Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici."

Transcript

1 Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld Pistr più cld Acqu liquid fredd Acqu ghiccit Per il Primo Principio il fenomeno descritto qui sopr è descriviile come scmio di energi: se il clore psssse dll cqu (tempertur più ss) ll pistr (tempertur più lt), l energi dell cqu diminuiree e quell dell pistr umenteree.

2 qulità dell energi e il rendimento delle trsformzioni che vvengono nelle mcchine termiche. Per il primo principio tutte le energie hnno ugule qulità. In seguito d un cert trsformzione o d un serie di trsformzioni in un mcchin tutto il clore fornito può essere trsformto in lvoro. Clore, Mcchin termic voro, = Secondo il Primo Principio è sempre possiile che tutto il clore veng trsformto in lvoro: cioè che il rendimento di un trsformzione, si ess pert o ciclic, risulti pri uno. esperienz h invece mostrto che tle rendimento è pri uno solo per lcune prticolri trsformzioni perte e che invece è sempre minore di uno per tutte le trsformzioni cicliche. 2

3 Secondo Principio dell Termodinmic Il Secondo Principio dell Termodinmic si s sulle osservzioni condotte per oltre un secolo sul funzionmento dei motori termici e sulle mcchine frigorifere. Il Secondo Principio, l pri del Primo, h le crtteristiche di un postulto cioè dell enuncizione di un verità che viene ritenut tle fintnto che qulcuno non dimostrerà il contrrio. Il Secondo Principio si present in molteplici forme enunciti : ognun lo descrive d un prticolre punto di vist, m ognun di queste prticolri descrizioni permette di trrre tutte le indiczioni che sono contenute nelle ltre. e molteplici forme ssunte dll enuncito del Secondo Principio si rifnno, principlmente, gli enunciti originli espressi rispettivmente d ord Kelvin, Mx Plnck e Julius Clusius. 3

4 Motori Termici Per trsformre il clore in lvoro sono necessri degli opportuni dispositivi che vengono detti motori termici i quli hnno le seguenti crtteristiche: Funzionno secondo trsformzioni cicliche: ll fine di ogni ciclo l mcchin si ripresent nelle condizioni inizili pront per fornire ncor lvoro. Ricevono clore d un sorgente tempertur elevt: collettori solri, rucitori limentti d comustiili fossili, rettori nucleri. Convertono prte del clore ssorito in lvoro, sotto form d esempio di rotzione di un lero motore. Cedono l prte che non è possiile utilizzre del clore ssorito un sorgente tempertur ss: l ri tmosferic, l cqu di un fiume o del mre, etc. 4

5 Sorgenti di Clore sorgenti di clore corpi di mss tlmente grnde d poter cedere od ssorire un qulsisi quot di clore senz che l loro tempertur suisc vrizioni. Esempio: un processo di comustione, il sole, l ri tmosferic, l cqu di un lgo, del mre, di fld 5

6 Rppresentzione schemtic di un mcchin termic Sorgente A T = 0 = = 0 = - Sorgente B T < T 6

7 Secondo Principio secondo Kelvin-Plnck I risultti delle esperienze condotte nello sviluppo delle mcchine termiche hnno dimostrto prticmente che esiste un limite ll trsformzione di clore in lvoro, ed è impossiile convertire in lvoro, medinte un processo che operi con continuità, tutto il clore sottrtto d un sorgente. Sinteticmente questo è rissunto nell enuncito di Kelvin-Plnck del secondo principio: E impossiile costruire un mcchin opernte secondo un processo ciclico che trsformi in lvoro tutto il clore estrtto d un sol sorgente tempertur uniforme e costnte nel tempo. Sorgente A T uest mcchin non può funzionre! 7

8 Rendimento di un mcchin termic rendimento risultto ottenuto energi impiegt Sorgente A T Principio sistem chiuso e trsformzione ciclic DU = 0 = = Sorgente B T < T 8

9 Mcchine frigorifere e Pompe di clore E esperienz comune che il clore pss spontnemente d corpi tempertur elevt corpi ss tempertur. Per fre vvenire il processo contrrio è necessrio mettere punto degli opportuni dispositivi che vengono detti mcchine frigorifere o pompe di clore, i quli hnno le seguenti crtteristiche: Funzionno secondo trsformzioni termodinmiche cicliche: ll fine di ogni ciclo l mcchin si ripresent nelle condizioni inizili pront trsferire ncor clore. Assorono clore d un sorgente ss tempertur. Cedono il clore ssorito un sorgente tempertur elevt. Necessitno di un ulteriore quot di energi immess dll esterno sotto form di lvoro (o clore). 9

