Daniela Lera A.A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Daniela Lera A.A"

Transcript

1 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A

2 Richiami Algebra Lineare Spazio normato Uno spazio lineare X si dice normato se esiste una funzione (chiamata norma) da X su R + tale che indicata con x la norma di x si ha 1. x 0 per ogni x X 2. x = 0 se e solo se x = 0 3. αx = α x per ogni x X, α R 4. per ogni x, y X vale la relazione x + y x + y disuguaglianza triangolare

3 Richiami Algebra Lineare Distanza Dato uno spazio normato X in esso si può definire la distanza tra due elementi qualsiasi x e y di X d(x, y) = x y Uno spazio normato è quindi anche uno spazio metrico. Pertanto possiamo definire la distanza tra 2 matrici nello spazio M nxn, 2 polinomi nello spazio P n (x), 2 funzioni nello spazio C[a, b].

4 Richiami Algebra Lineare Spazio seminormato Uno spazio lineare X si dice seminormato se esiste una funzione (chiamata seminorma) da X su R + tale che indicata con x la seminorma di x si ha 1. x 0 per ogni x X 2. αx = α x per ogni x X, α R 3. per ogni x, y X vale la relazione x + y x + y disuguaglianza triangolare Può assegnare lunghezza zero anche ad un vettore diverso da zero.

5 Richiami Algebra Lineare Spazio seminormato Un semplice esempio di seminorma che non è una norma è quello del modulo della prima coordinata del generico punto di R 2 Le proprietà (1.-3.) valgono ma la seminorma considerata si annulla su tutti i vettori della forma (0, x 2 ).

6 Richiami Algebra Lineare Esempi di norme di vettore in R n Norma 2 (norma euclidea) ( n ) 1/2 x 2 = (x i ) 2 i=1 Norma 1 (norma di Manhattan) n x 1 = x i x = (x 1, x 2,..., x n ) R n. i=1

7 Richiami Algebra Lineare Esempi di norme di vettore in R n Norma p, 1 p ( n ) 1/p x p = (x i ) p i=1 Norma infinito, per p = (norma del massimo) x = (x 1, x 2,..., x n ) R n. x = max 1 i n x i

8 Richiami Algebra Lineare Distanze in R 2 Ad ogni norma corrisponde una differente distanza Distanza euclidea d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 Distanza 1 d(x, y) = x 1 y 1 + x 2 y 2 Distanza d(x, y) = max( x 1 y 1, x 2 y 2 ) x = (x 1, x 2 ) e y = (y 1, y 2 ) in R 2

9 Richiami Algebra Lineare La sfera unitaria in R 2 La sfera unitaria ha differenti rappresentazioni in corrispondenza alla distanza usata. determinarle. d(x, 0) = (x 1, x 2 ) (0, 0) 1

10 Richiami Algebra Lineare La norma di un vettore x R n è una funzione continua ovvero lim x i = x lim x i = x i i Esiste una relazione che lega tutte le possibili norme che si possono definire, si può dimostrare il Teorema di equivalenza Data una coppia di norme di vettore x e x, esistono 2 numeri positivi m e M tali che comunque x R n si ha m x x M x

11 Norme matriciali Le norme di vettori x R n possono estendersi alle matrici; infatti una matrice può essere vista come un vettore di nxn componenti. Esempio 1: estensione della norma 1 A = a 11 + a 12 + a 21 + a 22 Esempio 2: estensione della norma del massimo A = max( a 11, a 12, a 21, a 22 ) (1) Con ( ) a11 a A = 12 a 21 a 22

12 Norme matriciali Le norme di matrici si richiede che siano submoltiplicative AB A B Tale proprietà non vale per la norma di matrice definita in (1). Controesempio ( ) ( ) A = B = C = AB = Risulta quindi: max c ij = 2 max a ij = max b ij = 1 2 = AB > A B = 1.

13 Norme matriciali Norma naturale di matrice Definizione Data la matrice A M nxn una norma matriciale si dice indotta da una norma vettoriale se Ax A = sup x 0 x o se, equivalentemente A = max x =1 Ax Una norma così definita viene anche detta naturale.

