro spiega il programma di matematica agli alun- ni dell Istituto professionale Versari-Macrelli di Cesena. Ringrazio innanzitutto il Dirigente scolastico ing. Mauro Tosi per aver sostenuto questo progetto. Ringrazio inoltre i miei colleghi del dipartimento di matematica Silvia Bagnoli, Francesco Cerino, Silvia Cortesi, Giulia Degli Angeli, Orlando Fiumana, Maria Chiara Garaffoni, Emanuela Montanari, Monica Morelli, Enrico Petroncini, Manuela Pompili ed Elisabetta Turci per l aiuto fornito nella redazione di questo lavoro, la pazienza e la precisione nei suggerimenti, la competenza e la disponibilità. Un grazie altrettanto speciale va ai miei studenti, per i consigli durante la stesura di un opera che senza il loro contributo non avrebbe mai assunto la forma attuale: questo libro è più loro che mio. Se avete idee su argomenti da aggiungere, togliere o modificare in questo documento, o se vi dovesse capitare di notare un errore, sia di battitura che di sostanza (ed è probabile che ce ne siano parecchi, soprattutto del primo tipo, ma anche del secondo), mi fareste un favore comunicandomelo, così che io possa apportare le opportune correzioni in versioni successive. Mi interessano specialmente i commenti degli studenti su quali parti di questo lavoro risultino di facile comprensione e quali invece si potrebbero spiegare meglio. In particolare, se vi sembra di notare un errore matematico è anche nel vostro interesse discuterne con me per chiarire se si tratta di un incomprensione vostra o di uno sbaglio mio. È con questo spirito che ho scritto questo lavoro: spero che possiate studiare la matematica con il mio stesso piacere. Lorenzo Pantieri Matematica per l Istituto professionale Versari-Macrelli Copright c 2015 Il frontespizio riproduce la ilografia Altro Mondo II di Maurits Cornelis Escher e l incisione Tassellazione del piano con uccelli, dello stesso autore.

3 I N D I C E 1 statistica Fasi di un indagine statistica Definizione del fenomeno Individuazione della popolazione Rilevamento dei dati Elaborazione e rappresentazione Tabelle di frequenza Frequenze assolute Frequenze relative Frequenze percentuali Raggruppamento per classi Rappresentazioni grafiche Indici statistici Moda Media Mediana Esercizi 12 2 matematica per l economia Problemi di scelta Problemi di costi e ricavo Esercizi 32 3 disequazioni Intervalli sulla retta reale Diseguaglianze e disequazioni Principi di equivalenza Disequazioni lineari Disequazioni di secondo grado Disequazioni fratte Esercizi 66 4 funzioni Relazioni e funzioni Definizione di funzione Funzioni iniettive, suriettive, biunivoche Rappresentazione cartesiana Esercizi 94

4 iv indice 5 introduzione all analisi Classificazione Dominio Intersezioni con gli assi Segno Simmetrie Esercizi limiti Concetto di limite Calcolo dei limiti Limiti di alcune funzioni elementari Algebra dei limiti Forme di indecisione di funzioni algebriche Continuità Asintoti Grafico probabile di una funzione Esercizi 148

5 1 S TAT I S T I C A La statistica è una scienza nata per analizzare e descrivere fenomeni d importanza sociale che riguardano uno Stato. Oggi viene applicata in tutti quei campi dove intervengono fenomeni collettivi, la cui mancanza di ripetitività ne rende impossibile lo studio attraverso la sperimentazione. Sono fenomeni collettivi quei fatti che abbracciano un gran numero di fenomeni individuali fra loro simili. Per esempio, il fatto che Luciana è alta 165 cm è un fenomeno individuale, mentre l altezza dei coetanei di Luciana è un fenomeno collettivo. Il fatto che io vengo a scuola in auto è fenomeno individuale, mentre il mezzo impiegato da tutti i docenti e alunni della mia scuola è un fenomeno collettivo. L aumento della popolazione di uno Stato o la diminuzione dei posti di lavoro in un certo settore sono fenomeni collettivi, e lo studio di un fenomeno collettivo avviene attraverso la statistica che raccoglie e analizza le informazioni riguardanti il fenomeno considerato e permette di fare previsioni sul suo andamento. 1.1 fasi di un indagine statistica Per compiere un indagine statistica si segue uno schema che, in linea di massima, è costituito da quattro fasi essenziali: 1. si definisce il fenomeno su cui si vuole indagare 2. si individua la popolazione interessata 3. si raccolgono i dati 4. si elaborano, rappresentano e interpretano i dati raccolti Definizione del fenomeno Il primo passo di un indagine statistica è la definizione del fenomeno su cui vogliamo indagare. Se per esempio vogliamo prendere in esame il fenomeno distribuzione demografica in una città, è opportuno precisare se vogliamo un esame che riguardi: il numero degli abitanti il numero di maschi e femmine

6 2 statistica la distribuzione secondo il reddito la distribuzione secondo l impiego Individuazione della popolazione Definito il fenomeno, va chiarita la collettività a cui il fenomeno si riferisce e sulla quale verrà quindi svolta l indagine. In termini statistici tale collettività si chiama popolazione statistica o, semplicemente, popolazione; ogni singolo elemento della popolazione si chiama unità statistica. Costituiscono una popolazione, per esempio: gli alunni di una scuola i docenti di una scuola gli impiegati di un azienda i residenti nel Comune di Cesena Variabili statistiche Se consideriamo una popolazione statistica, per esempio gli alunni di una scuola, ogni unità statistica (ogni alunno) differisce da un altra unità per una o più caratteristiche: l età, il sesso, l altezza, la media dei voti, il mezzo di trasporto usato per recarsi a scuola, il Comune di residenza, il numero dei fratelli, la professione dei genitori. Queste caratteristiche prendono il nome di variabili statistiche (o caratteri statistici) ed è rispetto a una o più di queste variabili che si effettua l indagine statistica. Le variabili statistiche possono essere: variabili quantitative, se espresse da un numero variabili qualitative, se non possono essere espresse da un numero Sono variabili quantitative, per esempio: l altezza il peso l età la media dei voti mentre sono variabili qualitative: il sesso il mezzo di trasporto il Comune di residenza la professione dei genitori Un indagine statistica consiste nell analizzare come una popolazione statistica si distribuisce rispetto a una certa variabile statistica.

