REALTÀ E MODELLI SCHEDA DI LAVORO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "REALTÀ E MODELLI SCHEDA DI LAVORO"

Transcript

1 REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato dalla paete della casa, quali dimensioni deve avee il giadino pe minimizzae la lunghezza e, di conseguenza, il costo della siepe? Schematizziamo la situazione in figua Figua 1 Indichiamo con L la lunghezza della siepe da allestie Tenendo conto che un lato è già occupato (dalla paete della casa) si avà: L = + con la condizione che la supeficie sia uguale a : = " = " L = + Pe minimizzae la funzione calcoliamo la sua deivata pima ispetto alla vaiabile : dl = - d Studiamo il segno della deivata pima: - $ 0 " - $ 0 " $ 5 " #- $ 5 Ignoiamo la soluzione = - 5 poiché appesenta la dimensione di un ettangolo e quindi è positiva La soluzione = 5 appesenta un minimo della funzione in quanto pe è fl ( ) 1 0, pe 5 è fl ( ) 0 Il giadino con la siepe di lunghezza minima avà dimensioni = 5 m e = = 10 m I pacchetti egalo Un azienda poduttice di confezioni egalo deve podue scatole a foma cilindica in modo tale che, a paità di volume, sia minima la supeficie totale della scatola e quindi la quantità di cata egalo da utilizzae pe il suo confezionamento Quali caatteistiche devono avee le dimensioni del cilindo? Nel caso in cui la cata da egalo costasse 0,90 euo/m, e il aggio del cilindo fosse di 6 cm, quanto costeebbe alla ditta confezionae 1000 scatole di supeficie minima? (Considea che, a causa dei lembi di cata da sovappoe, seve cica il 0% di cata in più ispetto all effettiva supeficie da copie) Indichiamo con il aggio di base e con h l altezza della scatola cilindica Il suo volume saà: V V = h " h =, Copight 01 Zanichelli editoe SpA, Bologna 1

2 e la supeficie totale: A = + h Risciviamo la supeficie totale in funzione solo del aggio: V V A = + h = + = + Deiviamo ispetto alla vaiabile la funzione ottenuta e studiamone il segno: da V = - d, V V V - $ 0 " V $ 0 " $ V " $ " $ - V Quindi la supeficie A() è decescente pe e cescente pe V $ V Il punto = appesenta un punto di minimo pe la funzione A() Il valoe di h coispondente è: V V V V V h = = b l = " h = 8 $ = = V La foma miglioe pe la scatola cilindica è quella con altezza uguale al diameto di base Se il cilindo è quello di supeficie minima, cioè ha h =, alloa saà = 6 cm e h = 1 cm La supeficie da copie di una scatola è: A = + h - 6, 19 cm + 5, 9 cm = 678, 58 cm = 0, m La supeficie da confezionae pe 1000 scatole, consideando lo scato di cata necessaio, di cica il 0%, saà: A tot = 1000 A + 00 A = 100 $ 0, m Poiché la cata egalo costa 0,90 euo/m, la spesa saà: Spesa - 0,90 euo/m $ 8 m - 75 euo Il flacone di pofumo Un azienda poduce una bottiglietta pe pofumo con la foma di una sfea somontata da un cilindo La bottiglietta deve contenee 70 ml di pofumo e il foo di passaggio ta la sfea e il cilindo deve avee il aggio di 0,7 cm Tova il aggio della sfea che ende minimo il peso della bottiglietta (lo spessoe del cistallo è di cica 1 mm e il suo peso specifico è di,9 kg/dm ; appossima la calotta sfeica che viene tolta a causa dell innesto del cilindo con la base del cilindo stesso; tascua il taglio della sfea nella pate infeioe della boccetta, necessaio pe ceae la supeficie di appoggio) Detemina l altezza totale e il peso della bottiglietta Pe ottenee il peso minimo basta minimizzae la supeficie totale della bottiglietta Indicato con il aggio della sfea (in cm) si detemina l altezza h del cilindo, utilizzando il volume (l unità di misua usata è il cm ): , h h = + $ " = 5, 5, $ 07, Copight 01 Zanichelli editoe SpA, Bologna