14 Norme matriciali Norma naturale di matrice Una norma naturale misura, in una data norma vettoriale, il mssimo allungamento relativo che un vettore può subire in seguito al prodotto per la matrice A. Essa è consistente con la norma che la induce, cioé Infatti dove x è un generico vettore Ax A x Ay A = sup Ax y 0 y x A Ax x Ax A x

15 Norme matriciali Norma naturale di matrice Si può dimostrare il seguente teorema Teorema Ogni norma indotta è submoltiplicativa AB A B

16 Norme matriciali Dimostrazione: Date A e B di dimensioni compatibili, si ha ABx ABx AB = sup = sup Bx x 0 x x 0 Bx x Ay Bx sup sup = A B y 0 y x 0 x dove la maggiorazione dipende dal fatto che non è detto che tutti i vettori y nel codominio di B si possano esprimere nella forma Bx.

17 Esempi di norme naturali di matrice Norma del massimo La norma del massimo per vettori x R n x = max 1 i n x i induce la norma per matrici A M nxn A = max i n a ij j=1

18 Esempi di norme naturali di matrice Per definizione si ha Dimostrazione A = max x =1 Ax Esiste un vettore y R n, con y = 1 tale che Si ha: max y r max r i A = Ay n A = max i a ij y j max i n j=1 j=1 a ij = y max i n j=1 n a ij y j j=1 a ij = max i n a ij j=1

19 Esempi di norme naturali di matrice Dimostrazione Per concludere la dimostrazione è sufficiente mostrare che esiste un vettore per cui viene raggiunta l uguaglianza. Tale vettore è x = (s 1, s 2,..., s n ) dove s j = sign(a ij ) con i indice massimo delle somme-riga. La funzione sign(x) vale 1 se x 0 e -1 se x < 0.

20 Esempi di norme naturali di matrice Norma 1 o di Manhattan La norma 1 per vettori x R n x 1 = n x i i=1 induce la norma per matrici A M nxn A 1 = max j n a ij i=1 Si dice anche che la norma è il massimo delle somme-riga e la norma 1 è il massimo delle somme-colonna della matrice A.

21 Norme matriciali Esempio A = A = max{9, 11, 5} = 11 A 1 = max{5, 12, 8} = 12

22 Esempi di norme naturali di matrice Norma 2 euclidea La norma 2 per vettori x R n ( n ) 1/2 x 2 = (x i ) 2 i=1 induce la norma per matrici A M nxn A 2 = ρ(a T A) dove ρ(b) indica il raggio spettrale della matrice B ρ(b) = max j λ j cioé il massimo del modulo degli autovalori di B.

23 Esempi di norme naturali di matrice Osservazioni La matrice A T A è simmetrica definita positiva quindi ha tutti gli autovalori 0. Se A è Hermitiana si ha ρ(a T A) = ρ(a 2 ) = (ρ(a)) 2 quindi A 2 = ρ(a) Dato il suo legame con gli autovalori la norma 2 per matrici viene anche detta norma spettrale.

24 Norme di matrice Norme non naturali Norma di Frobenius n A F = i=1 n (a ij ) 2 Tale norma è submoltiplicativa ma non è una norma naturale, infatti I F = n mentre per una norma indotta si ha I = 1. j=1

25 Norme matriciali Teorema Sia una norma naturale. Allora per ogni matrice quadrata A si ha ρ(a) A Dim. Per ogni autovalore λ di A esiste un autovettore v tale che Av = λv. Sfruttando la consistenza e la proprietà delle norme, si ottiene λ v = λv = Av A v, da cui, essendo v 0, segue λ A, per ogni autovalore λ e quindi la tesi.

26 Richiami Algebra Lineare Data una matrice A M nxn, si può considerare il prodotto A m = A A... A }{{} m Definizione. Una matrice A M nxn si dice convergente se lim m Am = 0 dove 0 indica la matrice nulla.

