Sistemi di equazioni lineari da 2 D a 3 D: risoluzione grafica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi di equazioni lineari da 2 D a 3 D: risoluzione grafica"

Transcript

1 Sistemi di equazioni lineari da 2 D a 3 D: risoluzione grafica Questa è una attività che si svolge comunemente in una classe del biennio di scuola superiore.c è però una novità : l estensione dell interpretazione grafica ai sistemi lineari di tre equazioni in tre incognite ; essa può costituire un primo approccio alla geometria analitica dello spazio che gli studenti affronteranno coi necessari approfondimenti nel triennio. Il software Geogebra si presta molto bene allo scopo. Nella trattazione dei sistemi di equazioni lineari in due incognite dal punto di vista grafico, si tratta di determinare le coordinate degli eventuali punti comuni alle rette associate alle due equazioni lineari assegnate. Per questo è sufficiente considerare le posizioni reciproche che queste rette hanno nel piano e, esaminando i casi possibili, si possono poi confrontare con quelli che si ottengono per via algebrica. Esempio n 1(sistema determinato) Risolviamo graficamente il seguente sistema lineare in due incognite:.utilizziamo il software Geogebra per ottenere il tracciamento delle due rette associate alle equazioni, riconoscendo che esse sono incidenti e quindi il sistema ha una sola soluzione che graficamente è rappresentata dalle coordinate del punto comune alle due rette : A Ξ( 0.5;-3.5). Dal punto di vista algebrico il sistema è determinato per il teorema di Cramer ( il determinante del sistema è )e i valori delle due variabili che rappresentano la sua soluzione sono proprio x = 0.5 e y = -3.5.

2 Esempio n 2 (sistema impossibile) Risolviamo graficamente il sistema :. Questa volte le due rette sono parallele ( esse hanno lo stesso coefficiente angolare) mentre sono diversi i termini noti. Il sistema risulta perciò impossibile come evidenzia la rappresentazione grafica : Dal punto di vista algebrico in questo caso risultano sistema sarà impossibile quando:.in generale il Esempio n 3(sistema indeterminato) L ultimo caso possibile è quello in cui le rette assegnate sono coincidenti.risolviamo graficamente il sistema :. Il software traccia una stessa retta ; infatti le due equazioni sono equivalenti e le soluzioni del sistema saranno perciò infinite ; il sistema allora si dice indeterminato. Dal punto di vista algebrico si ha che :.

3 Ma spostiamoci ora nella terza dimensione.quando il sistema lineare ha 3 equazioni in 3 incognite, infatti, il piano cartesiano non basta più. La soluzione del sistema,se c è, è data da una terna di valori (x,y,z). Questa terna individua un punto nello spazio ; la terza coordinata z rappresenta la quota del punto rispetto al piano. Ciò comporta che nello spazio cartesiano a tre dimensioni una equazione del tipo :,con almeno uno dei tre coefficienti a,b e c diverso da zero, rappresenta un piano. Per quel che riguarda le soluzioni di un sistema lineare di 3 equazioni in 3 incognite i casi sono fondamentalmente ancora tre ; vediamo però che si può ottenere una soluzione in un solo modo, ma si possono avere infinite soluzioni o nessuna soluzione in modi diversi. Esempio n 1.a Il sistema : ammette un unica soluzione, che si può determinare algebricamente,e la sua rappresentazione grafica è quella di tre piani che si intersecano nel punto P (-0.5,-1.5,-0.5). Grazie al teorema di Cramer,possiamo dire che questo accade quando.

4 Esempio n 2.a ( sistema indeterminato) E possibile ottenere infinite soluzioni in diversi modi. Il caso più semplice è quello in cui i tre piani sono coincidenti : ; in questo caso le equazioni sono identiche o equivalenti. Sempre grazie al teorema di Cramer si ha. Esempio n 2.b (sistema indeterminato) E indeterminato anche il sistema : in cui due equazioni sono fra loro equivalenti ( la prima e la terza) e l altra ( la seconda in questo caso) non è equivalente alle altre due. Ciò significa che due dei tre piani sono coincidenti e l altro li interseca secondo una retta. Le soluzioni del sistema sono ancora infinite ma di un ordine diverso. Algebricamente risulta ancora vera la condizione