10 Rppresentzione schemtic di un mcchin frigorifer = 0 Sorgente A T = (-) = 0 = - Sorgente B T < T 0

11 Secondo Principio secondo Clusius esperienz dimostr che il pssggio spontneo di clore vviene solo d un corpo d lt tempertur d uno ss tempertur. Medinte l intervento dell uomo, o se si preferisce medinte l intervento di un mcchin, è invece possiile fr pssre del clore d corpi ss tempertur corpi d lt tempertur. Anche questo trsferimento forzto di clore h dei limiti rissunti nell enuncito del Secondo Principio che v sotto il nome di Clusius: E impossiile costruire un mcchin opernte secondo un processo ciclico il cui unico risultto si il trsferimento di clore d un corpo tempertur inferiore d un corpo tempertur superiore. uest mcchin non può funzionre! Sorgente A T Sorgente B T < T

12 Prestzione di un mcchin frigorifer COP F coefficiente di prestzione risultto ottenuto energi impiegt Sorgente A T COP PdC coefficiente di prestzione risultto ottenuto energi impiegt DU = = 0 Principio cicli Sorgente B T < T COP F COP PdC COP PdC = COP F + 2

13 Reversiilità e Irreversiilità dei Processi Un trsformzione reversiile è un trsformzione che può essere ripercors in senso inverso senz che se ne trovi trcci ne sul sistem che l esegue ne sull miente circostnte. Un trsformzione reversiile è un trsformzione idele nell qule gli ttriti sono nulli e gli scmi di energi possono essere invertiti di segno. Nell reltà ci si può solo vvicinre tle processo idele senz però mi relizzrlo completmente. e trsformzioni reversiili sono tuttvi di grnde utilità come strumento di confronto con le trsformzioni reli. e mcchine motrici (motori lterntivi, turine vpore o gs) che operno secondo cicli reversiili producono il mssimo lvoro possiile. e mcchine opertrici (compressori, ventiltori, pompe) che operno secondo cicli reversiili richiedono l minor quntità di lvoro possiile. unto più in un mcchin rele ci si vvicin un ciclo reversiile tnto mggiore srà il lvoro ottenuto d un mcchin motrice e minore il lvoro richiesto d un mcchin opertrice. e cuse che rendono le trsformzioni reli trsformzioni irreversiili sono le seguenti: presenz di ttrito: legto orgni in movimento; espnsioni e compressioni non qusi-sttiche scmi di clore ttrverso slti finiti di tempertur 3

14 Teoremi di Crnot Il rendimento di un motore termico irreversiile è sempre inferiore quello di uno che operi in mnier reversiile tr le stesse sorgenti di clore. I rendimenti di tutti i motori termici reversiili che operino tr le stesse sorgenti di clore sono gli stessi loro negzione è in contrsto con il secondo principio. Il rendimento di un ciclo reversiile dipende solo dlle temperture delle sorgenti: e quindi: rev f ( T, T ) f ( T, T ) 4

15 Rendimento di un motore reversiile ord Kelvin propose di scegliere l scl di tempertur in modo che vlesse l relzione più semplice tr quntità di clore scmite e temperture cui vviene lo scmio: T T E nt così l scl ssolut o Kelvin per le temperture e si può dire che il rendimento di un motore di Crnot o di un qulsisi ltro motore reversiile tr due sorgenti temperture T et vle: rev T T 5

16 Prestzioni di mcchin frigorifer e pomp di clore reversiili llo stesso modo per un mcchin frigorifer che oper secondo un ciclo reversiile vle llor l relzione: llo stesso modo per un pomp di clore che oper secondo un ciclo idele vle llor l relzione: F T T COP PdC T T COP 6

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

CONDIZIONAMENTO DELL ARIA

CONDIZIONAMENTO DELL ARIA Corso di Impinti Tecnici.. 009/00 Docente: Prof. C. Isetti CAPITOLO 7 7. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009 Corso di Fisic tecnic mbientle e Impinti tecnici.. 008/009 CAPITOLO. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del contenuto

Dettagli

Lavorazioni delle materie plastiche

Lavorazioni delle materie plastiche Lvorzioni delle mterie plstiche CONTENUTI Lvorzione delle mterie plstiche con prticolre rigurdo llo stmpggio iniezione PREREQUISITI Conoscenz delle proprietà dei mterili Conoscenz degli elementi costituenti

Dettagli

Gioco Interno Tipologie e Norme

Gioco Interno Tipologie e Norme Gioco Interno Tipologie e Norme Per gioco interno si intende l misur complessiv di cui un nello si può spostre rispetto ll ltro in direzione oppost. E necessrio distinguere fr gioco rdile e gioco ssile.