7 1.2 tabelle di frequenza Rilevamento dei dati Il fenomeno, la popolazione e le variabili statistiche su cui vogliamo indagare ci suggeriranno come meglio procedere nella fase di rilevamento dei dati. Il rilevamento dei dati può essere diretto (o completo) se viene eseguito direttamente su tutte le unità statistiche della popolazione interessata al fenomeno. Ciò è possibile quando la popolazione è formata da un numero non eccessivo di unità e ogni unità statistica può quindi essere contattata e intervistata. Spesso, però, la popolazione è talmente vasta da non permettere il rilevamento diretto. Si deve quindi scegliere all interno della popolazione un opportuno campione rappresentativo su cui si eseguirà l indagine. In questo caso si parla di rilevamento indiretto (o per campione), perché viene eseguito solo su una parte della popolazione. Scelto il metodo per il rilevamento dei dati, diretto o per campionamento, si passa alla raccolta delle informazioni che può avvenire tramite interviste, questionari, consultazione di archivi o pubblicazioni specializzate Elaborazione e rappresentazione Questa fase, nel suo complesso, abbraccia diversi momenti: si esegue lo spoglio delle informazioni per ricavare i dati statistici si trascrivono i dati in una tabella dall esame di questa tabella si arriva all elaborazione vera e propria dei dati si rappresentano i risultati dell indagine mediante opportuni grafici 1.2 tabelle di frequenza Esercizio 1. Supponiamo di aver indagato sul fenomeno altezza degli alunni di quinta dell Istituto Versari-Macrelli e di avere raccolto informazioni relative a 20 alunni (tabella 1). Elaboriamo, interpretiamo e rappresentiamo i dati raccolti. In questo caso la popolazione statistica è rappresentata dalle classi quinte del Versari-Macrelli ; le unità statistiche sono gli alunni di quinta; la variabile statistica che si vuole studiare è l altezza, che è un numero intero e quindi è una variabile quantitativa.

8 4 statistica Tabella 1: Altezze di alcuni alunni di quinta del Versari-Macrelli : dati grezzi Nome Altezza Nome Altezza (cm) (cm) Maria 165 Ettore 174 Giulio 168 Massimo 177 Mario 174 Cristian 165 Ernesto 177 Rossana 166 Giorgio 166 Elisabetta 158 Elena 168 Roberto 165 Vittorio 174 Walter 166 Marco 168 Nicoletta 186 Eleonora 165 Sara 165 Fabio 165 Nicola Frequenze assolute Eseguiamo lo spoglio delle informazioni. valori in ordine crescente (tabella 2). Innanzitutto conviene riscrivere i Tabella 2: Altezze di alcuni alunni di quinta del Versari-Macrelli : crescente valori in ordine Dopo di che si realizza una tabella dove nella prima colonna scriveremo tutte le altezze registrate e nella seconda colonna il numero degli alunni che hanno quell altezza (tabella 3). Tabella 3: Altezze degli alunni di quinta: frequenze assolute Altezza (cm) Totale Numero di alunni La tabella 3 può già fornirci un immagine del fenomeno. I numeri riportati nella seconda riga (numero degli alunni) rappresentano la frequenza assoluta di ciascun valore (altezza), ovvero il numero di volte con cui quel valore si presenta nell indagine.

9 1.2 tabelle di frequenza 5 Tabella 4: Altezze degli alunni di quinta: frequenze assolute, relative e percentuali Altezza Frequenza Frequenza Frequenza (cm) assoluta relativa percentuale /20 = 0, /20 = 0, /20 = 0, /20 = 0, /20 = 0, /20 = 0, /20 = 0,05 5 Totale Frequenze relative Può essere utile indicare per ciascun valore il rapporto tra la sua frequenza assoluta e il totale dei dati esaminati; in questo caso si parla di frequenza relativa di un valore. Per ottenere la frequenza relativa di un valore si applica la seguente formula: frequenza assoluta frequenza relativa = totale dei dati Applicando la formula precedente alla tabella 3 delle altezze dei 20 alunni otteniamo la tabella Frequenze percentuali La frequenza percentuale di un valore è la sua frequenza relativa moltiplicata per 100. Per ottenere la frequenza percentuale di un valore si applica la seguente formula: frequenza assoluta frequenza percentuale = 100 totale dei dati Raggruppamento per classi Esercizio 2. Supponiamo di eseguire un indagine sul fenomeno peso dei ragazzi iscritti a una scuola di calcio e di raccogliere i valori relativi a 60 ragazzi nella tabella 5a. Elaboriamo, interpretiamo e rappresentiamo i dati raccolti.