5 Esempio n 2.c (sistema indeterminato) Un caso ancora diverso è quello in cui i tre piani hanno una retta in comune ; in esso non compaiono equazioni equivalenti e le soluzioni, infinite, sono di un ordine diverso rispetto ai precedenti due casi. Ne è un esempio il sistema : nel quale ancora i quattro determinanti sono nulli. Esempio n 3.a (sistema impossibile) Vediamo ora i casi in cui il sistema non ha soluzioni. Il caso più intuitivo è quello in cui i tre piani sono paralleli fra loro come nel seguente :. mentre gli altri de- Le tre equazioni sono fra loro in contraddizione e risulta terminanti non sono tutti nulli.

6 Esempio n 3.b (sistema impossibile) Un caso diverso che si può presentare è quello in cui due dei tre piani sono paralleli e il terzo coincide con uno di essi. Nell esempio che segue due delle tre equazioni del sistema sono equivalenti fra loro :. Esempio n 3.c (sistema impossibile) Nel sistema seguente : due piani sono paralleli fra loro e il terzo li interseca entrambi secondo due rette anche queste parallele fra loro. Le prime due equazioni del sistema sono in contraddizione e la terza non è equivalente ma neppure in contraddizione con le prime due.

7 In quest ultimo caso non ci sono equazioni equivalenti né piani a due a due paralleli ; i tre piani si intersecano a due a due secondo tre rette distinte, non vi è però alcun punto comune ai tre piani. Il sistema formato da due delle tre equazioni del sistema ha infinite soluzioni ( sono i punti delle rette comuni) ;quello composto dalle tre equazioni è invece impossibile. Il sistema seguente : non ha equazioni in contraddizione, non ci sono piani paralleli e tuttavia il determinante è, mentre i tre determinanti non sono tutti nulli.

Sistemi di equazioni di primo grado (sistemi lineari)

Sistemi di equazioni di primo grado (sistemi lineari) Sistemi di equazioni di primo grado (sistemi lineari) DEFINIZIONE Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse incognite, di cui cerchiamo soluzioni comuni. Esempi 1.

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte La Retta. Qual è l equazione della retta in forma nel piano cartesiano? L equazione della generica retta nel piano cartesiano in forma esplicita è y mx q, mentre

Dettagli

Equazioni lineari con due o più incognite

Equazioni lineari con due o più incognite Equazioni lineari con due o più incognite Siano date le uguaglianze: k 0; x + y = 6; 3a + b c = 8. La prima ha un termine incognito rappresentato dal simbolo letterale k; la seconda ha due termini incogniti

Dettagli

Programma di Matematica Anno Scolastico 2014/2015 Classe 3M

Programma di Matematica Anno Scolastico 2014/2015 Classe 3M Programma di Matematica Anno Scolastico 204/205 Classe 3M Modulo : Richiami calcolo letterale Il prodotto notevole di una somma per una di erenza (a+b)(a (a + b) 2 : Cubo di un binomio (a + b) 3 : b):

Dettagli

LEZIONE DI MATEMATICA PROF : GIOVANNI IANNE. I sistemi di equazioni di I grado

LEZIONE DI MATEMATICA PROF : GIOVANNI IANNE. I sistemi di equazioni di I grado LEZIONE DI MATEMATICA PROF : GIOVANNI IANNE I sistemi di equazioni di I grado Diamo la seguente definizione: Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse incognite, di

Dettagli

SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE

SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE Un equazione di primo grado in una incognita del tipo, con ha: una sola soluzione (equazione determinata) se nessuna soluzione (equazione impossibile) se tutte

Dettagli

Appunti: il piano cartesiano. Distanza tra due punti

Appunti: il piano cartesiano. Distanza tra due punti ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

ISTITUTO TECNICO COMMERCIALE DIONIGI PANEDDA Via Mameli, Olbia SS Tel Fax

ISTITUTO TECNICO COMMERCIALE DIONIGI PANEDDA Via Mameli, Olbia SS Tel Fax ISTITUTO TECNICO COMMERCIALE DIONIGI PANEDDA Via Mameli,21 07026 Olbia SS Tel. 0789-27191 - Fax 0789-26791 - e-mail SSTD09000T@istruzione.it Data: 30-10-2016 Compilato da Pietro Pinna PROGRAMMAZIONE DIDATTICA