27 Richiami Algebra Lineare Proprietà Le seguenti proposizioni sono equivalenti nel senso che una implica l altra e viceversa: a) A è convergente b) lim m A m = 0 c) ρ(a) < 1

28 Richiami Algebra Lineare Dimostrazione che a) implica b) e viceversa lim m Am = 0 lim m Am = 0 Se A m 0 per la continuità della norma e poiché 0 = 0 si ha lim m Am = 0 Per l equivalenza delle norme esiste M > 0 tale che si ha A m M A m, cioé lim m Am = 0 lim m Am = 0 lim m Am = 0

29 Richiami Algebra Lineare Corollario Se per una norma naturale di matrice si ha A < 1 allora la matrice A è convergente. Infatti poiché A m A m allora lim m Am = 0

30 Prodotto scalare Spazio di Hilbert Uno spazio di Hilbert è uno spazio lineare X su cui è definito un prodotto scalare, cioè una funzione che ad ogni coppia x e y X associa un numero reale indicato con (x, y) tale che: 1 (x, x) 0 e (x, x) = 0 x = 0 2 (x, y) = (y, x) 3 (αx, y) = α(x, y) 4 (x + y, z) = (x, z) + (y, z) x, y, z X (linearità)

31 Prodotto scalare Proprietà Da uno spazio in cui è definito un prodotto scalare si può passare ad uno spazio normato ponendo x = (x, x) 1/2 Due vettori sono detti ortogonali quando il loro prodotto scalare è nullo.

32 Prodotto scalare Proprietà di Cauchy-Schwartz Per la norma indotta dal prodotto scalare vale la disuguaglianza di Schwartz: (x, y) x y

33 Prodotto scalare Esempi Il prodotto scalare comunemente usato in R n è il seguente n (x, y) = x T y = x i y i i=1 Esso induce la norma euclidea x 2. In R 2 si ha (x, y) = x 1 y 1 + x 2 y 2 = x 2 y 2 cosθ θ angolo tra i due vettori x, y.

34 Prodotto scalare Esempi Il prodotto scalare nello spazio L 2 [a, b] è il seguente (f, g) = b a f (x)g(x)dx Esso induce la norma f 2 già definita precedentemente: ( b ) 1/2 f 2 = f (x) 2 dx a In particolare se P n (x) è l insieme dei polinomi di grado n (p, q) = b a p(x)q(x)dx

35 Prodotto scalare Esempio Data la definizione di prodotto scalare nell insieme dei polinomi di grado n I polinomi: (p, q) = 1 1 p(x)q(x)dx sono ortogonali. p(x) = x e q(x) = 3 2 x2 1 2

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3)

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a. 2014-2015, lez.3) 1 Analisi Numerica 1 mod. a.a. 2014-2015, Lezione n.3

Dettagli

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R + NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:

Dettagli

Si dimostra che queste funzioni godono delle proprietà delle norme (ossia sono norme).

Si dimostra che queste funzioni godono delle proprietà delle norme (ossia sono norme). Norma di un vettore I Una norma vettoriale su R n è una funzione : R n R + {}, che associa ad ogni vettore x R n, di componenti x i, i = 1,..., n, uno scalare, in modo che valgano le seguenti proprietà:

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

Elementi di Algebra Lineare

Elementi di Algebra Lineare Elementi di Algebra Lineare Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari 13 Marzo 2006 Francesca Mazzia (Univ. Bari) Elementi di Algebra Lineare

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo

Dettagli

x n i sima pos. x, y = x T y = x i y i R. i=1

x n i sima pos. x, y = x T y = x i y i R. i=1 1 Elementi di Algebra Lineare In questo capitolo introduttivo al corso di Calcolo Numerico per la laurea triennale in Informatica, saranno presentate una serie di definizioni e proprietà di matrici e dei

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 8 - METODI ITERATIVI PER I SISTEMI LINEARI Norme Una norma in R n è una funzione. : R n R tale che x 0 x R n ; x = 0 x = 0; αx = α x ; x

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

Spazi lineari. Felice Iavernaro. Dipartimento di Matematica Università di Bari. 17 Dicembre 2009

Spazi lineari. Felice Iavernaro. Dipartimento di Matematica Università di Bari. 17 Dicembre 2009 Spazi lineari Felice Iavernaro Dipartimento di Matematica Università di Bari 17 Dicembre 2009 Felice Iavernaro (Univ. Bari) Spazi lineari 17-12-2009 1 / 32 Definizione di spazio vettoriale reale Definizione

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Università di Pavia Richiami di Algebra Lineare Eduardo Rossi Vettori a : (n 1) b : (n 1) Prodotto interno a b = a 1 b 1 + a 2 b 2 +... + a n b n Modulo (lunghezza): a = a 2 1 +... + a2 n Vettori ortogonali:

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

GEOMETRIA 1 ottava parte

GEOMETRIA 1 ottava parte GEOMETRIA 1 ottava parte Cristina Turrini C. di L. in Fisica - 214/215 Cristina Turrini (C. di L. in Fisica - 214/215) GEOMETRIA 1 1 / 15 index 1 Cristina Turrini (C. di L. in Fisica - 214/215) GEOMETRIA

Dettagli

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Mercoledì 27/09/2017,

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 13 dicembre 2016 1. Lunedì 26/09/2016, 11 13. ore:

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Appendice A Richiami di Algebra Lineare In questo capitolo sono presentati alcuni concetti di algebra lineare L algebra lineare è quella branca della matematica che si occupa dello studio di vettori, spazi

Dettagli

Norme di vettori e matrici

Norme di vettori e matrici Norme di vettori e matrici Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati e proprietà relativi alle norme di vettori e di matrici. 1 Introduzione

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2018/2019 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 19 dicembre 2018 1. Mercoledì 26/09/2018, 15 17. ore:

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2015 Rossi Algebra Lineare 2015 1 / 41 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Esercizi Analisi Matematica II Anno accademico

Esercizi Analisi Matematica II Anno accademico Esercizi Analisi Matematica II Anno accademico 2017-2018 Foglio 3 1. T Sia (X, d) uno spazio metrico. Determinare la frontiera di X e dell insieme vuoto. 2. T Sia (X, d) uno spazio metrico. Dimostrare

Dettagli

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach Appendice B ANALISI FUNZIONALE In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro. Inoltre si discutono gli operatori compatti su uno spazio di Hilbert.

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale Spazi di Funzioni Docente:Alessandra Cutrì Spazi vettoriali normati Uno spazio Vettoriale V si dice NORMATO se è definita su V una norma, cioè una funzione che verifica: v 0 e v = 0 v = 0 λv = λ v λ R(o

Dettagli

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2016 1. Martedì 27/09/2016,

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

Matematica II, aa

Matematica II, aa Matematica II, aa 2011-2012 Il corso si e svolto su cinque temi principali: sistemi lineari, algebra delle matrici, determinati, spazio vettoriale R n, spazio euclideo R n ; per ogni tema descrivo gli

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2013/2014 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2013 1. Martedì 1/10/2013, 12 14. ore:

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica Corso di Geometria ed Algebra Docente F. Flamini Capitolo IV - 3: Teorema Spettrale degli operatori autoaggiunti e Teorema

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Fabrizio Silvestri December 14, 010 Matrice Sia R il campo dei numeri reali. Si indica con R m n l insieme delle matrici ad elementi reali con m righe ed n colonne. Se A R n

Dettagli

GEOMETRIA 1 quarta parte

GEOMETRIA 1 quarta parte GEOMETRIA 1 quarta parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 36 index Forme bilineari 1 Forme bilineari 2 Il caso reale: spazi

Dettagli

Algebra Lineare Metodi Iterativi

Algebra Lineare Metodi Iterativi Algebra Lineare Metodi Iterativi Stefano Berrone Sandra Pieraccini DIPARTIMENTO DI MATEMATICA POLITECNICO DI TORINO, CORSO DUCA DEGLI ABRUZZI 24, 10129, TORINO, ITALY e-mail: sberrone@calvino.polito.it,

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. R. Sanchez - T. Traetta - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, dell Innovazione del Prodotto, Meccatronica

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI MATRICI E SISTEMI LINEARI - PARTE I - Felice Iavernaro Dipartimento di Matematica Università di Bari 27 Febbraio 2006 Felice Iavernaro (Univ. Bari) Matrici e Sistemi lineari 27/02/2006 1 / 1 Definizione

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

Prodotto scalare e matrici < PX,PY >=< X,Y >

Prodotto scalare e matrici < PX,PY >=< X,Y > Prodotto scalare e matrici Matrici ortogonali Consideriamo in R n il prodotto scalare canonico < X,Y >= X T Y = x 1 y 1 + +x n y n. Ci domandiamo se esistono matrici P che conservino il prodotto scalare,

Dettagli

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale Spazi di Funzioni Docente:Alessandra Cutrì Spazi vettoriali normati Nel piano (R 2 ) e nello spazio ( R 3 ) sappiamo che la lunghezza di un vettore v si esprime rispettivamente come Se v = (v 1, v 2 )

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Forme bilineari e prodotti scalari

Forme bilineari e prodotti scalari Forme bilineari e prodotti scalari Avvertenza: Gli argomenti che esponiamo brevemente in queste note sono tutti trattati in maggior dettaglio nel capitolo del libro di testo Abate De Fabritiis. Nel corso

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

APPENDICE: NORME E SPAZI DI SEGNALI E SISTEMI

APPENDICE: NORME E SPAZI DI SEGNALI E SISTEMI APPENDICE: NORME E SPAZI DI SEGNALI E SISTEMI Michele TARAGNA Dipartimento di Automatica e Informatica Politecnico di Torino michele.taragna@polito.it Corso di III livello Experimental modeling: costruzione

Dettagli

Topologia, continuità, limiti in R n

Topologia, continuità, limiti in R n Topologia, continuità, limiti in R n Ultimo aggiornamento: 18 febbraio 2017 1. Preliminari Prima di iniziare lo studio delle funzioni di più variabili, in generale funzioni di k variabili e a valori in

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Prof. P. Piazza Diagonalizzazione delle forme bilineari simmetriche

Corso di Laurea in Fisica. Geometria. a.a Prof. P. Piazza Diagonalizzazione delle forme bilineari simmetriche Corso di Laurea in Fisica. Geometria. a.a. 2009-10. Prof. P. Piazza Diagonalizzazione delle forme bilineari simmetriche Sia V uno spazio vettoriale reale. Sia 1. Osservazioni preliminari. : V V R un

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

Spazi vettoriali metrici.

Spazi vettoriali metrici. Spazi vettoriali metrici Prodotti scalari e hermitiani Spazi vettoriali metrici Definizione Sia V uno spazio vettoriale su R e sia g: V V R una funzione Se per ogni v, v, v, w, w, w V e λ R si ha g(v +

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2012/13 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi 1.2

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Spazio dei vettori Il primo oggetto matematico che definiamo sarà il vettore. Partendo dai numeri reali come rappresentazione dei punti della retta reale R,

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre Esercizi Di Geometria (BAER Canale Da consegnare Lunedi 9 Ottobre SETTIMANA 3 (2 8 Ottobre Moltiplicazione di matrici Gli esercizi sono presi dal libro Intorduction to Linear Algebra di Serge Lang Esercizio

Dettagli

Computazione per l interazione naturale: Richiami di algebra lineare

Computazione per l interazione naturale: Richiami di algebra lineare Computazione per l interazione naturale: Richiami di algebra lineare Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI ALGEBRA LINEARE (II PARTE) versione: 4 maggio 26 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli autovalori

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria 9- Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Prodotto scalare e matrici simmetriche. Il prodotto scalare consente di introdurre in uno spazio vettoriale

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI Nota. La descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione.

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. M. Imbesi - R. Sanchez - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza TEMA 1 1. Definire la nozione

Dettagli

PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A

PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A. 2010-11 DOCENTE TITOLARE: FRANCESCO BONSANTE 1. Geometria analitica dello spazio (1) vettori applicati e lo spazio E 3 O: operazioni su vettori e proprietà.

Dettagli

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare 1. Quali dei seguenti sottoinsiemi sono sottospazi di R 3? Motivare la risposta. (a) {(x, y, 1) x, y R} (b) {(0, y, 0) y R} (c)

Dettagli

Scomposizione ai valori singolari.

Scomposizione ai valori singolari. Scomposizione ai valori singolari. Sia A R m n una matrice, non necessariamente quadrata. Si potrebbe considerare anche una matrice complessa ottenendo risultati analoghi. Abbiamo: Osservazione AA T R

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

5. Richiami: R n come spazio euclideo

5. Richiami: R n come spazio euclideo 5. Richiami: R n come spazio euclideo 5.a Prodotto scalare Dati due vettori in R n, si misurano le rispettive lunghezze e l angolo (senza il segno) fra essi mediante il prodotto scalare. Il prodotto scalare

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A

PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A. 2011-12 DOCENTE TITOLARE: FRANCESCO BONSANTE 1. Geometria analitica dello spazio (1) vettori applicati e lo spazio E 3 O: operazioni su vettori e proprietà.

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2009/2010 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Esercizio 1 Sia. a n. X (k+1) = X (k) (2I AX (k) )

Esercizio 1 Sia. a n. X (k+1) = X (k) (2I AX (k) ) Esercizi per la parte Numerica e Algoritmica, Prof. Serra-Capizzano. Gli esercizi elencati sono da ritenersi come una palestra molto impegnativa: i testi di esame che saranno proposti non avranno una difficoltà

Dettagli

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane 0.1. APPLICAZIONI LINEARI SIMMETRICHE ED HERMITIANE 1 Il Teorema Spettrale In questa nota vogliamo esaminare la dimostrazione del Teorema Spettrale e studiare le sue conseguenze per quanto riguarda i prodotti

Dettagli

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo sercizi del Corso di Istituzioni di Analisi Superiore, I modulo 1. sercizi su massimo e minimo limite 1. lim inf a n lim sup a n 2. Se a n b n per ogni n N, allora lim inf a n lim inf b n. Vale anche lim

Dettagli

Autovettori e autovalori

Autovettori e autovalori Autovettori e autovalori Definizione 1 Sia A Mat(n, n), matrice a coefficienti reali. Si dice autovalore di A un numero λ R tale che v 0 R n Av = λv. Ogni vettore non nullo v che soddisfa questa relazione

Dettagli

Geometria UNO Prodotti hermitiani

Geometria UNO Prodotti hermitiani Geometria UNO Prodotti hermitiani Corso di Laurea in Matematica Anno Accademico 2013/2014 Alberto Albano 2 aprile 2014 Queste note sono un riassunto delle lezioni di.... I fatti principali sono contenuti

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE Sia g C 1 R 2 ), c R. L insieme γ = γ c := {x, y) R 2 : gx, y) = c} si chiama insieme

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Fra le applicazioni definite tra spazi vettoriali sono particolarmente significative quelle che conservano le operazioni, dette applicazioni lineari. Definizione Siano V, W due k-s.v.

Dettagli

Spazi Vettoriali e Vettori

Spazi Vettoriali e Vettori Spazi Vettoriali e Vettori Basilio Bona DAUIN-Politecnico di Torino 2007 2008 Basilio Bona (DAUIN-Politecnico di Torino) Spazi Vettoriali e Vettori 2007 2008 1 / 20 Vettori e Spazi vettoriali Il concetto

Dettagli

Elementi di Algebra Matriciale. (richiami)

Elementi di Algebra Matriciale. (richiami) Elementi di Algebra Matriciale Definizione di matrice (richiami) Matrice quadrata, diagonale, identità, triangolare, simmetrica Matrice trasposta Principali operazioni su matrici e vettori: somma, sottrazione,

Dettagli

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì , , Metodi Matematici per l ingegneria Ing.

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì , , Metodi Matematici per l ingegneria Ing. Spazi di Funzioni Docente:Alessandra Cutrì Spazi funzionali Nello studio di fenomeni di estremo interesse applicativo (problemi di controllo, trasmissione e ricezione di segnali ed in generale nella formulazione

Dettagli

Analisi funzionale. Riccarda Rossi Lezione 2. Spazi normati Definizioni topologiche Continuità Convergenza di successioni Compattezza

Analisi funzionale. Riccarda Rossi Lezione 2. Spazi normati Definizioni topologiche Continuità Convergenza di successioni Compattezza Riccarda Rossi Lezione 2 Programma 1. Spazi normati; 2. Definizioni topologiche 3. Continuità di funzioni in spazi topologici in spazi metrici in spazi normati 4. Convergenza di successioni in spazi topologici

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli

23. Le coniche nel piano euclideo.

23. Le coniche nel piano euclideo. 3. Le coniche nel piano euclideo. 3. Definizione. Una matrice C ad elementi reali quadrata C si dice ortogonale se C T = C. 3. Osservazione. Una matrice C ad elementi reali quadrata C è ortogonale se e

Dettagli