3 Da qui icaviamo anche la limitazione supeioe pe, dato che deve essee: h 0 " 5,5-,7 0 " # 5, La supeficie totale S della bottiglietta è data dalla supeficie lateale del cilindo e dalla supeficie della sfea, da cui bisogna togliee una piccola calotta che consideiamo uguale alla base del cilindo: S = $ 0,7 $ (5,5-,7 ) + - $ 0,7 La funzione da minimizzae isulta: S ( ) =- 11, 9 + 1, , 6 con 0 1 #, 5 Deivando si ottiene: Sl ( ) =- 5,7 + 5,, Sl ( ) 0 " ( - 5,7+ 5,) $ 0 " 0 # # 07, La funzione S è quindi cescente in , e decescente in 0, , Pe - 0,7 si ha un massimo elativo Dato che S(0) = 198,6 e S(,5) = 91, la supeficie minima della bottiglietta si ottiene con il aggio della sfea uguale a cica,5 cm L altezza del cilindo è: h = 5, 5 -, 7 $ (, 5) -, cm L altezza complessiva della bottiglietta, se tascuiamo la iduzione del diameto della sfea dovuta all innesto del cilindo, è: H = + h = $,5 +, = 8, cm Pe calcolae il peso della bottiglietta appossimiamo il volume del mateiale utilizzato mediante il podotto della supeficie totale pe lo spessoe del cistallo: Peso = Volume del cistallo $ Peso specifico = 91, $ 0,1 $,9 = 6,5 g L uovo di cioccolato All inteno di un «uovo» di cioccolato di foma sfeica si inseisce una scatola, di foma cilindica, che contiene la sopesa Tova il volume massimo che può avee la scatola supponendo che l uovo contenitoe abbia aggio R Calcola il appoto ta il diameto di base e l altezza del cilindo tovati al punto pecedente Desciviamo la situazione nella seguente figua A R B C Figua Copight 01 Zanichelli editoe SpA, Bologna

4 Indichiamo con il aggio di base del cilindo, con metà della sua altezza e con R il aggio della sfea Il volume del cilindo saà: V = Applicando il teoema di Pitagoa al tiangolo ABC otteniamo: + = R " = R - Il volume del cilindo in funzione di R ed è quindi: V = ( R - ) = ( R - ) Deiviamo ispetto alla vaiabile e studiamo il segno della deivata pima: dv d = ( R - ), R R R - 0 " R Consideato che R pe agioni geometiche, abbiamo che V() è cescente pe e decescente pe 1 1 R Il massimo del volume del cilindo si ha pe = ; il volume coispondente R R della scatola cilindica è: R R R R R R V ( R ) R = - = b - l - = $ = Il appoto ta il diameto di base e l altezza è: = = R $ = R 5 Il maatoneta Un atleta sta patecipando a una maatona; in un tatto il pecoso segue una taiettoia di equazione = (con $ 0), ispetto a un oppotuno sistema di assi Nello stesso sistema, il suo allenatoe si tova nel punto A(1; 5) e gli deve lanciae una spugna bagnata pe falo idatae In che punto del pecoso il maatoneta si toveà più vicino al suo allenatoe pe icevee la spugna? Disegniamo la taiettoia del pecoso e il punto in cui si tova l allenatoe 7 L equazione della taiettoia ha come gafico la pate di paabola, con vetice nell oigine e asse coincidente con l asse, che attavesa il pimo quadante 6 5 A d P 1 O Figua Copight 01 Zanichelli editoe SpA, Bologna