10 6 statistica Tabella 5: Peso in kg di alcuni ragazzi iscritti a una scuola di calcio (a) Valori grezzi (b) Valori in ordine crescente L elaborazione di questi valori non è semplice, in quanto si tratta di numeri completamente diversi tra loro. Calcolare le frequenze, assolute o relative, risulterebbe non solo laborioso, ma sopratutto poco significativo. In casi del genere si procede raggruppando i valori e realizzando tabelle suddivise per classi. Innanzitutto riscriviamo i valori in ordine crescente (tabella 5b). Consideriamo l intervallo numerico tra il valore più piccolo e quello più grande, ovvero 50 kg 85 kg; esso rappresenta il campo di variazione della variabile statistica considerata. Consideriamo gli estremi del campo di variazione ed eseguiamo la loro differenza, che vale 35 kg (85 kg 50 kg = 35 kg). Questa differenza è detta ampiezza del campo di variazione, ed è l ampiezza del raggruppamento di tutti i valori. Suddividiamo l ampiezza in opportuni intervalli uguali, ciascuno di ampiezza 5 kg, definendo le classi di peso riportate nella tabella 6. Tabella 6: Classi di peso (in kg) dei ragazzi Classe Intervallo In queste otto classi sistemiamo la nostra popolazione: basterà considerare i ragazzi appartenenti a ogni classe per avere la frequenza della classe, ovvero la distribuzione di frequenza del raggruppamento dei valori (tabella 7).

11 1.3 rappresentazioni grafiche 7 Tabella 7: Peso in kg dei ragazzi iscritti a una scuola di calcio, suddivisi per classe Classi Frequenza Frequenza Frequenza di peso (kg) assoluta relativa percentuale , , , , , , , ,05 5 Totale rappresentazioni grafiche I dati raccolti nelle tabelle precedenti si possono rappresentare graficamente. I grafici più usati sono gli istogrammi e i diagrammi a torta. La scelta del grafico dipende dal tipo di tabelle che abbiamo creato. Esistono vari software che, partendo dalla serie dei dati raccolti, realizzano automaticamente il grafico desiderato. I più usati sono i programmi per l elaborazione dei cosiddetti fogli elettronici (tra cui il popolare Microsoft Ecel). Se si ha una tabella delle frequenze assolute (come la tabella 3), il grafico più opportuno è l istogramma, serie di barre verticali la cui altezza è proporzionale al valore della frequenza. La figura 1a, per esempio, rappresenta i valori della tabella 3, relativi all esercizio 1 delle altezze dei 20 alunni di quinta. Se si ha una tabella delle frequenze relative o percentuali (come la tabella 4), il grafico più opportuno è il diagramma a torta, che dà un immediato messaggio visivo di come sono distribuiti i valori statistici. La figura 1b, per esempio, rappresenta i valori della tabella 4, relativi al caso dell esercizio 1 delle altezze dei 20 alunni di quinta. Una tabella per classi differisce da una tabella semplice solo per il fatto che si ha a che fare non con singoli valori ma con intervalli di valori. Una tabella per classi come la 7, per esempio, relativa all esercizio 2 dei pesi dei 60 ragazzi iscritti alla scuola di calcio, può quindi essere rappresentata da un istogramma (figura 2a) o da un diagramma a torta (figura 2b).

12 8 statistica 1.4 indici statistici Gli indici statistici sono i risultati di funzioni matematiche che vengono utilizzati per effettuare una sintesi dei dati. Gli indici usati più spesso sono gli indici di posizione, che danno un idea approssimata dell ordine di grandezza dei valori esistenti. I principali indici di posizione sono la moda, la media e la mediana Moda Si chiama moda di un indagine statistica il valore che ha la frequenza maggiore. In una distribuzione può esserci un solo valore che ha la frequenza maggiore, oppure due valori o più: in tal caso si parla di distribuzione unimodale, bimodale, trimodale, e così via. Per esempio, la moda dei valori 4, 4, 8, 9 e 10 è 4. Nel caso dell esercizio 1 la frequenza maggiore è 6, e corrisponde al numero di alunni alti 165 cm. Quindi la moda è 165 cm Media La media aritmetica (o semplicemente media) è la somma di tutti i valori, ciascuno sommato tante volte quante figura nei dati, divisa per il numero dei dati. Per esempio, la media dei valori 4, 4, 8, 9 e 10 è: media = = 35 5 = Numero di alunni % 20% 30% 5% 5% 10% Altezza in cm (a) Istogramma % (b) Diagramma a torta (altezza in cm) Figura 1: Rappresentazioni grafiche del fenomeno altezza degli alunni di quinta

13 1.4 indici statistici Numero di alunni Peso in kg (a) Istogramma % % 10% 25% 5% 5% 10% % (b) Diagramma a torta (peso in kg) Figura 2: Rappresentazioni del fenomeno peso dei ragazzi iscritti a una scuola di calcio In presenza di una tabella delle frequenze assolute (come la 3 dell esercizio 1), la media si calcola più agevolmente sommando il prodotto di ciascun valore per la propria frequenza assoluta e dividendo il risultato per il numero dei dati. media = cm = 169 cm Mediana Si dice mediana di un insieme di valori statistici numerici disposti in ordine crescente, ciascuno preso tante volte quante figura nei dati, il valore che occupa il posto centrale se i dati sono in numero dispari, oppure la media aritmetica dei due valori centrali se i dati sono in numero pari. Per esempio, la mediana dei cinque valori 4, 4, 8, 9 e 10 è 8 (il termine centrale è il terzo, che ha due valori a sinistra e due valori a destra). Per calcolare in maniera semplice qual è o quali sono i termini centrali, basta dividere per 2 il numero totale dei dati. Nell esercizio 1 abbiamo una serie di venti valori. Poiché venti è un numero pari, la mediana è la media aritmetica dei due valori centrali. Poiché 20 diviso 2 fa 10, i termini centrali sono il decimo (che ha nove valori che lo precedono) e l undicesimo (che ha nove valori che lo seguono). Questi valori sono uguali rispettivamente a 166 cm e 168 cm (tabella 8). Quindi la mediana è ( )/2 cm= 167 cm.