Dettagli

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b, Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine

Dettagli

B6. Sistemi di primo grado

B6. Sistemi di primo grado B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Prof. I. Savoia. SISTEMI LINEARI E RETTA (VERSIONE PROVVISORIA NON ULTIMATA)

Prof. I. Savoia. SISTEMI LINEARI E RETTA (VERSIONE PROVVISORIA NON ULTIMATA) SISTEMI LINEARI E RETTA 1 Proprietà e rappresentazione grafica dei sistemi lineari. I sistemi lineari in due incognite sono insiemi di due equazioni di primo grado, nei qualiciascuna di esse rappresenta

Dettagli

Geometria analitica. coppia di numeri equazione di 2 grado. delle equazioni

Geometria analitica. coppia di numeri equazione di 2 grado. delle equazioni 1 Geometria analitica La geometria analitica stabilisce una corrispondenza tra il mondo della geometria e il mondo dell'algebra. Ciò significa che gli enti geometrici hanno degli enti corrispondenti nel

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 9: soluzioni Esercizio 1. Nello spazio sono dati i punti A = (1, 2, 3), B = (2, 4, 5), C = (1, 1, 4). a) Scrivere equazioni parametriche della retta r 1 passante

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

MODULI DI MATEMATICA (SECONDO BIENNIO)

MODULI DI MATEMATICA (SECONDO BIENNIO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI MATEMATICA (SECONDO BIENNIO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 MATEMATICA Matematico TERZA

Dettagli

Istituto di Istruzione Superiore L. da Vinci Civitanova Marche. Anno scolastico PROGRAMMA SVOLTO. Materia: Matematica

Istituto di Istruzione Superiore L. da Vinci Civitanova Marche. Anno scolastico PROGRAMMA SVOLTO. Materia: Matematica Anno scolastico 2015-2016 PROGRAMMA SVOLTO Materia: Matematica Docente: Massimiliano Iori Classe : 2F Indirizzo: Linguistico Disequazioni lineari Le diseguaglianze: definizioni e proprietà. Disequazioni

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s. 2013/2014. Elenco moduli Argomenti Strumenti / Testi / Letture

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s. 2013/2014. Elenco moduli Argomenti Strumenti / Testi / Letture Pagina 1 di 6 DISCIPLINA: MATEMATICA CLASSE: II TU DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi / Letture 1 Equazioni numeriche. RIPASSO di: equazioni e Testo classe Prima. principi

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y  #z = 1 & '#x  y+ z =1 Istituzioni di Matematica I Esercizi su sistemi lineari Esempio. Dire per quali valori di λ R il sistema x " y+ z = 2 % x + y " z = " x " y+ z = ha una sola soluzione, per quali nessuna, per quali infinite

Dettagli

RIPASSO PROPEDEUTICO AL V ANNO. Disciplina: MATEMATICA

RIPASSO PROPEDEUTICO AL V ANNO. Disciplina: MATEMATICA RIPASSO PROPEDEUTICO AL V ANNO Disciplina: MATEMATICA Testi consigliati : - BOOK IN PROGRESS MATEMATICA, ALGEBRA PRIMO ANNO, tomo n http://www.itistulliobuzzi.it/buzziwebsite/studenti/matematica/tomo%0_algebra%0buzzi%

Dettagli

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1)

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1) Soluzioni Foglio 1. Rette e piani. Esercizio 1. Se n è la normale al piano, sia c = n x 0. Dimostriamo prima che se x π, allora x soddisfa Si ha Sostituendo dentro (1) si ottiene n x + c = 0. (1) x = x

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

1 Rette nel piano ordinario. Rette e piani nello spazio ordinario

1 Rette nel piano ordinario. Rette e piani nello spazio ordinario 1 Rette nel piano ordinario. Rette e piani nello spazio ordinario 1.1 Vettori applicati Nel seguito denotiamo con P l insieme dei punti del piano ordinario, e con S l insieme dei punti dello spazio ordinario.