5 La distanza ta il punto A(1; 5) e il punto P(; ) geneico della cuva è: d = ( - 1) + ( - 5) Se P appatiene alla paabola avà coodinate Pc ; m e la distanza da A diventa: d = c - 1 m + ( -5) Invece di minimizzae d, minimizziamo d in quanto il minimo di d coincide con il minimo di d : d = c - 1m + ( -5) Deiviamo ispetto ad : f l () = c - 1m + ( - 5) = = -10 Studiamo il segno della deivata: $ 10 " $ 10 -,, fl () 1 0 pe 1 10, fl () 0 pe 10 Peciò il punto = 10 coisponde a un minimo elativo della funzione Il punto in cui il maatoneta si toveà più vicino al suo allenatoe avà coodinate: ( ) P c ; m 10 = c ; 10m - (, ;, 15) Copight 01 Zanichelli editoe SpA, Bologna 5

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo

Dettagli

CAPITOLO 10 La domanda aggregata I: il modello IS-LM

CAPITOLO 10 La domanda aggregata I: il modello IS-LM CAPITOLO 10 La domanda aggegata I: il modello IS-LM Domande di ipasso 1. La coce keynesiana ci dice che la politica fiscale ha un effetto moltiplicato sul eddito. Infatti, secondo la funzione di consumo,

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi

Dettagli

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi FI.CO. 2 ( Fisica Compensibile pe geologi) Pogamma di Fisica 2 - (v 5.0-2002)...sempe più fico! A.J. 2000 Adiano Nadi La fisica dovebbe essee una scienza esatta. Questo papio non può gaantie la totale

Dettagli

FISICA-TECNICA Trasmissione del calore II parte

FISICA-TECNICA Trasmissione del calore II parte FISICA-TECNICA Tasmissione del caloe II pate Katia Gallucci Geometie cilindiche Vediamo oa quando abbiamo paeti cilindiche: e i L Q ka Q e Q i kπl( Te Ti ) Q e i d dt d kπl kπldt e d Q kπl i kπl( T e Te

Dettagli

Potenziale elettrico per una carica puntiforme isolata

Potenziale elettrico per una carica puntiforme isolata Potenziale elettico pe una caica puntifome isolata Consideiamo una caica puntifome positiva. Il campo elettico geneato da uesta caica è: Diffeenza di potenziale elettico ta il punto ed il punto B: B ds

Dettagli

5. CAMBIO. 5.1. descrizione

5. CAMBIO. 5.1. descrizione ambio powe - shift 5. AMBIO 5.. descizione Tattasi di cambio meccanico a te velocità avanti e te velocità indieto, ealizzate mediante cinque iduttoi epicicloidali vaiamente collegati ta loo. Tutte le cinque

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE PTNZIL LTTRIC D NRGI PTNZIL Ba. Una caica elettica q mc si tova nell oigine di un asse mente una caica negativa q 4 mc si tova nel punto di ascissa m. Sia Q il punto dell asse dove il campo elettico si

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

Il teorema di Gauss e sue applicazioni

Il teorema di Gauss e sue applicazioni Il teoema di Gauss e sue applicazioi Cocetto di flusso Cosideiamo u campo uifome ed ua supeficie piaa pepedicolae alle liee di campo. Defiiamo flusso del campo attaveso la supeficie la uatità : = (misuata

Dettagli

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco www.eettone.atevista.og maco.chiizzi@ibeo.it PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo

Dettagli

Legge di Coulomb e campo elettrostatico

Legge di Coulomb e campo elettrostatico A. hiodoni esecizi di Fisica II Legge di oulomb e campo elettostatico Esecizio Te caiche positive uguali sono fisse nei vetici di un tiangolo euilateo di lato l. alcolae (a) la foza elettica agente su

Dettagli

Investimento. 1 Scelte individuali. Micoreconomia classica

Investimento. 1 Scelte individuali. Micoreconomia classica Investimento L investimento è l aumento della dotazione di capitale fisico dell impesa. Viene effettuato pe aumentae la capacità poduttiva. ECONOMIA MONETARIA E FINANZIARIA (5) L investimento In queste