14 10 statistica 6 5 Numero di alunni Voto 7 25% 12.5% 6.25% % 6.25% 12.5% 18.75% (a) (b) Figura 3: Rappresentazioni del fenomeno voto di matematica degli alunni di prima Esercizio 3. Supponiamo di aver svolto un indagine statistica sul voto finale di matematica degli alunni iscritti al primo anno dell istituto Versari- Macrelli e di aver raccolto informazioni relative a 16 alunni (tabella 9). Calcola le frequenze relative e percentuali, rappresenta i dati graficamente e calcola gli indici di posizione. In questo caso la popolazione statistica è rappresentata dalle prime dell istituto Versari-Macrelli ; le unità statistiche sono gli alunni iscritti al primo anno; la variabile statistica che si vuole studiare è il voto finale di matematica, che è un numero intero (compreso tra 1 e 10) e quindi è una variabile quantitativa. Eseguiamo lo spoglio delle informazioni realizzando la tabella delle frequenza assolute (dove nella prima colonna scriveremo tutti voti registrati e nella seconda colonna il numero degli alunni che hanno riportato quel voto), delle frequenze relative (rapporto tra la frequenza assoluta di un voto e il totale dei voti registrati) e percentuali (tabella 10). La figura 3 mostra l istogramma dei valori e il diagramma a torta. Determiniamo gli indici di posizione. La frequenza maggiore è 4, e corrisponde al numero di alunni che hanno Tabella 8: I valori centrali sono 166 e

15 1.4 indici statistici 11 Tabella 9: Voti finali di matematica di alcuni alunni di prima del Versari-Macrelli Nome Voto Nome Voto Marco 6 Angela 7 Anna 8 Pietro 4 Luigi 5 Giorgia 10 Lucia 9 Michela 6 Francesco 10 Sergio 5 Elena 6 Roberta 5 Carlo 9 Aldo 9 Giulia 6 Giovanna 7 riportato un voto finale pari a 6: quindi la moda è 6. La media è: media = = 7 Per calcolare la mediana conviene riscrivere i valori in ordine crescente (tabella 11). Tabella 11: Voti in ordine crescente Poiché i valori sono sedici, che è un numero pari, la mediana è la media aritmetica dei due valori centrali, che sono l ottavo (che ha sette valori che Tabella 10: Frequenze assolute, relative e percentuali Voto Frequenza Frequenza Frequenza assoluta relativa percentuale 4 1 0,0625 6, , , , , , , ,0625 6, , , , ,50 Totale

16 12 statistica lo precedono) e il nono (che ha sette valori che lo seguono); questi valori sono uguali rispettivamente a 6 e a 7. Quindi la mediana è (6 + 7)/2 = 6, esercizi Chi non risolve esercizi non impara la matematica. 1 Da un indagine sulla distribuzione delle altezze in un gruppo di studenti sono stati rilevati i seguenti valori grezzi (espressi in cm): Raggruppa i valori in classi di ampiezza 5 cm e costruisci la distribuzione di frequenza. Calcola poi frequenza relativa e percentuale. 2 Data la seguente distribuzione dei risultati dei test d ingresso di matematica in una scuola media, sapendo che l indagine è stata svolta su 200 alunni, determina frequenze assolute e relative. Voto Frequenza percentuale 5% 10% 25% 40% 15% 3% 2% Frequenza assoluta Frequenza relativa 3 Rappresenta attraverso un diagramma a torta la seguente tabella statistica, che indica le ore di studio giornaliere di uno studente. Giorno lunedì martedì mercoledì giovedì venerdì sabato domenica Ore di studio Rappresenta con un istogramma i dati riportati nella seguente tabella relativi alla vendita di automobili da un concessionario nell anno Marca automobile Auto vendute Renault 50 Fiat 270 Ford 120 Toota 40 Alfa Romeo 30

17 1.5 esercizi 13 5 Uno studente universitario di Fisica ha superato 28 esami con queste valutazioni: Organizza i valori in una tabella e rappresentali tramite un istogramma. 6 Un insegnante di Fisica, per mostrare che le misure di uno stesso oggetto sono soggette ad errori che dipendono dall osservatore, ha fatto misurare la lunghezza di una cattedra con un metro a ciascun alunno della propria classe. I risultati sono stati i seguenti: Lunghezza (cm) 100,8 100,9 101,0 101,1 101,2 Frequenza Qual è la lunghezza media della cattedra? [101,0] 7 Sono dati i seguenti punteggi a un test sostenuto da un gruppo di otto studenti: 20, 24, 20, 15, 8, 5, 11, 17. Calcola la moda, la media e la mediana. [20, 15, 16] 8 In un gruppo di studenti universitari la valutazione dell esame di biologia risulta così distribuita: 29, 24, 28, 18, 23, 19, 20, 24, 30, 20, 21, 30, 22, 30, 23, 24, 27, 29, 29, 30. a. Organizza i dati in una tabella e calcola la frequenza assoluta, relativa e percentuale b. Rappresenta i dati in un grafico a piacere c. Calcola moda, media e mediana [30, 25, 24] 9 È stata effettuata un indagine statistica riguardo al numero di libri letti nella scorsa estate. I dati sono raccolti nella seguente tabella: Numero di libri letti Numero di persone a. Organizza i dati in una tabella e calcola la frequenza assoluta, relativa e percentuale b. Rappresenta i dati in un grafico scelto a piacere c. Calcola moda, media e mediana [0, 2, 1] 10 Indica la risposta corretta. a. Se compi un indagine sul peso degli allievi della tua scuola, la popolazione è costituita? A dagli allievi della scuola C dal peso di ciascun allievo dai pesi degli allievi della tua scuo- B la D da ciascun allievo della scuola