Dettagli

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame Testi di esercii di preparaione alla I prova in itinere Gli esercii in elenco sono in gran parte tratti da veccie prove d esame Eserciio Al variare di k discutere e ove possibile risolvere il sistema lineare

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

Appunti per la classe terza. Geometria Analitica

Appunti per la classe terza. Geometria Analitica Istituto Professionale L. Lagrange Torino A.S. 008-009 Appunti per la classe terza Geometria Analitica Autore: Di Liscia Francesca Indice 1 Piano cartesiano 1.1 Punto medio......................................

Dettagli

+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato

+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato Sistemi di equazioni SISTEMI LINEARI Un sistema di equazioni è un insieme di equazioni per le quali si cercano eventuali soluzioni comuni. +=7 =1 Ognuna delle due equazioni ha infinite soluzioni. La coppia

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2 8058874 - ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M-57 - ELETTRONICA M-59 - BIOFISICA APPLICATA M-58 - INFORMATICA Lezione n. 1i Equazioni (1) L identità è una eguaglianza tra due espressioni

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

I.I.S. G. CENA PROGRAMMA SVOLTO. Docente: SCARPA ANNA. Disciplina: MATEMATICA ALGEBRA RIPASSO/APPROFONDIMENTO

I.I.S. G. CENA PROGRAMMA SVOLTO. Docente: SCARPA ANNA. Disciplina: MATEMATICA ALGEBRA RIPASSO/APPROFONDIMENTO PROGRAMMA SVOLTO Anno scolastico: 2017-2018 Classe: 3 D SIA Docente: SCARPA ANNA Disciplina: MATEMATICA ALGEBRA RIPASSO/APPROFONDIMENTO SISTEMI di EQUAZIONI LINEARI * concetto di sistema * riduzione di

Dettagli

x + b! y + c! Osservazione: poiché ci sono infiniti piani ai quali appartiene una retta r, le equazioni non sono univocamente determinate.

x + b! y + c! Osservazione: poiché ci sono infiniti piani ai quali appartiene una retta r, le equazioni non sono univocamente determinate. 4 La retta in R 3 4 Le equazioni cartesiane di una retta Dati due piani Γ :ax +by +cz +d = 0 e Γ!: a! x + b! y + c! z + d! = 0 non paralleli tra loro, il luogo geometrico dei punti di intersezione tra

Dettagli

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE Leonardo da Vinci Martina Franca ANNO SCOLASTICO 2015/2016 Disciplina: MATEMATICA APPLICATA Classe : 3 ^ A A.F.M. Docente : Prof. GIANGASPERO Francesco Testo :

Dettagli

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo Algebra Lineare (Matematica C.I.), 12.11.13 Sistemi di equazioni lineari 1. Un equazione lineare in una incognita reale x e un equazione del tipo ax = b, dove a e b sono numeri reali dati; a e il coefficiente

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

Rette e piani nello spazio

Rette e piani nello spazio Rette e piani nello spazio Equazioni parametriche di una retta in R 3 : x(t) = x 0 + at r(t) : y(t) = y 0 + bt t R, parametro z(t) = z 0 + ct ovvero r(t) : X(t) = P 0 + vt, t R}, dove: P 0 = (x 0, y 0,

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2016/17 PROGRAMMAZIONE ANNUALE SEQUENZA DI LAVORO:

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2016/17 PROGRAMMAZIONE ANNUALE SEQUENZA DI LAVORO: ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE LICEO ECONOMICO SOCIALE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel.

Dettagli

In particolare, la forma esplicita dell equazione di una retta passante per l origine, diversa dall asse y, è:

In particolare, la forma esplicita dell equazione di una retta passante per l origine, diversa dall asse y, è: L RETT NEL PINO CRTESINO Ogni retta del piano cartesiano è identificata da un equazione, che si può presentare in diverse forme, tutte equivalenti tra loro. In particolare, l equazione di una retta si

Dettagli

PIANO DI STUDIO DELLA DISCIPLINA DISCIPLINA: MATEMATICA PIANO DELLE UDA 2 ANNO IPSIA SETTORE IP Anno 2016/2017

PIANO DI STUDIO DELLA DISCIPLINA DISCIPLINA: MATEMATICA PIANO DELLE UDA 2 ANNO IPSIA SETTORE IP Anno 2016/2017 DISCIPLINA: MATEMATICA PIANO DELLE 2 ANNO IPSIA SETTORE IP Anno 2016/2017 COMPETENZE della ABILITA n. 1 RECUPERO E POTENZIAMENTO Ore: 12 settembre forma grafica M 3 Individuare le strategie appropriate