Dettagli

Accoppiamento pompa e sistema

Accoppiamento pompa e sistema Accoppimento pomp e sistem 1/9 Considerimo il sistem idrulico dell Fig. 1 costituito d due bcini, mbedue soggetti ll pressione tmosferic e collegti tr loro d un tubzione: si vuole portre l cqu dl bcino

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

CORSO DI RAGIONERIA A.A. 2013/2014

CORSO DI RAGIONERIA A.A. 2013/2014 CORSO DI RAGIONERIA A.A. 2013/2014 MODULO A LEZIONE N. 10 LE SCRITTURE CONTABILI Il lesing IL CONTRATTO DI LEASING Il lesing è un contrtto tipico (non previsto dl Codice Civile) per mezzo del qule l ziend

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA 2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA UMIDA 2.1. Ari Atmosferic L'ri tmosferic é costituit d un insieme di componenti gssosi (N 2, O 2, Ar, CO 2, Ne, He, ) e d ltre sostnze che possono presentrsi in

Dettagli

TECNOLOGIE PER L ACQUACOLTURA

TECNOLOGIE PER L ACQUACOLTURA Scuol di specilizzzione in: Allevmento, igiene, ptologi delle specie cqutiche e controllo dei prodotti derivti TECNOLOGIE PER L ACUACOLTURA PROF. MASSIMO LAZZARI Anno ccdemico 007-008 L movimentzione meccnic

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche.

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche. Prestzioni PONTI TERMICI Normlmente il clcolo delle dispersioni termiche di un edificio viene svolto considerndo che le temperture interne ed esterne sino costnti (Regime Termico tzionrio). Questo signific

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

ANCORANTI CHIMICI EV II TASSELLO CHIMICO STRUTTURALE. Scheda tecnica rev. 1

ANCORANTI CHIMICI EV II TASSELLO CHIMICO STRUTTURALE. Scheda tecnica rev. 1 Sched tecnic rev. 1 EV II TASSELLO CHIMICO STRUTTURALE ncornte chimico d iniezione in resin epossicrilto/vinilestere bicomponente d ltissim resistenz Che cos'è È un ncornte chimico d iniezione composto

Dettagli

Introduzione allo studio delle Macchine termiche. (parte quarta)

Introduzione allo studio delle Macchine termiche. (parte quarta) ITI OMAR Diprtimento di Meccnic Introduzione llo studio delle Mcchine termiche (prte qurt) Yunus A. Çengel, Michel A. Boles Thermodynmics: n engineering pproch 4th Edition McGrw-Hill Ari secc e ri tmosferic

Dettagli

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP NORMATIVA ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP A cur di Libero Tssell d Scuol&Scuol del 21/10/2003 Riferimenti normtivi: rt. 21 e 33 5.2.1992 n. 104 e successive modifiche ed integrzioni, Dlgs.

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

riqualificazione energetica degli edifici

riqualificazione energetica degli edifici riqulificzione energetic degli edifici Riqulificzione energetic degli edifici ostenibilità L impiego di risorse non rinnovbili e l produzione di inquinnti hnno superto l sogli dei limiti sostenibili dll

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2.

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2. Cp. 49 - Debiti verso bnche 49 DEBITI VERSO BANCHE Pssivo SP D.4 Prssi Documento OIC n. 12; Documento OIC n. 19 1 PREMESSA I debiti verso bnche ricomprendono tutti quei debiti in cui l controprte è un

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Produzione di entropia e Lavoro perduto in un semplice processo irreversibile.

Produzione di entropia e Lavoro perduto in un semplice processo irreversibile. Produzione di entropi e Loro perduto in un semplice processo irreersiile Frnco di Lierto Diprtimento di Scienze Fisiche niersità di Npoli Federico II INFN- Sezione di Npoli, nism-nr-infm, nità di Npoli

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

STRUMENTI DI MISURA TERMOIGROMETRICI. Esercizio sul dimensionamento termico di un condizionatore d'aria

STRUMENTI DI MISURA TERMOIGROMETRICI. Esercizio sul dimensionamento termico di un condizionatore d'aria Nome: MRCHESI GLORI N mtricol: 465 Dt: 0//00 Ore: 0.0 /.0 STRUMENTI DI MISUR TERMOIGROMETRICI Sommrio: ) Esercizio sul dimensionmento termico di un iziontore d'ri ) Comfort termoigrometrico ) Strumenti

Dettagli

Imparare: cosa, come, perché.