18 14 statistica b. La frequenza percentuale si ottiene: A dividendo la frequenza assoluta per la somma delle frequenze assolute B moltiplicando la frequenza assoluta per 100 C moltiplicando la frequenza relativa per 100 D dividendo la frequenza relativa per 100 c. La mediana: A B C D è la somma dei valori delle singole osservazioni diviso per il loro numero è il valore centrale di un insieme di valori ordinati (se i dati sono dispari) è il valore che si presenta con la massima frequenza in un insieme di valori indica la percentuale di valori al di sopra o al di sotto della media d. Sia data la seguente distribuzione di valori: 2, 4, 4, 4, 4, 6, 6, 6, 7, 7. Allora, la moda, la media e la mediana valgono rispettivamente: A la moda è 4, la media è 5, la mediana è 6 B la moda è 6, la media è 4, la mediana è 5 C la moda è 6, la media è 5, la mediana è 4 D la moda è 4, la media è 5, la mediana è 5 e. Nella tua classe la moda dell altezza è 165 cm. Questo significa che: A B C D non ci sono alunni più bassi di 165 cm 165 cm è l altezza più comune 165 cm occupa il posto centrale delle altezze degli alunni in ordine crescente in media gli alunni sono alti 165 cm f. Nella tua classe la media dell altezza è 165 cm. Questo significa che: A B C D non ci sono alunni più bassi di 165 cm 165 cm è l altezza più comune 165 cm occupa il posto centrale delle altezze degli alunni in ordine crescente la somma delle altezze degli alunni diviso per il numero degli alunni è 165 cm g. Nella tua classe la mediana dell altezza è 165 cm. Questo significa che:

19 1.5 esercizi 15 A B C non ci sono alunni più bassi di 165 cm 165 cm è l altezza più comune 165 cm occupa il posto centrale delle altezze degli alunni in ordine crescente D in media gli alunni sono alti 165 cm [Una risposta A, due B, due C e due D] 11 Sono state misurate le pulsazioni al minuto di 20 persone ottenendo i seguenti dati: a. Organizza i dati in una tabella e calcola la frequenza assoluta, relativa e percentuale b. Rappresenta graficamente i dati c. Calcola moda, media e mediana [72, 71, 70] 12 Stabilisci se le seguenti proposizioni sono corrette: se lo sono giustificale, altrimenti mostra che sono false attraverso un controesempio. a. Se due sequenze di numeri hanno la stessa media, allora hanno anche la stessa mediana. V F b. Se due sequenze di numeri hanno la stessa mediana, allora hanno anche la stessa media. V F c. Esistono sequenze di numeri per cui la moda, la media e la mediana coincidono. V F d. La moda di una sequenza di numeri interi è sempre un numero intero. V F e. La mediana di una sequenza di numeri interi è sempre un numero intero. V F [2 affermazioni vere e 3 false] 13 Venti ragazzi sono stati sottoposti a una verifica; i dati seguenti indicano il numero di errori commessi da ciascuno di loro: 3, 0, 0, 5, 1, 6, 8, 3, 9, 1, 2, 2, 2, 2, 2, 4, 5, 7, 9, 9. a. Organizza i dati in una tabella comprensiva di percentuale di frequenze b. Rappresenta graficamente i dati c. Calcola moda, media e mediana [2, 4, 3] d. Quanti alunni, in percentuale, hanno fatto meno di 5 errori? [60%] 14 I dati riportati in tabella si riferiscono al numero di giorni di assenza degli alunni di una classe.

20 16 statistica Alunno n. giorni Alunno n. giorni Alunno n. giorni Alunno n. giorni Mauro 3 Romeo 8 Bruna 7 Silvia 0 Antonio 6 Anna 3 Pietro 9 Alessio 2 Paola 2 Luca 6 Nicola 1 Patrizia 6 Luisa 1 Amedeo 3 Aldo 5 Franca 9 Carla 0 Marco 1 Luigi 2 Chiara 6 a. Organizza i dati in una tabella comprensiva delle frequenze percentuali b. Rappresenta i dati con un istogramma c. Calcola moda, media e mediana [6, 4, 3] d. Quanti alunni, in percentuale, hanno fatto meno assenze rispetto alla media? [55%] 15 Quattro amici sostengono l Esame di Stato conseguendo punteggi la cui media aritmetica è 77,5/100. Se tre di essi hanno conseguito un punteggio, in centesimi, rispettivamente di 70, 76 e 80, quale punteggio ha conseguito il quarto studente? [90] 16 La media aritmetica di 11 numeri è Se ciascuno degli undici numeri viene diminuito di 10, quanto diventa la loro media aritmetica? [4840] 17 I 25 alunni della terza C, dopo aver raccolto i voti conseguiti nella verifica scritta di matematica, hanno costruito il seguente grafico: % 28% 4 12% 4% 4% 8% 12% Quanti ragazzi hanno conseguito come voto 7? [3] 18 Indica la risposta corretta. a. Lo sfruttamento medio della capacità ricettiva di un albergo è uguale all 88% durante i tre mesi estivi e al 44% durante i rimanenti mesi dell anno. Qual è lo sfruttamento medio relativo all intero anno? A 46% B 50% C 55% D 66% b. Antonio, Carlo, Giovanni, Filippo e Matteo fanno una gara di tiro a segno. Antonio e Filippo totalizzano ciascuno 16 punti, Carlo totalizza 18 punti, Giovanni ne totalizza 14 e Matteo 10. Qual è il punteggio medio realizzato dai cinque amici?