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte

Dettagli

Esempio: Trovare le coordinate del punto medio del segmento di estremi. Applicando la formula, abbiamo che:

Esempio: Trovare le coordinate del punto medio del segmento di estremi. Applicando la formula, abbiamo che: IL PINO CRTESINO E L RETT Il punto medio di un segmento Il punto medio di un segmento è quel punto M che appartiene al segmento e ha la stessa distanza dagli estremi e del segmento. Dati i punti, il punto

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECN. TECNOLOGICO ELETTRONICA ELETTROTECNICA MATERIA MATEMATICA ANNO DI CORSO TERZO

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECN. TECNOLOGICO ELETTRONICA ELETTROTECNICA MATERIA MATEMATICA ANNO DI CORSO TERZO INDICE DELLE UFC DENOMINAZIONE 1 EQUAZIONI, DISEQUAZIONI, SISTEMI 2 GONIOMETRIA E TRIGONOMETRIA 3 GEOMETRIA ANALITICA E LE CONICHE TIPOLOGIA VERIFICHE Test a completamento Domande aperte Esercizi Problemi

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Erica Boatto I.T.I.S. V.Volterra San Donà di Piave Piero Fantuzzi I.T.I.S. V.Volterra San Donà di Piave 6 febbraio 009 Sommario Indice 1 SISTEMI DI EQUAZIONI LINEARI 1.1 Introduzione...................................

Dettagli

http://www.appuntielettro.altervista.org Possiamo associare a ogni punto di una retta orientata un numero reale Il piano cartesiano associamo a ogni punto del piano una coppia di numeri reali Un piano

Dettagli

ALGEBRA LINEARE PARTE III

ALGEBRA LINEARE PARTE III DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI

Dettagli

I sistemi lineari Prof. Walter Pugliese

I sistemi lineari Prof. Walter Pugliese I sistemi lineari Prof. Walter Pugliese Le equazioni lineari in due incognite Un equazione nelle incognite x e y del tipo #$ + &' = ) dove *,,, - sono numeri reali è un equazione lineare in due incognite

Dettagli

Sistemi di equazioni

Sistemi di equazioni Sistemi di equazioni 19 191 Equazione lineare in due incognite Definizione 191 Una equazione di primo grado (in n incognite) si chiama equazione lineare Problema 191 Determinare due numeri naturali la

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = =

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = = ESERCIZI PROPOSTI Risolvere i seguenti sistemi lineari )-0), utilizzando, dove possibile, sia il metodo di Cramer sia quello della matrice inversa, dopo aver analizzato gli esempi a)-d): 2x + + 4z 5 a)

Dettagli

1. LA GEOMETRIA ANALITICA

1. LA GEOMETRIA ANALITICA LA GEOMETRIA ANALITICA IL PIANO CARTESIANO Coordinate cartesiane Due rette orientate nel piano perpendicolari tra loro, aventi come punto d intersezione il punto O, costituiscono un sistema di riferimento

Dettagli

3A ALGEBRA Numeri relativi Esercizi supplementari di verifica 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione.

3A ALGEBRA Numeri relativi Esercizi supplementari di verifica 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. Numeri relativi Esercizi supplementari di verifica Esercizio Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F L insieme dei numeri interi relativi è un sottoinsieme dell

Dettagli

Sistemi lineari (di I grado)

Sistemi lineari (di I grado) Sistemi lineari (di I grado) Un sistema lineare è un insieme di equazioni lineari (di I grado), che devono essere verificate tutte contemporaneamente. Risolvere un sistema di equazioni vuol dire trovare

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Equazioni. Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof.