Imparare: cosa, come, perché. GIOCO n. 1 Imprre: cos, come, perché. L pprendimento scolstico non è solo questione di metodo di studio, m di numerose situzioni di tipo personle e di gruppo, oppure legte l contesto in cui pprendimo.

Dettagli

Scala di sicurezza, Palazzo della Ragione, Milano

Scala di sicurezza, Palazzo della Ragione, Milano Scl di sicurezz, Plzzo dell Rgione, Milno Er importnte che l scl fosse progettt in modo d essere legger, trsprente e visivmente utonom rispetto l contesto storico. In seguito ll intervento di conservzione

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate Lezione n. 7 Le strutture in cciio Le unioni bullonte Le unioni sldte Unioni Le unioni nelle strutture in cciio devono grntire un buon funzionmento dell struttur e l derenz dell stess llo schem sttico

Dettagli

DUOSTEEL GD. Canne Fumarie Doppia Parete Grandi Diametri Coibentazione 50 mm. Canne fumarie in acciaio Inox

DUOSTEEL GD. Canne Fumarie Doppia Parete Grandi Diametri Coibentazione 50 mm. Canne fumarie in acciaio Inox Cnne Fumrie Doppi Prete Grndi Dimetri Coientzione 50 mm Cnne fumrie in cciio Inox Cnne fumrie Doppi Prete Grndi Dimetri INDICE 1 Elemento diritto mm 500... pg. 3 2 Elemento diritto mm 1000... pg. 3 3 Elemento

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

Attuatori pneumatici fino 700 cm 2 Tipo 3271 e Tipo 3277 per montaggio integrato del posizionatore

Attuatori pneumatici fino 700 cm 2 Tipo 3271 e Tipo 3277 per montaggio integrato del posizionatore Attutori pneumtici fino cm Tipo e Tipo per montggio integrto del posiziontore Appliczione Attutore linere per il montggio su vlvole di regolzione, soprttutto per l Serie,, e vlvol microflusso Tipo dimensione

Dettagli

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine YOGURT FATTO IN CASAA CON YOGURTIERA Lo yogurt ftto in cs è senz ltro un modoo sno per crere un limento eccezionlee per l nostr slute. Ricco di ltticii iut intestino fermenti il nostroo lvorre meglioo

Dettagli

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8)

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8) COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionle 18 febbrio 2010, n. 8) N Prot. VARIAZIONE...del (d compilrsi cur dell ufficio competente) Al Comune di.. Il/L sottoscritto/: Cognome Nome Dt

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

SICU FORMULARIO PREVENZIONE INCENDI SICUREZZA PROGETTO - MATERIALI DI ALLESTIMENTO IMPIANTO ELETTRICO ALLEGATI PROSPETTO RIEPILOGATIVO

SICU FORMULARIO PREVENZIONE INCENDI SICUREZZA PROGETTO - MATERIALI DI ALLESTIMENTO IMPIANTO ELETTRICO ALLEGATI PROSPETTO RIEPILOGATIVO D restituire 60 giorni prim dell inizio dell evento PREVENZIONE INCENDI REZZA PROGETTO - MATERIALI DI ALLESTIMENTO IMPIANTO ELETTRICO ALLEGATI DATI DA COMPILARE OBBLIGATORIAMENTE A CURA DEL PARTECIPANTE:

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA Corso di lure in Ingegneri Meccnic Tesin del corso di TRASMISSIONE DEL CALORE Docente Prof. Ing. Gennro Cuccurullo Tesin n.7a Effetti termici del

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

Pareti verticali Cappotto esterno

Pareti verticali Cappotto esterno Preti verticli Cppotto esterno L isolmento termico dei fbbricti dll esterno, comunemente detto cppotto, h vuto le sue prime ppliczioni lcuni decenni f e ncor oggi costituisce uno dei sistemi di isolmento

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

Eccellente qualità delle immagini

Eccellente qualità delle immagini www. dr wi ng c d. c om/ pr i m p g i n t e r moc me r e. ht ml Eccellente qulità delle immgini Il sensore è il cuore dell termocmer. Testo ttribuisce un enorme vlore ll mssim qulità possibile. Testo 890

Dettagli

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario 58 Modulo 6 L rccolt bncri e il rpporto di conto corrente I destintri del Modulo sono gli studenti del quinto nno che, dopo ver nlizzto e ppreso le crtteristiche fondmentli dell ttività delle ziende di

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

La Logica BAN. Formalismo

La Logica BAN. Formalismo Network Security Elements of pplied Cryptogrphy nlisi e progetto di protocolli crittogrfici L logic N Principi di progettzione Csi di studio: Needhm-Schroeder, Otwy- Rees; SSL (old version); 509; GSM Il

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273 Attutori pneumtici 00, 00 e x 00 cm² Tipo Comndo mnule Tipo Appliczione Attutore linere per il montggio su vlvole di regolzione Serie 0, 0 e 0 Dimensione: 00 e 00 cm² Cors: fino 0 mm Gli ttutori pneumtici

Dettagli

Capitolo 6 Oscilloscopio analogico (parte II)

Capitolo 6 Oscilloscopio analogico (parte II) Appunti di Misure Elettriche Cpitolo 6 Oscilloscopio nlogico (prte II) Il tubo rggi ctodici...2 Grigli di controllo...3 Emissione termoelettronic...3 Anodi di ccelerzione e foclizzzione...4 Sistem di deflessione

Dettagli

MAURIZIO MARTINI ENZO DRAPELLI partners

MAURIZIO MARTINI ENZO DRAPELLI partners MAURIZIO MARTINI ENZO DRAPELLI prtners rgionieri commercilisti economisti d impres vldgno (vi) vi l. festri,15 tel. 0445/406758/408999 - fx 0445/408485 dueville (vi) - vi g. rossi, 26 tel. 0444/591846

Dettagli

Produzione di entropia e Lavoro perduto in un semplice processo irreversibile.

Produzione di entropia e Lavoro perduto in un semplice processo irreversibile. Produzione di entropi e Loro perduto in un semplice processo irreersiile Frnco di Lierto Diprtimento di Scienze Fisiche niersità di Npoli Federico II INFN- Sezione di Npoli, nism-nr-infm, nità di Npoli

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Desk CSS-KPMG Innovare la PA. Presentazione del progetto di ricerca Organization Review. Luciano Hinna

Desk CSS-KPMG Innovare la PA. Presentazione del progetto di ricerca Organization Review. Luciano Hinna Desk CSS-KPMG Innovre l PA Presentzione del progetto di ricerc Orgniztion Review Lucino Hinn Obiettivo del progetto Mettere punto un nuov metodologi, intes come strumento d consegnre lle pubbliche mministrzioni

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

Più intelligenza nella rete grazie all analisi in tempo reale dei dati provenienti da sistemi SCADA Mariano Marciano IBM GBS Senior Consultant

Più intelligenza nella rete grazie all analisi in tempo reale dei dati provenienti da sistemi SCADA Mariano Marciano IBM GBS Senior Consultant Più intelligenz nell rete grzie ll nlisi in tempo rele dei dti provenienti d sistemi SCADA Mrino Mrcino IBM GBS Senior Consultnt Novembre 2013 L Soluzione SmrtGridIntelligence L SoluzioneSmrt GridIntelligence

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

DICHIARO: Di voler riscuotere il prestito: in contanti presso l Istituto di Credito che effettua il servizio di Cassa per conto dell INPDAP

DICHIARO: Di voler riscuotere il prestito: in contanti presso l Istituto di Credito che effettua il servizio di Cassa per conto dell INPDAP io chiedo PROTOCOLLO INPDAP All'Inpdp - sede di Cod. 02010101 Io sottoscritto/ Acquisizione di ftti o stti del richiedente ttrverso l esibizione del suo documento di riconoscimento. (Art.45 del Testo Unico

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Elementi di stereochimica. La simmetria

Elementi di stereochimica. La simmetria Elementi di stereochimic L simmetri Tutto il corso di Stereochimic rgnic verte essenzilmente su due concetti fondmentli che sono quelli di chirlità e di stereogenicità. Prim di rrivre definire, comprendere

Dettagli

Tassi di cambio, prezzi e

Tassi di cambio, prezzi e Tssi di cmbio, prezzi e tssi di interesse 2009 1 Introduzione L relzione tr l ndmento del livello generle dei prezzi e i tssi di cmbio: l Prità dei Poteri di Acquisto Le relzione tr i tssi di cmbio e i

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

Convenzione sull'unificazione di taluni elementi del diritto dei brevetti d'invenzione

Convenzione sull'unificazione di taluni elementi del diritto dei brevetti d'invenzione Serie dei Trttti Europei - n 47 Convenzione sull'unificzione di tluni elementi del diritto dei revetti d'invenzione Strsurgo, 27 novemre 1963 Trduzione ufficile dell Cncelleri federle dell Svizzer Gli

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Quarta Esercitazione di Fisica I 1. Problemi Risolti

Quarta Esercitazione di Fisica I 1. Problemi Risolti Qurt Esercitzione di Fisic I 1 Problemi Risolti 1. Sul cruscotto pitto dell mi uto è ppoggito un libro di 1.5 kg il cui coefficiente di ttrito sttico con il pino d'ppoggio è µ = 0.3. mssim velocità secondo

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI"

ISTITUTO TECNICO INDUSTRIALE STATALE FERMI ISTITUTO TECNICO INDUSTIALE STATALE "EMI" TEVISO GAA NAZIONALE DI MECCANICA 212 ropost di soluzione rim rov cur di Benetton rncesco (vincitore edizione 211 unzionmento: L gru bndier girevole sopr riportt

Dettagli

Dalla condensazione del vapore acqueo si ricava tanto calore in più. Geminox a condensazione Dal ad oggi un evoluzione continua

Dalla condensazione del vapore acqueo si ricava tanto calore in più. Geminox a condensazione Dal ad oggi un evoluzione continua Geminox condenszione Dl d oggi un evoluzione continu 1974 Dll condenszione del vpore cqueo si ricv tnto clore in più Gli studi di Geminox sullo sfruttmento dell condenszione pplict lle cldie gs per Le

Dettagli

FASCICOLO TECNICO PRESTAZIONI ENERGETICHE SOLAI

FASCICOLO TECNICO PRESTAZIONI ENERGETICHE SOLAI Pgin di 7 Rel. ermic soli Fscicolo tecnico per il clcolo delle prestzioni energetiche di soli lstre trliccite ( predlles ) IN ACCORDO ALLA NORMA UNI EN ISO 6946:008 0 07.0.00 Rev. Dt Descrizione Redtto

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

il libro delle scienze

il libro delle scienze LUIGI LEOPARDI MARIATERESA GARIBOLDI LS NUOVO B A S E il liro delle scienze 3 LUIGI LEOPARDI MARIATERESA GARIBOLDI NUOVO LS B A S E 3 il liro delle scienze CON DOSSIER PER IL PORTFOLIO Sito internet http://www.grzntiscuol.it

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

INCENTIVI FISCALI RISPARMIO ENERGETICO AGEVOLAZIONI FISCALI IN TERMINI DI DETRAZIONI IRPEF / IRES DEL 65%

INCENTIVI FISCALI RISPARMIO ENERGETICO AGEVOLAZIONI FISCALI IN TERMINI DI DETRAZIONI IRPEF / IRES DEL 65% INCENTIVI FISCALI RISPARMIO ENERGETICO AGEVOLAZIONI FISCALI IN TERMINI DI DETRAZIONI IRPEF / IRES DEL 65% IN COSA CONSISTE? L gevolzione consiste nel riconoscimento di detrzioni dll impost IRPEF / IRES,

Dettagli

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITA DI APPRENDIMENTO Denominzione Compito-prodotto Competenze mirte Comuni/cittdinnz IL TEMPO PASSA IL MONDO GIRA REALIZZAZIONE DI

Dettagli

SERVIZIO DISTRIBUZIONE GAS METANO PREZZARIO DELLE ATTIVITA' ACCESSORIE

SERVIZIO DISTRIBUZIONE GAS METANO PREZZARIO DELLE ATTIVITA' ACCESSORIE SERVIZIO DISTRIBUZIONE GAS METANO PREZZARIO DELLE ATTIVITA' ACCESSORIE PERIODO DI VALIDITA' I corrispettivi indicti nel presente prezzrio si intendono vlidi nel periodo dl 1 Gennio 2009 l 31 Dicemre 2009

Dettagli

La fertilità del suolo e la qualità della sostanza organica

La fertilità del suolo e la qualità della sostanza organica Dniel Sid-Pullicino, Luisell Celi, Elisbett Brberis DiVPRA Settore di Chimic Agrri e Pedologi, Università degli Studi di Torino L fertilità del suolo e l qulità dell sostnz orgnic Sistemi colturli risicoli

Dettagli