21 1.5 esercizi 17 A 11,6 B 14,8 C 15 D 15,2% c. La media degli studenti promossi da una scuola, nei quattro anni , è stata di 325 studenti l anno, mentre nei cinque anni la media è stata superiore del 20% rispetto al precedente intervallo temporale. Quanti studenti sono stati promossi dalla scuola nel 2014? A 390 B 455 C 600 D 650 d. Stabilisci quale delle seguenti affermazioni è vera. A B C D La mediana di un insieme di dati può essere uguale alla media. La media di un insieme di dati non può mai essere uguale a zero. La moda di un insieme di dati non può mai essere uguale alla mediana. La media di un insieme di dati non può mai essere uguale alla moda. e. Mario, Luigi e Giacomo pesano complessivamente 210 kg. Sapendo che Mario e Luigi pesano rispettivamente 3 kg in meno e 4 kg in più della media aritmetica fra i pesi di tutti e tre, quanto pesa Giacomo? A 68 kg B 69 kg C 70 kg D 71 kg f. Le temperature massime giornaliere registrate a Cesena in una settimana sono le seguenti: Giorno lunedì martedì mercoledì giovedì venerdì sabato domenica Temperatura 29 C 30 C 32 C 31 C 28 C 30 C 30 C Quale delle seguenti affermazioni è falsa? A La temperatura media è quella registrata martedì. B C D La temperatura modale è quella registrata mercoledì. La temperatura mediana è quella registrata sabato. La temperatura mediana è uguale alla temperatura modale. g. Un impiegato ha percepito per i primi 3 mesi dell anno uno stipendio mensile di 1000 e. Nei 9 mesi successivi lo stipendio mensile è aumentato di 400 e. Qual è lo stipendio medio nell anno di quell impiegato? A 1250 e B 1300 e C 1350 e D 1400 e h. La media dei voti ottenuti in un compito in classe è stata 6 e la mediana 5,5. Il professore decide di alzare tutti i voti di mezzo punto. Allora:

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 120 statistica 6.5 esercizi hi non risolve esercizi non impara la matematica. 1 a un indagine sulla distribuzione delle altezze in un gruppo di studenti sono stati rilevati i seguenti valori grezzi (espressi

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 96 matematica per l economia Esercizio 65. Consideriamo ancora il problema 63 dell azienda vinicola, aggiungendo la condizione che l azienda non può produrre più di 200 bottiglie al mese. Soluzione. La

Dettagli

matematica per le terze

matematica per le terze istituto professionale versari-macrelli, cesena lorenzo pantieri matematica per le terze Dipartimento di Matematica Anno scolastico 2015-2016 Questo lavoro spiega il programma di matematica agli alun-

Dettagli

matematica per le quinte

matematica per le quinte istituto professionale versari-macrelli, cesena lorenzo pantieri matematica per le quinte Dipartimento di Matematica Anno scolastico 2015-2016 Questo lavoro spiega il programma di matematica agli alun-

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI Indice 1 La ricerca operativa 2 1.1 Introduzione......................................... 2 1.2 Le fasi della ricerca operativa...............................

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011)

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) D1. Nella tabella che vedi sono riportati i dati relativi alla distribuzione di alunni e insegnanti nella scuola secondaria di primo grado

Dettagli

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 Rapporto tecnico sulle caratteristiche delle prove INVALSI 2011 Scuola secondaria di secondo grado classe II MATEMATICA Domanda D1 item a D1. Nella tabella che

Dettagli

LA STATISTICA NEI TEST INVALSI

LA STATISTICA NEI TEST INVALSI LA STATISTICA NEI TEST INVALSI 1 Prova Nazionale 2011 Osserva il grafico seguente che rappresenta la distribuzione percentuale di famiglie per numero di componenti, in base al censimento 2001. Qual è la

Dettagli

INVALSI. Ministero dell Istruzione dell Università e della Ricerca

INVALSI. Ministero dell Istruzione dell Università e della Ricerca X MATEMATICA_COP_Layout 1 15/03/11 08:51 Pagina 2 Ministero dell Istruzione dell Università e della Ricerca INVALSI Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti

Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti SCHEDE DI LAVORO La seguente rassegna di esempi deve essere analizzata nella duplice chiave di lettura: - aspetti

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda

PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Seconda Spazio per

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI

RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI DI SCELTA) Il termine RICERCA OPERATIVA sembra sia stato usato per la prima volta nel 1939, ma già precedentemente alcuni scienziati si erano occupati di problemi

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 22/03/2016 Verifica di Matematica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Sei stato assunto come economo da una

Dettagli

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare.

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. Appunti di Statistica DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. PROCESSO STATISTICO L indagine statistica comprende

Dettagli

LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA

LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA La ricerca operativa può essere considerata: L applicazione del metodo scientifico da parte di gruppi interdisciplinari a problemi che implicano il controllo

Dettagli

Simulazione della Prova Nazionale. Matematica

Simulazione della Prova Nazionale. Matematica VERSO LA PROVA nazionale scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 8 marzo 011 Scuola..................................................................................................................................................

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati

PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati prof. Guida PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati sono quei problemi nei quali gli effetti della scelta sono noti e immediati ESERCIZIO

Dettagli

PROGRAMMA CLASSE V I. T. C.