Dettagli

Gravitazione Universale

Gravitazione Universale Gavitazione Univesale Liceo Ginnasio Statale S.M. Legnani Anno Scolastico 2007/08 Classe 3B IndiizzoClassico Pof.Robeto Squellati 1 Le leggi di Kepleo Ossevando la posizione di Mate ispetto alle alte stelle,

Dettagli

V. SEPARAZIONE DELLE VARIABILI

V. SEPARAZIONE DELLE VARIABILI V SEPARAZIONE DEE VARIABII 1 Tasfomazioni Otogonali Sia u = u 1, u 2, u 3 una tasfomazione delle vaiabili in R 3, dove x = x 1, x 2, x 3 sono le coodinate catesiane, u j = u j x 1, x 2, x 3 j = 1, 2, 3

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

CAPITOLO 3 Il reddito nazionale: da dove viene e dove va

CAPITOLO 3 Il reddito nazionale: da dove viene e dove va CAPITOLO Il eddito nazionale: da dove viene e dove va Domande di ipasso. I fattoi di poduzione e la tecnologia di poduzione deteminano il livello della poduzione aggegata di un sistema economico. I fattoi

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1 La caica elettica 8 H.C. Oested connessione ta eletticità e magnetismo M. Faday speimentale puo, non scive fomule 85 J.C. Maxwell fomalia le idee di Faaday I geci avevano ossevato che l amba (elekton)

Dettagli

Politecnico di Milano. Dipartimento di Fisica. G. Valentini. Meccanica

Politecnico di Milano. Dipartimento di Fisica. G. Valentini. Meccanica Politecnico di Milano Dipatimento di Fisica G. Valentini Meccanica I INDICE LA FISICA ED IL METODO SPERIMENTALE. INTRODUZIONE. IL METODO SPERIMENTALE GRANDEZZE FISICHE ED INDICI DI STATO 4. DEFINIZIONE

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

GEOMETRIA 3D MODELLO PINHOLE

GEOMETRIA 3D MODELLO PINHOLE http://imagelab.ing.unimo.it Dispense del coso di Elaboazione di Immagini e Audio Digitali GEOMETRIA 3D MODELLO PINHOLE Pof. Robeto Vezzani Calibazione della telecamea: a cosa seve? Obiettivo: pote calcolae

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

Antenne: generalità Nel caso di condizioni di campo lontano si possono individuare grandezze caratteristiche della radiazione.

Antenne: generalità Nel caso di condizioni di campo lontano si possono individuare grandezze caratteristiche della radiazione. ntenne: genealità Dispositivo utilizzato pe iadiae o icevee in maniea efficace le onde e.m. ntenne tasmittenti e iceventi sono fomalmente simili (ecipocità). Esistono antenne adatte ed ottimizzate pe ceti

Dettagli

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

Disequazioni. 21.1 Intervalli sulla retta reale

Disequazioni. 21.1 Intervalli sulla retta reale Disequazioni 1 11 Intevalli sulla etta eale Definizione 11 Dati due numei eali a e b, con a < b, si chiamano intevalli, i seguenti sottoinsiemi di R: a, b) = {x R/a < x < b} intevallo limitato apeto, a

Dettagli

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica IL CALCOLO FINANZIARIARIO You do not eally undestand something unless you can explain it to you gandmothe (A.Einstein) Calcolo finanziaio Intoduzione Economia dell impesa foestale: Bilancio Pianificazione

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

5.1 Determinazione delle distanze dei corpi del Sistema Solare

5.1 Determinazione delle distanze dei corpi del Sistema Solare 5.1 Deteminazione delle distanze dei copi del istema olae 5.1.1 Distanza ea-pianeti aallassi equatoiali Questo è il metodo più peciso ma anche quello più delicato da eseguie. Esso si basa sul fatto che

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

4 IL CAMPO MAGNETICO STATICO

4 IL CAMPO MAGNETICO STATICO 4 IL CAMPO MAGNETICO STATICO Analogamente al caso dei fenomeni elettici anche i fenomeni magnetici eano noti sin dagli antichi geci i quali denominaono il mineale poveniente dalla egione di in Macedonia

Dettagli

Il criterio media varianza. Ordinamenti totali e parziali

Il criterio media varianza. Ordinamenti totali e parziali Il citeio media vaianza Il citeio media vaianza è un alto esemio di odinamento aziale ta lotteie definito da a M b se la lotteia b domina la lotteia a se ha media sueioe e vaianza infeioe a b eσ a σ b

Dettagli

FAST FOURIER TRASFORM-FFT

FAST FOURIER TRASFORM-FFT A p p e n d i c e B FAST FOURIER TRASFORM-FFT La tasfomata disceta di Fouie svolge un uolo molto impotante nello studio, nell analisi e nell implementazione di algoitmi dei segnali in tempo disceto. Come

Dettagli

32. Significato geometrico della derivata. 32. Significato geometrico della derivata.

32. Significato geometrico della derivata. 32. Significato geometrico della derivata. 32. Significato geometico della deivata. Deivata Definizione deivata di una funzione in un punto (30) Definizione deivata di una funzione (30) Significato della deivata Deivata in un punto (32) Deivata

Dettagli

6 INDUZIONE ELETTROMAGNETICA

6 INDUZIONE ELETTROMAGNETICA 6 INDUZIONE ELETTOMAGNETIA Patendo dall ipotesi di simmetia dei fenomeni natuali pe cui se una coente esecita un influenza su di una calamita così una calamita deve pote modificae lo stato di una coente

Dettagli

IL CONTROLLO STATISTICO DEI PROCESSI

IL CONTROLLO STATISTICO DEI PROCESSI IL CONTOLLO STATISTICO DEI POCESSI Il controllo statistico dei processi 1 CONTOLLO STATISTICO DEL POCESSO VAIABILITA DEI POCESSI FATTOI INTENI MATEIALI MACCHINE STUMENTI DI TEST POCESSO OPEATOE TEMPO CONTOLLI

Dettagli

La spesa per assistenza

La spesa per assistenza Obiettivo della lezione La spesa pe assistenza Studiae le motivazioni teoiche che cecano di spiegae gli inteventi di edistibuzione vei e popi (ad es. contasto della povetà) mediante stumenti monetai nell

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

Valore finanziario del tempo

Valore finanziario del tempo Finanza Aziendale Analisi e valutazioni pe le decisioni aziendali Valoe finanziaio del tempo Capitolo 3 Indice degli agomenti. Concetto di valoe finanziaio del tempo 2. Attualizzazione di flussi futui

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

Capitolo I La radiazione solare

Capitolo I La radiazione solare W. Gassi Temoenegetica e Rispamio Enegetico in Edilizia Cap. La adiazione solae - Capitolo La adiazione solae - Genealità Lo spetto di emissione solae (exta atmosfeico) è itenuto equivalente a quello di

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

ANALISI SPERIMENTALE E TEORICA DEL CARICAMENTO IN IDROGENO E DEUTERIO DI FILM DI PALLADIO

ANALISI SPERIMENTALE E TEORICA DEL CARICAMENTO IN IDROGENO E DEUTERIO DI FILM DI PALLADIO Univesità degli Studi di Milano Facoltà di Scienze Matematiche, Fisiche e Natuali Coso di lauea in Fisica ANALISI SPERIMENTALE E TEORICA DEL CARICAMENTO IN IDROGENO E DEUTERIO DI FILM DI PALLADIO (Codici

Dettagli

Università degli Studi della Tuscia di Viterbo Dipartimento di ecologia e sviluppo economico sostenibile Facoltà di Agraria

Università degli Studi della Tuscia di Viterbo Dipartimento di ecologia e sviluppo economico sostenibile Facoltà di Agraria Univesità degli Studi della Tuscia di Vitebo Dipatimento di ecologia e sviluppo economico sostenibile Facoltà di Agaia Univesità degli Studi della Tuscia Dottoato di Riceca in Scienze Ambientali XIX Ciclo

Dettagli

REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO DI COPPIA PER MOTORI ASINCRONI

REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO DI COPPIA PER MOTORI ASINCRONI UNIVERSITÀ DEGLI STUDI DI PARMA DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Dottoato di Riceca in Tecnologie dell Infomazione XXIV Ciclo Andea Rossi REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO

Dettagli

ELEMENTI DI GEOMETRIA SOLIDA

ELEMENTI DI GEOMETRIA SOLIDA POF. IN CEESO.S. EINSEIN EEMENI DI GEOMEI SOID Postulati: ) pe punti dello spazio, non allineati, passa uno e un solo piano; ) una etta passante pe due punti di un piano giace inteamente in quel piano;

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

Una non parabola: la catenaria con qualche cenno al calcolo della sua equazione franco ghione

Una non parabola: la catenaria con qualche cenno al calcolo della sua equazione franco ghione Quadeni di laboatoio 009 Una non paabola: la catenaia con qualche cenno al calcolo della sua equazione fanco ghione x y(x) = c ec + e " x c = c cosh( x c ) Una non paabola: la catenaia con qualche cenno

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio Come possiamo deteminae la lunghezza di una ciconfeenza di aggio? Poviamo a consideae i poligoni egolai inscitti e cicoscitti alla ciconfeenza: è chiao che la lunghezza della ciconfeenza è maggioe del

Dettagli

Cariche in campo magnetico: Forza magnetica

Cariche in campo magnetico: Forza magnetica Lezione 18 Campo magnetico I Stoicamente, i geci sapevano che avvicinando un pezzo di magnetite a della limatua di feo questa lo attaeva. La magnetite ea il pimo esempio noto di magnete pemanente. Come

Dettagli

III. INTRODUZIONE ALL'ASTRODINAMICA

III. INTRODUZIONE ALL'ASTRODINAMICA III. INTRODUZIONE ALL'ASTRODINAMICA III.1. Obite kepleiane III.1.1. Equazioni del moto La Tabella III.1.1 elenca e definisce i paameti fondamentali dell'obita ellittica schematizzata in Figua III.1.1.

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio e ampiezza (

Dettagli

). Per i tre casi indicati sarà allora: 1: L L 2

). Per i tre casi indicati sarà allora: 1: L L 2 apitolo 0 Enegia potenziale elettica Domane. Il lavoo pe spostae una caica ta ue punti è: L 0(! ). Pe i te casi inicati saà alloa: L (50! 00 ) (50 ) : 0 0 : L 0! 0 3: L 0! 0 [5 ( 5 )] (50 ) [ 0 ( 60 )]

Dettagli

ELEMENTI DI GEOMETRIA DELLO SPAZIO

ELEMENTI DI GEOMETRIA DELLO SPAZIO ELEMENTI DI GEOMETRIA DELLO SPAZIO ASSIOMI Lo spazio euclideo è un insieme infinito di elementi (i punti), contiene sottoinsiemi popi ed infiniti (i piani). In ogni piano valgono gli assiomi del piano

Dettagli

TEST PER RECUPERO OFA 25 marzo 2010

TEST PER RECUPERO OFA 25 marzo 2010 TEST PER RECUPERO OFA mazo 010 A 1. Quale ta i seguenti numei, moltiplicato pe, dà come podotto un numeo azionale? A) 0 B) 1+ C) + D) 1 6 E).. Un esagono egolae è inscitto in una ciconfeenza di aggio.