Equazioni. Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Equazioni Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Un equazione è un uguaglianza tra due espressioni

Dettagli

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine. LA RETTA La retta è un insieme illimitato di punti che non ha inizio, né fine. Proprietà: Per due punti del piano passa una ed una sola retta. Nel precedente modulo abbiamo visto che ad ogni punto del

Dettagli

Tutti gli esercizi della verifica di Ottobre più altri

Tutti gli esercizi della verifica di Ottobre più altri 1) Nell equazione generica della retta y = mx + q, che cosa rappresenta q? 2) Scrivere l equazione della retta che passa per il punto A(0;4) e perpendicolare a quella di equazione y = 1 3 x 5 ; b. tracciare

Dettagli

4 Sistemi di equazioni.

4 Sistemi di equazioni. 4 Sistemi di equazioni. Risolvere un sistema significa erminare le soluzioni comuni a tutte le equazioni che lo compongono. Il grado di un sistema è il prodotto dei gradi di tali equazioni. 4. Sistemi

Dettagli

L EQUAZIONE DI UNA RETTA CAPITOLO 3. IL PIANO CARTESIANO E LA RETTA

L EQUAZIONE DI UNA RETTA CAPITOLO 3. IL PIANO CARTESIANO E LA RETTA L EQUAZIONE DI UNA RETTA CAPITOLO 3. IL PIANO CARTESIANO E LA RETTA L EQUAZIONE DI UNA RETTA 2 /20 1. LE EQUAZIONI LINEARI DI DUE VARIABILI Un equazione lineare in due variabili x e y è un equazione di

Dettagli

CLASSI: SECONDE Materia: MATEMATICA Ore settimanali previste: 4

CLASSI: SECONDE Materia: MATEMATICA Ore settimanali previste: 4 CLASSI: SECONDE Materia: MATEMATICA Ore settimanali previste: 4 MACRO UNITÀ PREREQUISITI TITOLO UNITÀ DI APPRENDIMENTO COMPETENZE PREVISTE PERIODO CALCOLO LETTERALE, PRODOTTI NOTEVOLI 1. EQUAZIONI DI I

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 Classe 1A MODULO 1: I NUMERI NATURALI 1. Le operazioni definite nell insieme dei numeri

Dettagli

1. Le due rette y = 3x + 5 e y + 3x = 1. a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti.

1. Le due rette y = 3x + 5 e y + 3x = 1. a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti. 1. Le due rette y = 3x + 5 e y + 3x = 1 a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti. 2. L equazione x 2 = x + 2 a) ha per soluzioni x = 1 e x = 2 b) ha per soluzioni

Dettagli

La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : ax + by + c = 0 ( 1 ) Forma implicita

La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : ax + by + c = 0 ( 1 ) Forma implicita Prof. Marco La Fata La Retta nel piano Cartesiano La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : a + b + c = 0 ( ) Forma implicita Questa è in forma

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

CALCOLO LETTERALE Equazioni di I grado Disequazioni di I gr. Risolvere equazioni numeriche intere. Risolvere le equazioni fratte

CALCOLO LETTERALE Equazioni di I grado Disequazioni di I gr. Risolvere equazioni numeriche intere. Risolvere le equazioni fratte CALCOLO LETTERALE Frazioni algebriche Asse Matematico 20-25 Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica Scomporre un polinomio

Dettagli

x + hy + z = 1. 1 [10 punti] Dimostrare che, per ogni numeri naturale n 0, si ha 2 n+2 2n

x + hy + z = 1. 1 [10 punti] Dimostrare che, per ogni numeri naturale n 0, si ha 2 n+2 2n Dipartimento di Matematica e Informatica Anno Accademico 7-8 Corso di Laurea in Informatica (L-) Prova scritta di Matematica Discreta ( CFU) 7 Giugno 8 A [ punti] Dimostrare che, per ogni numeri naturale

Dettagli

Matematica Lezione 6

Matematica Lezione 6 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 6 Sonia Cannas 25/10/2018 Retta passante per un punto e direzione assegnata Data l equazione di una retta in forma esplicita y = mx

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite:

CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: CORS D LAUREA N MATEMATCA E FSCA FOGLO D ESERCZ # 1 GEOMETRA 1 Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: 2x + y = 4 x 2y = 6 x + 3y =

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 2009/2010. Soluzioni esercitazione 11/11/2009

Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 2009/2010. Soluzioni esercitazione 11/11/2009 Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 29/2 Soluzioni esercitazione //29 Esercizio. Risolvere, al variare del parametro reale λ, il seguente sistema lineare: x 2 y z = λ

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni

Dettagli