PROGRAMMA CLASSE V I. T. C. PROGRAMMA CLASSE V I. T. C. A.S 2009/10 Disciplina: Matematica Generale ed Applicata Titolo modulo Contenuti (suddivisi in unità didattiche) 1 Geometria analitica U.D.1 Equazione retta in forma esplicita

Dettagli

RAPPRESENTAZIONI GRAFICHE

RAPPRESENTAZIONI GRAFICHE RAPPRESENTAZIONI GRAFICHE Prendiamo in considerazione altre rappresentazioni di dati che sono strumenti utili anche in altre discipline di studio o altri settori della vita quotidiana. Questi strumenti

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

INDICI DI TENDENZA CENTRALE

INDICI DI TENDENZA CENTRALE INDICI DI TENDENZA CENTRALE NA Al fine di semplificare la lettura e l interpretazione di un fenomeno oggetto di un indagine statistica, i dati possono essere: organizzati in una insieme di dati statistici

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

Progetto m@t.abel DIARIO DI BORDO E ANALISI DIDATTICA. Silvia Porretti e Nicoletta Oreggia. I.T.C.G. Ruffini Imperia 11/03/08 06/05/2008

Progetto m@t.abel DIARIO DI BORDO E ANALISI DIDATTICA. Silvia Porretti e Nicoletta Oreggia. I.T.C.G. Ruffini Imperia 11/03/08 06/05/2008 Progetto m@t.abel DIARIO DI BORDO E ANALISI DIDATTICA Titolo attività Pivot è bello Docenti Silvia Porretti e Nicoletta Oreggia classe scuola II A IGEA I.T.C.G. Ruffini Imperia Data inizio esperienza Data

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:...

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2004

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

ATTIVITÀ : CALCOLI NUMERICI

ATTIVITÀ : CALCOLI NUMERICI Quadrati magici (attività da svolgere senza CT) ATTIVITÀ : CALCOLI NUMERICI Un quadrato magico 3 3 è un quadrato di 9 caselle, contenente (una volta sola) tutti i numeri da 1 a 9 in modo che la somma dei

Dettagli

LA RICERCA OPERATIVA

LA RICERCA OPERATIVA LA RICERCA OPERATIVA Il termine Ricerca Operativa, dall inglese Operations Research, letteralmente ricerca delle operazioni, fu coniato per esprimere il significato di determinazione delle attività da

Dettagli

Le funzioni. Che cos'è una funzione? La funzione y la variabile x. Alcune semplici funzioni e la loro rappresentazione geometrica.

Le funzioni. Che cos'è una funzione? La funzione y la variabile x. Alcune semplici funzioni e la loro rappresentazione geometrica. Le funzioni Che cos'è una funzione? La lunghezza d'una sbarra di ferro dalla sua temperatura; il quadrato d'un numero dipende da questo numero, la spesa di carburante dipende dai km effettuati. Ecc. Qualsiasi

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

Capitolo 33: Beni Pubblici

Capitolo 33: Beni Pubblici Capitolo 33: Beni Pubblici 33.1: Introduzione In questo capitolo discutiamo le problematiche connesse alla fornitura privata dei beni pubblici, concludendo per l opportunità dell intervento pubblico in

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1 LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza

Dettagli

Funzioni a 2 variabili

Funzioni a 2 variabili Funzioni a 2 variabili z = f(x, y) Relazione che associa ad ogni coppia di valori x,y (variabili indipendenti) uno ed un solo valore di z (variabile dipendente). Esempi: z = x 2y + 4 z = x 2 y 2 2x z =

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Ogni primino sa che...

Ogni primino sa che... Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1 SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Determinazione costo. Artigiano impiantista

Determinazione costo. Artigiano impiantista Determinazione costo Di un artigiano Di una azienda metalmeccanica con tre centri di costo produttivi e due indiretti Break Even Point: punto di pareggio Artigiano impiantista + N giorni all anno - N giorni

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Esercizi: Equivalenze Percentuali Grafici

Esercizi: Equivalenze Percentuali Grafici Esercizi: Equivalenze Percentuali Grafici Lunghezze 1. Nella tabella sono indicati alcuni oggetti e a fianco alcuni valori. Quale valore si avvicina di più alla misura della lunghezza dell oggetto indicato?

Dettagli

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p. Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l

Dettagli

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI ------------------------------------------- Piazza IV Novembre 33038 SAN DANIELE DEL FRIULI (prov. di Udine) Telefono n. 0432 955214 Fax n. 0432

Dettagli

TITOLO: Perché non basta saper contare? Il linguaggio matematico nella realtà

TITOLO: Perché non basta saper contare? Il linguaggio matematico nella realtà TITOLO: Perché non basta saper contare? Il linguaggio matematico nella realtà Liceo Classico- Linguistico ARISTOFANE Classe V Ginnasio Sez. F ( PNI) Classe V Ginnasio Sez. G Prof.ssa Oliva Bruziches olivabruz@tiscali.it

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 0-05 Classe: B clac, E, F, G, I, L, M Docente: Ferrero, Degrandi, Marchetti, Sartorio, Ganassin Disciplina MATEMATICA Ripasso

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA scuola PRIMARIA CONTENUTI OBIETTIVI COMPETENZE ATTIVITA NUMERI

CURRICOLO DI MATEMATICA CLASSE PRIMA scuola PRIMARIA CONTENUTI OBIETTIVI COMPETENZE ATTIVITA NUMERI CURRICOLO DI MATEMATICA CLASSE PRIMA scuola PRIMARIA CONTENUTI OBIETTIVI COMPETENZE ATTIVITA NUMERI Numeri naturali Ordinalità Cardinalità Ricorsività Confronto Misura Valore posizionale Operazioni Contare

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI MAT 3

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI MAT 3 Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI MAT 3 PESO SPECIFICO MISURA DEL TEMPO PERCENTUALE NUMERI PERIODICI STATISTICA CALCOLO DELLE PROBABILITÀ ASSE CARTESIANO

Dettagli

Vincolo di bilancio del consumatore, paniere ottimo

Vincolo di bilancio del consumatore, paniere ottimo Microeconomia, Esercitazione 2 (26/02/204) Vincolo di bilancio del consumatore, paniere ottimo Dott. Giuseppe Francesco Gori Domande a risposta multipla ) Antonio compra solo due beni, sigarette e banane.