Dettagli

4 Polarizzazione elettrica nel dominio del tempo

4 Polarizzazione elettrica nel dominio del tempo 4 Polaizzazione elettica nel dominio del tempo Intoduzione Atomi, molecole e ioni sono talmente piccoli che da un punto di vista macoscopico una piccola egione di un solido contiene un numeo molto elevato

Dettagli

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso eanko & aeutigam icoeconomia anuale delle oluzioni Capitolo 16 La teoia dell equilibio geneale Soluzioni delle Domande di ipao 1. L analii di equilibio paziale tudia la deteminazione del pezzo e della

Dettagli

Polo Universitario della Spezia G. Marconi

Polo Universitario della Spezia G. Marconi Nicolò Beveini Appunti di Fisica pe il Coso di lauea in Infomatica Applicata Polo Univesitaio della Spezia G. Maconi Nicolò Beveini Appunti di fisica Indice 1. La misua delle gandezze fisiche... 4 1.1

Dettagli

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione Appofondimento 7.5 - Alti tipi di coefficienti di coelazione Il coefficiente di coelazione tetacoico e policoico Nel 900 Peason si pose anche il poblema di come misuae la coelazione fa caatteistiche non

Dettagli

Operatori divergenza e rotore in coordinate cilindriche

Operatori divergenza e rotore in coordinate cilindriche Opeatoi divegena e otoe Univesità di Roma To Vegata Pof. Ing. Paolo Sammaco Opeatoi divegena e otoe in coodinate cilindiche Dott. Ing. Macello Di Risio 1 Sistema di ifeimento Si assume il sistema di ifeimento

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

Elementi della teoria della diffusione

Elementi della teoria della diffusione Elementi della teoia della diffusione Pe ottenee infomazioni sulla stuttua della mateia, dai nuclei ai solidi, si studia la diffusione scatteing) di paticelle: elettoni, paticelle alfa, potoni, neutoni,

Dettagli

Campo magnetico: fatti sperimentali

Campo magnetico: fatti sperimentali Campo magnetico: fatti speimentali Le popietà qualitative dei magneti e la pesenza di un campo magnetico teeste eano conosciute da tempo, ma le pime misue quantitative e le teoie e gli espeimenti pe deteminane

Dettagli

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini A.A. 015 016 Mauizio Piccinini Fisica Geneale A Gavitazione univesale Scuola di Ineneia e Achitettua UNIBO Cesena Anno Accademico 015 016 A.A. 015 016 Mauizio Piccinini Gavitazione Univesale 1500 10 0

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte Gestione ell Inventaio. Politiche i gestione elle scote.. Moelli singolo punto, singolo pootto, omana eteministica costante Gli appovvigionamenti sono peioici e l obiettivo è minimizzae il costo meio nel

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Circuiti e componenti ottici

Circuiti e componenti ottici Coso di Lauea in Ingegneia delle elecomunicazioni Sede di Femo A.A. 4-5 Laboatoio di Cicuiti e componenti ottici Intefeometo, pincipio di funzionamento e applicazioni. Studente Giovanni Pelliccioni. Pe

Dettagli

5 PROPRIETÀ MAGNETICHE DEI MATERIALI

5 PROPRIETÀ MAGNETICHE DEI MATERIALI 5 PROPRETÀ AGNETCE DE ATERAL A seguito della scopeta di Østed dell azione agnetica podotta da un filo conduttoe pecoso da coente l ipotesi più natuale che olti fisici avanzaono pe spiegae questo effetto

Dettagli

Le Trasmissioni Meccaniche

Le Trasmissioni Meccaniche Le Tasmissioni Meccaniche Gli inganaggi sono componenti meccanici utilizzati nelle tasmissioni. Una tasmissione meccanica è un meccanismo destinato a tasmettee potenza da un motoe pimo ad una macchina

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

Cuscinetti Di Precisione

Cuscinetti Di Precisione Cuscinetti Di Pecisione Cuscinetti a ulli di pecisione Indice dei contenuti Descizione tecnica 1 Selezione 1-1 Pocedua di selezione... 2 1-2 Esame tipo di... 3 2 Duata 2-1 Coeffi ciente di caico dinamico

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ALTRI SOLIDI GEOMETRICI Test di utovlutzione 0 0 0 0 0 50 60 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi ogni quesito segnndo un sol delle 5 ltentive. n Confont le tue isposte con

Dettagli

Compendio sui Sensori

Compendio sui Sensori Compendio sui Sensoi Gli Inteuttoi di Posizione pemettono il ilevamento mediante il contatto fisico dietto (fine cosa); l oggetto dunque, poggia fisicamente sopa l inteuttoe chiudendo e/o apendo un contatto;

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica wwwmatematicamenteit Nicola De osa matuità Esame di stato di istuzione secondaia supeioe Indiizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica Il candidato isolva uno dei due

Dettagli

Nicola De Rosa maturità 2015

Nicola De Rosa maturità 2015 www.matematicamente.it Nicola De Rosa matuità 5 Esame di stato di istuzione secondaia supeioe Indiizzi: LI SCIENTIFICO LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica (Testo valevole anche

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

LE ONDE ELETTROMAGNETICHE ASPETTI FISICO MATEMATICI 1

LE ONDE ELETTROMAGNETICHE ASPETTI FISICO MATEMATICI 1 LE ONDE ELETTROMGNETICHE SPETTI FISICO MTEMTICI 1 Maco ini, IFC-CNR, Fiene (Ital) 1 Le equaioni del campo elettomagnetico Il campo elettomagnetico (EM) è una foma di enegia che tae oigine dalle caiche

Dettagli

Le nuove geometrie per utensili di fresatura. Fresatura invece di politura e rettifi ca. Programma ampliato con: con raggio agli spigoli

Le nuove geometrie per utensili di fresatura. Fresatura invece di politura e rettifi ca. Programma ampliato con: con raggio agli spigoli Tecnica di fesatua Aspotazione di tucioli elevata su acciaio Aspotazione di tucioli con sicuezza di pocesso nella sgossatua Pe lavoazioni convenzionali su diffeenti mateiali Sgossatua e fi nitua in una

Dettagli

Esame di COSTRUZIONE DI MACCHINE L5 PROGETTAZIONE MECCANICA I L3. Appello del 04.03.2004

Esame di COSTRUZIONE DI MACCHINE L5 PROGETTAZIONE MECCANICA I L3. Appello del 04.03.2004 Esame di COSTRUZOE D MACCHE L5 PROGETTAZOE MECCACA L Appello del 0.0.00 La figua mosta le uote dentate e gli albei di un iduttoe. Dati: Coppia in ingesso C 60 m Velocità albeo di ingesso n 50 pm Mateiale

Dettagli

THERMAL DESIGN COURSE

THERMAL DESIGN COURSE Resp. del contenuto - Subject esponsible Resp. del documento/appovato - Doc.espons./Appoved Contollato - Checked 1(22) THERMAL DESIGN COURSE Table of contents 1 INTRODUZIONE... 3 1.1 Genealità... 3 1.2

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo:

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo: m@th_cone di Enzo Zanghì pag Distanza di due punti Pe deteminae la distanza ta i punti ( ; ) ( ; ) applichiamo il teoema di Pitagoa e otteniamo: = ( ) + ( ) Punto medio di un segmento M O M + Osseviamo

Dettagli

Approfondimento 5.7. Altri metodi statistici per valutare la validità di costrutto

Approfondimento 5.7. Altri metodi statistici per valutare la validità di costrutto Appofondimento 5.7 Alti metodi statistici pe valutae la validità di costutto Le pocedue pe la valutazione della validità di costutto di un test sono vaie, ma hanno tutte in comune come punto di patenza

Dettagli