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è

Dettagli

GIOCHI D AUTUNNO 2003 SOLUZIONI

GIOCHI D AUTUNNO 2003 SOLUZIONI GIOCHI D AUTUNNO 2003 SOLUZIONI 1) MARATONA DI MATHTOWN Pietro arriva alle 16.56, Renato alle 17.01, Desiderio alle 16.54 e Angelo alle 17.04. L ultimo ad arrivare è Angelo che arriva alle 17.04 2) PARI

Dettagli

CLASSI QUARTE A e D S. Aleramo SPICCHIO

CLASSI QUARTE A e D S. Aleramo SPICCHIO CLASSI QUARTE A e D S. Aleramo SPICCHIO CLASSE QUARTA B G.Galilei VINCI INSEGNANTI: Melani Cinzia, Parri Donatella, Voli Monica, Anno Scolastico 2011-2012 COMPETENZE INTERESSATE: Raccogliere, organizzare

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

CELLULARE, CHE PASSIONE!

CELLULARE, CHE PASSIONE! CELLULARE, CHE PASSIONE! COSTRUIRE MODELLI PER IL PRIMO GRADO ( E NON SOLO...) Un esempio che mostra come un modello matematico possa essere utile nella vita quotidiana Liberamente tratto dall attività

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

COMPETENZE SPECIFICHE

COMPETENZE SPECIFICHE COMPETENZE IN MATEMATICA DISCIPLINA DI RIFERIMENTO: MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE FISSATI DALLE INDICAZIONI NAZIONALI PER IL CURRICOLO 2012. MATEMATICA TRAGUARDI ALLA FINE DELLA

Dettagli

5A un multiplo di 3 5B una potenza di 5 5C divisibile per 7 e per 11 5D. D. 6 Le soluzioni dell equazione 1 + 3x 2x 2 = 0 sono 3 ± 17 6D 3 ± 17

5A un multiplo di 3 5B una potenza di 5 5C divisibile per 7 e per 11 5D. D. 6 Le soluzioni dell equazione 1 + 3x 2x 2 = 0 sono 3 ± 17 6D 3 ± 17 UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA 0 Settembre 008 Spnz0000 Ingegneria - Scienze Matematiche Fisiche Naturali - Scienze Statistiche Test di Matematica D. Il numero è uguale a A 5 B 5 C D 0 0 D.

Dettagli

TITOLO LE ANALISI DI SENSITIVITA (Alberto Falini)

TITOLO LE ANALISI DI SENSITIVITA (Alberto Falini) SESSIONE N 13 TITOLO LE ANALISI DI SENSITIVITA (Alberto Falini) DATA LEZIONE 23 OTTOBRE 2002 1 1) Break - Even analisys L identificazione delle modalità attraverso le quali è possibile agire sulla redditività

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

2. NUMERO DA INDOVINARE

2. NUMERO DA INDOVINARE 1. L ASINO DI TOBIA (Cat. 3) Tobia è andato in paese ed ha acquistato 6 sacchi di provviste. Li vuole trasportare con il suo asino fino alla sua casa sulla cima del monte. Ecco i sacchi di provviste sui

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012

IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012 IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012 COMPETENZE SPECIFICHE Numeri! Conoscere e utilizzare algoritmi e procedure in

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

Quanti cubetti ha utilizzato in tutto Sofia per costruire la sua doppia scala?

Quanti cubetti ha utilizzato in tutto Sofia per costruire la sua doppia scala? 10 RALLY MATEMATICO TRANSALPINO - PROVA I - gennaio-febbraio 2002 /ARMT/2002 p. 1 7. Doppia scala (Cat. 4, 5, 6) /ARMT/2002-10 - I prova Sofia ha costruito una doppia scala regolare di 1 metro di altezza

Dettagli

PROGRAMMAZIONE LINEARE:

PROGRAMMAZIONE LINEARE: PROGRAMMAZIONE LINEARE: Definizione:la programmazione lineare serve per determinare l'allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare il raggiungimento di un obiettivo

Dettagli

Esercitazione del 5/10/09

Esercitazione del 5/10/09 Esercitazione del 5/10/09 A cura di Giuseppe Gori (giuseppe.gori@unibo.it) Corso di Microeconomia, Docente Luigi Marattin 1 Esercizi. 1.1 Le curve di domanda e di offerta in un dato mercato sono date da:

Dettagli

2 y. 12) Studia e rappresenta le linee di livello ottenute intersecando con i piani di equazione z=0, z=2, z=4 la

2 y. 12) Studia e rappresenta le linee di livello ottenute intersecando con i piani di equazione z=0, z=2, z=4 la A - ANALISI INFINITESIMALE 1) Come si rappresentano i punti (-;0:3) (1,-,-1) (3,1,0) nello spazio cartesiano? Quali sono le equazioni, implicita ed esplicita, del piano da essi determinato? Quali sono

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli