Le Onde. Onde elastiche e loro proprietá

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le Onde. Onde elastiche e loro proprietá"

Transcript

1 Le Onde Capitolo 11 Le Onde Onde elastiche e loro proprietá Un onda é una perturbazione che si propaga attraverso lo spazio. Ad eccezione della radiazione elettromagnetica, ed a livello teorico della radiazione gravitazionale, che possono propagarsi nel vuoto, le onde esistono in un mezzo (che per deformazione é in grado di produrre forze elastiche di ritorno). Attraverso di esso esse possono viaggiare e trasferire energia da un punto all altro, senza che alcuna particella del mezzo venga dislocata permanentemente: non esiste, quindi, un trasporto di massa associato, ogni punto oscilla attorno a una posizione fissa. Le onde che si propagano in un mezzo elastico per cui sia verificata la legge di Hooke ( F = k x) si dicono elastiche. La sollecitazione applicata in un punto dello spazio in cui si propaga l onda produce un trasporto di energia da un punto all altro dello spazio. Definiamo quindi onda elastica, la propagazione dell energia elastica funzione delle coordinate spaziali e del tempo, che sfrutti le proprietá elastiche del mezzo in cui si propaga, pur senza trasporto di materia. Queste possono essere divise in due tipologie : onde trasversali ed onde longitudinali. Le onde trasversali si propagano in una direzione perpendicolare alle oscillazioni delle particelle del mezzo di propagazione (come accade ad esempio nel far vibrare una corda) mentre quelle longitudinali si propagano lungo la stessa direzione di oscillazione delle particelle del mezzo (come ad esempio nel caso di una molla in oscillazione su un piano).

2 Capitolo undicesimo Grandezze caratteristiche delle onde Le grandezze caratteristiche delle onde sono la lunghezza d onda λ, la frequenza ν = 1 T che rappresenta il numero di oscillazioni al secondo (il periodo T é il tempo in cui l onda compie un oscillazione completa pari ad una lunghezza d onda) e l ampiezza dell onda A che rappresenta il valore massimo che puó assumere la perturbazione in un punto del mezzo. L equazione dell onda é quella tipica del moto armonico ovvero del tipo y = Asin( 2π λ x). Si noti come 2π λ velocitá sia data da v = λ T. = ω e come ovviamente la Un ultima nota riguarda il concetto di fronte d onda ovvero l insieme dei punti raggiunti dalla perturbazione in uno stesso istante (onde circolari o sferiche) e di raggio dell onda che corrisponde al raggio di queste circonferenze o sfere disegnate. Si noti come le onde parallele si possano considerare onde sferiche o circolari generate all infinito in cui i raggi disegnano la direzione di propagazione. Riflessione e rifrazione delle onde La riflessione si verifica quando un onda (una radiazione luminosa, un onda meccanica o qualunque altra grandezza fisica che si propaghi nello spazio con moto ondulatorio), incidendo su una superficie di separazione tra due mezzi diversi, viene in parte o totalmente rimbalzata all indietro. Nella maggioranza dei casi un fascio di onde viene riflesso solo in parte; la parte rimanente viene trasmessa al di lá della superficie, subendo il fenomeno della rifrazione. In altre parole, quando un onda incontra sul suo cammino una superficie di separazione tra due mezzi diversi, si generano due nuove onde:

3 Le Onde una (l onda riflessa) che si propaga all indietro, nel mezzo da cui proviene l onda incidente, e un altra (l onda rifratta) che penetra nel secondo mezzo. L energia trasportata dall onda incidente viene ripartita tra l onda rifratta e l onda riflessa secondo una proporzione che dipende dalle proprietá dei due mezzi, quantificate da un parametro detto indice di rifrazione. Nel caso di una superficie perfettamente riflettente come uno specchio la riflessione é quasi totale e la maggior parte dell energia viene trasferita all onda riflessa; nel caso invece di un mezzo rifrangente, come il vetro o l acqua, gran parte dell energia viene trasmessa e il mezzo appare trasparente. Il fenomeno della riflessione é particolarmente studiato per le onde luminose ma anche quelle sonore ne risentono ad esempio con l eco. Interferenza delle onde Il fenomeno dell interferenza accade quando si sovrappongono due onde differenti con stessa frequenza che appunto interferiscono. Questo fenomeno puó essere di tipo costruttivo dove l ampiezza delle onde si somma o distruttivo quando le ampiezze si sottraggono (fenomeno che avviene quando le due onde sono rispettivamente in fase o sfasate di π).un analisi occurata richiederebbe degli strumenti di analisi superiori che per ragioni di semplicitá non si possono qui trattare (Serie di Fourier). Il suono Il suono é la sensazione data dalla vibrazione di un corpo in oscillazione. Tale vibrazione, che si propaga nell aria o in un altro mezzo elastico, raggiunge l orecchio che, tramite un complesso meccanismo interno, é responsabile della creazione di una sensazione uditiva direttamente cor-

4 Capitolo undicesimo relata alla natura della vibrazione. Come tutte le onde, anche quelle sonore sono caratterizzate da una frequenza (che nel caso del suono é in diretta relazione con la percezione dell altezza) e da un intensitá (che é in diretta relazione con il cosiddetto volume del suono). Inoltre, caratteristica saliente delle onde sonore é la forma d onda stessa, che rende in gran parte ragione delle differenze cosiddette di timbro che si percepiscono tra diverse tipologie di suono. In pratica il timbro é quella caratteristica del suono che nel caso della musica fa distinguere un tipo di strumento dall altro. La velocitá di propagazione del suono varia a seconda del mezzo e della temperatura ma nell aria é di circa 330 m s Effetto Doppler L effetto Doppler é un cambiamento apparente della frequenza o della lunghezza d onda di un onda percepita da un osservatore che si trova in movimento rispetto alla sorgente delle onde. quelle onde che si trasmettono in un mezzo, come le onde sonore, la velocitá dell osservatore e dell emettitore vanno considerate in relazione a quella del mezzo in cui sono trasmesse le onde. L effetto Doppler totale puó quindi derivare dal moto di entrambi, ed ognuno di essi é analizzato separatamente. Oggi é molto facile constatare l effetto Doppler: basta ascoltare la differenza nel suono emesso dalla sirena di un mezzo di soccorso quando si avvicina e quando si allontana. L effetto piú evidente con mezzi molto veloci. É importante notare che la frequenza del suono emesso dalla sorgente non cambia nel sistema di riferimento solidale alla sorgente. Se la sorgente si sta invece muovendo nella nostra direzione, di onde ne riceveremo un numero maggiore perché esse saranno meno spaziate. Al contrario, se si sta allontanando ne riceveremo di meno. Ció che cambia é quindi la frequenza nel sistema di riferimento del rilevatore; come conseguenza, l altezza del suono percepito cambia.se una sorgente in movimento sta emettendo onde con una frequenza f 0, allora un osservatore stazionario (rispetto al mezzo di trasmissione) percepirá le onde con una v frequenza f data da: f = f 0 dove v é la velocitá delle onde nel mezzo e v s,r é la velocitá v v s,r della sorgente rispetto al mezzo (considerando solo la direzione che unisce sorgente ed osservatore), positiva se verso l osservatore, e negativa se nella direzione opposta). Per Un analisi simile per un osservatore in movimento e una sorgente stazionaria fornisce la frequenza osservata (la velocitá dell osservatore é indicata come v 0 ) : f = f 0 (1 + v 0 v ) In generale, la frequenza osservata é data da: f = f 0 (1 + v + v m v 0 ) dove v 0 rappresenta la velocitá dell osservatore, v s quella della sorgente v + v m v s

5 Le Onde, v m é la velocitá del mezzo, e tutte le velocitá sono positive se nella stessa direzione lungo cui si propaga l onda, o negative se nella direzione opposta. Cenni sugli ultrasuoni Gli ultrasuoni sono delle onde meccaniche sonore. A differenza dei fenomeni acustici propriamente detti le frequenze che caratterizzano gli ultrasuoni sono superiori a quelle mediamente udibili da un orecchio umano. La frequenza convenzionalmente utilizzata per discriminare onde soniche da onde ultrasoniche é fissata in 20 khz. Lo stesso termine ultrasuono chiaramente indica ció che é al di lá (ultra) del suono, identificando con suono solo il fenomeno fisico udibile. Come ogni altro tipo di fenomeno ondulatorio gli ultrasuoni sono soggetti a fenomeni di riflessione, rifrazione e diffrazione e possono essere definiti mediante parametri quali la frequenza, la lunghezza d onda, la velocitá di propagazione, l intensitá (misurata in decibel [db] ), l attenuazione (dovuta all impedenza acustica del mezzo attraversato)... Nonostante, come detto, l essere umano, non sia in grado di udire gli ultrasuoni, altri animali hanno tale capacitá. Ad esempio i cani (per i quali sono in commercio appositi fischietti di richiamo agli ultrasuoni), i delfini e le balene che li usano per comunicare tra loro e i pipistrelli che li usano per vedere gli ostacoli mentre volano di notte. Gli ultrasuoni trovano utilizzo per lo piú in campo medico ed industriale essendo ampiamente utilizzati nelle ecografie, nei controlli non distruttivi e in molti apparecchi utilizzati per la pulizia superficiale di oggetti di piccole dimensioni.

6 Capitolo undicesimo Eco e riverbero In fisica e in acustica l eco é un fenomeno prodotto dalla riflessione di onde sonore contro un ostacolo che vengono a loro volta nuovamente percepite dall emettitore piú o meno immutate e con un certo ritardo rispetto al suono diretto. Tale ritardo non dev essere inferiore ad 1/10 di secondo. Al di sotto di tale valore non si puó piú parlare di eco ma di riverbero. Un tipico esempio di riverbero é quello prodotto in una stanza dalla riflessione di onde sonore sulle pareti perimetrali. Si parla propriamente di eco quando le singole riflessioni dell onda sonora sono percepite distintamente dall ascoltatore. In termini piú generali, l eco puó essere definita come un onda che viene riflessa da una discontinuitá nel mezzo di propagazione, e che ritorna con una intensitá e ritardo sufficiente per essere percepita. L intensitá viene generalmente misurata in decibel [db]. Un fenomeno fondamentale della propagazione del suono é la riflessione che si determina quando l onda sonora incontra un ostacolo e torna indietro. Si individuano cosí due onde: l onda incidente e l onda riflessa. La riflessione puó avvenire in due modi: come riverbero e come eco. Si ha riverbero quando l onda incidente si confonde nell orecchio dell ascoltatore con l onda riflessa, mentre si ha eco quando le due onde risultano distinte. Perché si formi l eco é necessario che la distanza tra la sorgente sonora e l ostacolo sia di almeno 17 metri. Come arriviamo a questo calcolo? Il suono si propaga nell aria a 20 o a 340 m al secondo. Per distinguere con chiarezza due suoni é necessario che essi distino tra loro almeno 1/10 di secondo. Tale intervallo di propagazione in aria corrisponde alla distanza di 34 metri, cioé 17 metri dalla fonte sonora all ostacolo e 17 per il percorso inverso. Se la distanza é inferiore a 17 metri si ha il riverbero. I battimenti Supponiamo di avere due corpi che vibrano simultaneamente, i cui suoni si possano rappresentare con onde sinusoidali con la stessa frequenza e la stessa ampiezza. Queste due onde possono sovrapporsi in diverse maniere: in fase (interferenza costruttiva), in opposizione di fase (interferenza distruttiva), o in una via di mezzo. Essendo il suono risultante la somma dei due suoni, nel primo caso questo sará identico ai primi due, ma di ampiezza doppia (le creste si sommano e le valli si sommano); nel secondo caso non si avrá alcun suono risultante (le creste e le valli si compensano in ogni punto annullandosi tra di loro); nel terzo si avrá un suono di intensitá intermedia, a sec-

7 Le Onde onda di quanto é lo sfasamento tra i due suoni iniziali. Naturalmente, avendo i due suoni la stessa frequenza, lo sfasamento sará costante nel tempo: se ad esempio la prima cresta del primo suono é perfettamente sovrapposta alla prima cresta del secondo, lo stesso avverrá per le seconde creste, per le terze, e cosí via (analogamente nel caso di sfasamento arbitrario). Supponendo invece che le due frequenze non siano proprio identiche, ma che ci sia una piccola differenza tra di esse, lo sfasamento questa volta non sará piú costante, ma varierá nel tempo: se ad esempio le prime creste dei due suoni coincidevano perfettamente (l intensitá totale quindi era il doppio), le seconde non saranno perfettamente sovrapposte, perché una arriverá un pó prima dell altra; per le terze creste questa differenza di fase sará ancora piú marcata e cosí via, fino a quando la cresta del primo suono non sará sovrapposta a una valle del secondo: i due suoni sono passati in opposizione di fase, e l intensitá totale é zero. Procedendo ancora in maniera analoga, dopo un certo numero di periodi (dipendente dalla differenza relativa tra le due frequenze iniziali) i due suoni ritorneranno in fase. In altri termini si hanno battimenti quando lo sfasamento (e quindi il tipo di interferenza) tra due suoni di frequenze simili varia nel tempo. Un luogo e un momento in cui i battimenti si possono sentire chiaramente é l accordatura dei vari strumenti di un orchestra a partire dal la del diapason o del violino solista. In questo caso, abbiamo molte note suonate dai vari strumenti, che inizialmente saranno vicine al LA ma non esattamente coincidenti. Il battimento é anzi il modo con cui in pratica avviene l accordatura : quando non lo si sente piú allora le frequenze delle note sono identiche. Suonando due note contemporaneamente, l orecchio percepisce note aggiuntive di varie frequenze pari ad opportune somme e differenze delle due note emesse: si parla in questi casi di suoni di combinazione. Fra questi il piú importante da un punto di vista pratico é il cosiddetto terzo suono di Tartini, scoperto appunto dal Tartini nel 700. Il celebre violinista constató infatti che suonando un bicordo ad un intervallo di 5 a (ovvero con rapporto di frequenze 3:2) si sentiva al basso un altra nota la cui frequenza corrispondeva a un numero di vibrazioni pari alla differenza fra quelle dei due suoni originari. Cosí, ad esempio, se un suono aveva 900 vibrazioni e l altro 600, il suono ulteriore che si sentiva aveva 300 vibrazioni al secondo ed era, quindi, di un ottava piú grave. La luce Il termine luce si riferisce alla porzione dello spettro elettromagnetico visibile dall occhio umano, ed é approssimativamente compresa tra 400 e 700 nanometri di lunghezza d onda, ovvero tra 750

8 Capitolo undicesimo e 428 THz di frequenza. Questo intervallo coincide con la regione di massima emissione da parte del sole. I limiti dello spettro visibile all occhio umano non sono uguali per tutte le persone, ma variano soggettivamente e possono raggiungere i 380 nanometri, avvicinandosi agli ultravioletti, e i 730 nanometri avvicinandosi agli infrarossi. La luce, come tutte le onde elettromagnetiche, interagisce con la materia. I fenomeni piú comuni osservabili sono: l assorbimento, la trasmissione, la riflessione, la rifrazione e la diffrazione. Sebbene nell elettromagnetismo classico la luce sia descritta come un onda, l avvento della meccanica quantistica agli inizi del XX secolo ha permesso di capire che questa possiede anche proprietá tipiche delle particelle e di spiegare fenomeni come l effetto Compton. Nella fisica moderna la luce (e tutta la radiazione elettromagnetica) viene descritta come composta da quanti del campo elettromagnetico chiamati fotoni. Le sorgenti della luce possono essere di vario tipo ma comunque distinguibili in monocromatiche e policromatiche. Un esempio delle prime potrebbe essere una lampada al sodio di quelle usate in laboratorio mentre nel caso delle seconde la prima cosa che mi viene in mente é il sole la cui luce bianca é sostanzialmente la somma di piú colori (quelli dell arcobaleno). I corpi poi possono distinguersi in opachi e trasparenti : i primi danno vita a vari fenomeni poiché in parte assorbono la luce mentre i secondi ne lasciano passare la quasi totalitá. La luce poi si propaga secondo linee rette da cui gli studi fisici della cosiddetta ottica geometrica. La velocitá di propagazione della luce nel vuoto si considera costante e viene chiamata c ed ha un valore pari a Km/s ovvero la luce farebbe oltre sette giri della terra in un secondo! La riflessione Le leggi della riflessione stabiliscono quali sono le relazioni geometriche che sussistono tra l onda incidente e quella riflessa rispetto alla superficie di separazione tra i due mezzi. La prima legge afferma che l onda incidente, l onda riflessa e la retta normale alla superficie giacciono tutte su uno stesso piano. La seconda dice che se un onda incide obliquamente su una superficie, l onda riflessa se ne allontana in direzione simmetrica; in termini matematici, afferma che l angolo di incidenza é uguale all angolo di riflessione dove per angolo di incidenza si intende quello formato dall onda incidente con la retta normale alla superficie di separazione tra i due mezzi, e per angolo di riflessione l angolo formato dall onda riflessa con la stessa normale.

9 Le Onde La rifrazione La rifrazione é un fenomeno fisico che si verifica quando un onda si trova a superare la superficie di separazione tra due mezzi con proprietá diverse: l onda non procede sul suo cammino in linea retta, ma viene deviata di un angolo che dipende dalla sua inclinazione iniziale rispetto alla superficie di incidenza e dalle proprietá dei mezzi in questione. La prima legge della rifrazione, analoga a quella della riflessione, afferma che l onda incidente, l onda rifratta e la retta normale alla superficie di separazione tra i due mezzi giacciono tutte su uno stesso piano. La seconda legge, detta legge di Snell, stabilisce la relazione che sussiste tra gli angoli di incidenza e di rifrazione, date le proprietá ottiche dei mezzi considerati: in termini matematici, afferma che il rapporto tra il seno trigonometrico dell angolo di incidenza e il seno dell angolo di rifrazione é uguale al rapporto tra l indice di rifrazione assoluto del secondo mezzo e quello del primo mezzo, due parametri che rendono conto delle proprietá ottiche di ciascuno dei mezzi considerati in formula cioé senα in = n 2 senα n 1 rifr Il comportamento della luce nell attraversamento di due mezzi con proprietá ottiche distinte trova una spiegazione nel principio di Fermat del minor tempo. Tale principio, elaborato dal matematico francese Pierre de Fermat nel XVII secolo, afferma che la luce, nel passare da un punto A a un punto B percorre, tra tutti i cammini possibili, il piú conveniente in termini di tempo, quello cioé che richiede il minor tempo possibile. Se i punti A e B si trovano entrambi nello stesso mezzo e questo é omogeneo, il cammino piú breve possibile é il segmento di retta AB; se invece il punto A si trova, ad esempio, nell aria, e il punto B nell acqua, la luce si propaga in linea retta fino alla superficie di separazione aria-acqua e poi devia nel passaggio al secondo mezzo; il cammino da A a B é quindi una linea spezzata, costituita da due segmenti di retta consecutivi. La deviazione si deve al fatto che la velocitá di propagazione della luce varia al variare del mezzo: é maggiore nei mezzi meno densi e minore in quelli piú densi. Quindi nel passare da una sostanza meno densa a una piú densa, il raggio di luce si inclina in modo da ridurre il cammino da percorrere a velocitá

10 Capitolo undicesimo inferiore e da impiegare, come prescritto dal principio di Fermat, il minor tempo possibile. proprietá ottiche di un mezzo sono quantificate da un parametro detto indice di rifrazione assoluto. Si tratta di un numero puro, caratteristico di ogni mezzo, che assume il valore 1 per il vuoto e valori superiori per qualunque altro mezzo materiale. Esso rappresenta il fattore di cui si riduce la velocitá di propagazione della luce (e di qualunque altro tipo di radiazione elettromagnetica) quando questa viaggia in un mezzo diverso dal vuoto, rispetto al valore che ha nel vuoto. Vale infatti la relazione v = c n, dove n é appunto l indice di rifrazione assoluto del mezzo considerato. In genere, l indice di rifrazione assoluto dei gas non si discosta di molto dall unitá (quello dell aria 1,000293); quello dei liquidi e dei solidi varia invece da un minimo di 1,3 a un massimo di circa 2,8. In realtá, l indice di rifrazione assoluto non ha un valore costante, ma varia secondo la lunghezza d onda della radiazione considerata. Ció significa che, se un fascio di luce bianca attraversa una superficie di separazione tra due mezzi, ogni sua componente monocromatica (ogni onda di una determinata lunghezza d onda, e quindi di colore diverso) viene deviata a un angolo leggermente diverso. É per questo che, quando un fascio di luce bianca attraversa un prisma di vetro, ne emerge un fascio colorato, in cui le singole componenti cromatiche sono ben distinguibili. Si tratta del principio che spiega il fenomeno della dispersione della luce e, piú in generale, di tutta la radiazione elettromagnetica. Le Angolo limite e riflessione totale In generale, all aumentare dell angolo di incidenza aumenta in proporzione anche l angolo di rifrazione. Nel passaggio da un mezzo piú denso a uno meno denso, l angolo di rifrazione é maggiore di quello

11 Le Onde di incidenza (la luce si discosta dalla retta normale alla superficie); esiste quindi la possibilitá che, in corrispondenza di un certo angolo di incidenza, l angolo di rifrazione assuma il valore limite di 90 0 e il raggio rifratto corra parallelamente alla superficie di separazione tra i due mezzi. Il corrispondente angolo di incidenza si dice allora angolo limite, e rappresenta l angolo minimo a partire dal quale si produce il fenomeno della riflessione totale : il raggio incidente non passa nel secondo mezzo, ma viene interamente riflesso nel primo mezzo.

12 Capitolo undicesimo Prisma ottico e dispersione della luce In ottica la dispersione é un fenomeno che causa la separazione di un onda in componenti spettrali con diverse lunghezze d onda, a causa della dipendenza della velocitá dell onda dalla lunghezza d onda. É spesso descritta in onde luminose, ma puó avvenire in ogni tipo di onda che interagisce con un mezzo o che puó essere confinata in una guida d onda, come le onde sonore. La dispersione é anche chiamata dispersione cromatica per enfatizzare la sua dipendenza dalla lunghezza d onda. La dispersione della luce nel vetro di un prisma é usata per costruire spettrometri e spettroradiometri. Sono utilizzati anche reticoli olografici, poiché consentono una discriminazione piú accurata delle lunghezze d onda. La dispersione nelle lenti produce l aberrazione cromatica, un effetto indesiderato che puó distorcere la immagini in microscopi, telescopi ed obiettivi fotografici. Vediamone ora gli aspetti matematici : dalla legge di Snell si puó vedere che l angolo di rifrazione della luce in un prisma dipende dall indice di rifrazione del materiale di cui é composto il prisma. Dato che l indice di rifrazione varia in dipendenza dalla lunghezza d onda, ne segue che anche l angolo con cui la luce viene rifratta varia con la lunghezza d onda, causando una separazione angolare dei colori nota anche come dispersione angolare. Per la luce visibile, la maggior parte dei materiali trasparenti ha: 1 < n(λ rosso ) < n(λ giallo ) < n(λ blu )... cioé l indice di rifrazione n decresce all aumentare della lunghezza d onda λ. In questo caso il mezzo si dice avere dispersione normale. Al contrario se l indice cresce al crescere della lunghezza d onda, il mezzo ha dispersione anomala. All interfaccia di un tale materiale con l aria o con il vuoto la legge di Snell prevede che la luce incidente con un angolo θ rispetto alla normale, venga rifratto con un angolo arcsin(sin(θ)/n). Quindi la luce blu, con un indice di rifrazione piú alto, verrá inclinata maggiormente rispetto alla luce rossa, creando il ben noto arcobaleno.

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico Università degli studi di Messina facoltà di Scienze mm ff nn Progetto Lauree Scientifiche (FISICA) Prisma ottico Parte teorica Fenomenologia di base La luce che attraversa una finestra, un foro, una fenditura,

Dettagli

OTTICA TORNA ALL'INDICE

OTTICA TORNA ALL'INDICE OTTICA TORNA ALL'INDICE La luce è energia che si propaga in linea retta da un corpo, sorgente, in tutto lo spazio ad esso circostante. Le direzioni di propagazione sono dei raggi che partono dal corpo

Dettagli

Qualche semplice considerazione sulle onde di Daniele Gasparri

Qualche semplice considerazione sulle onde di Daniele Gasparri Qualche semplice considerazione sulle onde di Daniele Gasparri Le onde sono delle perturbazioni periodiche che si propagano nello spazio; quasi sempre (tranne nel caso della luce) si ha un mezzo che permette

Dettagli

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni?

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? La natura della luce Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? Se si potesse fotografare un fotone in un certo istante vedremmo una deformazione

Dettagli

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari.

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari. Spettrofotometria. Con questo termine si intende l utilizzo della luce nella misura delle concentrazioni chimiche. Per affrontare questo argomento dovremo conoscere: Natura e proprietà della luce. Cosa

Dettagli

PROGRAMMA OPERATIVO NAZIONALE

PROGRAMMA OPERATIVO NAZIONALE PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio Ottica geometrica Sommario 1) Cos è la luce

Dettagli

Ottica fisiologica (2): sistemi ottici

Ottica fisiologica (2): sistemi ottici Ottica fisiologica (2): sistemi ottici Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it http://boccignone.di.unimi.it/pmp_2014.html

Dettagli

Caratteristiche del suono

Caratteristiche del suono Suono È dovuto all'interazione tra onde e corpo umano (orecchio) Le onde sono longitudinali e provocano spostamento delle molecole e variazione della pressione Si propagano nell'aria, nell'acqua e in molti

Dettagli

28/05/2009. La luce e le sue illusioni ottiche

28/05/2009. La luce e le sue illusioni ottiche La luce e le sue illusioni ottiche Cosa si intende per raggio luminoso? Immagina di osservare ad una distanza abbastanza elevata una sorgente di luce... il fronte d onda potrà esser approssimato ad un

Dettagli

Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose.

Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose. Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose. 2.1 Spettro di emissione Lo spettro di emissione di

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

Esecuzione: Ho indossato gli occhiali ( che funzionano come un prisma di vetro), quindi ho osservato una fonte di luce

Esecuzione: Ho indossato gli occhiali ( che funzionano come un prisma di vetro), quindi ho osservato una fonte di luce Esperimento 1: Dispersione della luce Materiali e strumenti: Occhiali speciali, luce Esecuzione: Ho indossato gli occhiali ( che funzionano come un prisma di vetro), quindi ho osservato una fonte di luce

Dettagli

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA Poiché la luce è energia trasportata da oscillazioni del campo elettrico (fotoni) e la materia è fatta di particelle elettricamente cariche (atomi

Dettagli

Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini

Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini SSIS indirizzo Fisico - Informatico - Matematico 2 anno - a.a.. 2006/2007 Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini LA LUCE La luce è un onda elettromagnetica Il principio

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Un onda e.m. e un onda trasversa cioe si propaga in direzione ortogonale alle perturbazioni ( campo elettrico e magnetico) che l hanno generata. Nel vuoto la velocita di propagazione

Dettagli

4 La Polarizzazione della Luce

4 La Polarizzazione della Luce 4 La Polarizzazione della Luce Per comprendere il fenomeno della polarizzazione è necessario tenere conto del fatto che il campo elettromagnetico, la cui variazione nel tempo e nello spazio provoca le

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme Da Newton a Planck Meccanica classica (Newton): insieme La struttura dell atomo di leggi che spiegano il mondo fisico fino alla fine del XIX secolo Prof.ssa Silvia Recchia Quantomeccanica (Planck): insieme

Dettagli

LA TERMOGRAFIA SPETTRO ONDE ELETTROMAGNETICHE

LA TERMOGRAFIA SPETTRO ONDE ELETTROMAGNETICHE SPETTRO ONDE ELETTROMAGNETICHE La radiazione elettromagnetica è un mezzo di trasmissione dell energia sotto forma di onde aventi entrambe le componenti elettriche e magnetiche. La sequenza ordinata delle

Dettagli

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica.

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica. FOTODIDATTICA CONOSCERE LA LUCE Le caratteristiche fisiche, l analisi dei fenomeni luminosi, la temperatura di colore. Iniziamo in questo fascicolo una nuova serie di articoli che riteniamo possano essere

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Prof. Gian Piero Pugliese Lezioni di Fisica

Prof. Gian Piero Pugliese Lezioni di Fisica Prof. Gian Piero Pugliese Lezioni di Fisica Il miraggio Fin dai tempi più remoti, il miraggio è stato un fenomeno che ha destano nell uomo paura e al tempo stesso meraviglia, proprio perché non conosciuto

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Suono: aspetti fisici. Tutorial a cura di Aldo Torrebruno

Suono: aspetti fisici. Tutorial a cura di Aldo Torrebruno Suono: aspetti fisici Tutorial a cura di Aldo Torrebruno 1. Cos è il suono Il suono è generalmente prodotto dalla vibrazione di corpi elastici sottoposti ad urti o sollecitazioni (corde vocali, corde di

Dettagli

Dai colori alle stelle: un excursus tra Fisica e Ottica

Dai colori alle stelle: un excursus tra Fisica e Ottica Dai colori alle stelle: un excursus tra Fisica e Ottica Martina Giordani Facoltà di Scienze matematiche, fisiche e naturali Corso di Laurea in Ottica e Optometria Federica Ricci Facoltà di Scienze matematiche,

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 La mansarda Per ultimare l edificazione di una villetta occorre costruire il tetto a due spioventi sopra la mansarda Come dato di progetto è noto quanto segue: considerata

Dettagli

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE Nell ultima notte di osservazione abbiamo visto bellissime immagini della Galassia, delle sue stelle e delle nubi di gas che la compongono.

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 6: Onde e Radiazione Elettromagnetica

CdL Professioni Sanitarie A.A. 2012/2013. Unità 6: Onde e Radiazione Elettromagnetica L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Unità 6: Onde e Radiazione Elettromagnetica Onde e radiazione elettromagnetica Natura delle onde Ampiezza,

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

Matematica e teoria musicale 1

Matematica e teoria musicale 1 Matematica e teoria musicale 1 Stefano Isola Università di Camerino stefano.isola@unicam.it Il suono Il fine della musica è dilettare e muovere in noi diversi sentimenti, il mezzo per raggiungere tale

Dettagli

LE ONDE. Le onde Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna gen-08. pag.1

LE ONDE. Le onde Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna gen-08. pag.1 LE ONDE Fenomeni ondulatori Periodo e frequenza Lunghezza d onda e velocità Legge di propagazione Energia trasportata Onde meccaniche: il suono Onde elettromagnetiche Velocità della luce Spettro elettromagnetico

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.2 Riflettendo sulla sensazione di calore che proviamo quando siamo esposti ad un intensa sorgente luminosa, ad esempio il Sole, è naturale pensare alla luce

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La misura della distanza

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La misura della distanza Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento La misura della distanza Metodi di misura indiretta della distanza Stadia verticale angolo parallattico costante

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Interferenza e diffrazione

Interferenza e diffrazione Interferenza e diffrazione La radiazione elettromagnetica proveniente da diverse sorgenti si sovrappongono in ogni punto combinando l intensita INTERFERENZA Quando la radiazione elettromagnetica passa

Dettagli

1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini 1.1 Caratteristiche ottiche dei materiali oftalmici

1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini 1.1 Caratteristiche ottiche dei materiali oftalmici 1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini Esaminiamo in questo capitolo le principali caratteristiche dei vari materiali utilizzati nel campo dell'ottica oftalmica,

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Relazione di Fisica. IV E a.s. 2011/2012. Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto.

Relazione di Fisica. IV E a.s. 2011/2012. Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto. Relazione di Fisica IV E a.s. 2011/2012 Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto. Scopo: Misurare la lunghezza d onda (λ) di un laser HeNe attraverso un reticolo di diffrazione. Materiale

Dettagli

Laboratorio di Fisica 3 Ottica 2. Studenti: Buoni - Giambastiani - Leidi Gruppo: G09

Laboratorio di Fisica 3 Ottica 2. Studenti: Buoni - Giambastiani - Leidi Gruppo: G09 Laboratorio di Fisica 3 Ottica 2 Studenti: Buoni - Giambastiani - Leidi Gruppo: G09 24 febbraio 2015 1 Lunghezza d onda di un laser He-Ne 1.1 Scopo dell esperienza Lo scopo dell esperienza è quello di

Dettagli

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG I Radar ad Onda Continua (CW) Principi di funzionamento dei radar CW. Al contrario dei radar ad impulsi, quelli ad onda continua (CW) emettono radiazioni elettromagnetiche

Dettagli

INTERFEROMETRO (Michelson)

INTERFEROMETRO (Michelson) S I beam splitter Semispecchio divide il raggio sorgente in due raggi, inviandoli a due specchi distinti: uno fisso e l altro mobile δ (OM - OF) INTERFEROMETRO (Michelson) specchio fisso OF OM + D m specchio

Dettagli

Cenni di geografia astronomica. Giorno solare e giorno siderale.

Cenni di geografia astronomica. Giorno solare e giorno siderale. Cenni di geografia astronomica. Tutte le figure e le immagini (tranne le ultime due) sono state prese dal sito Web: http://www.analemma.com/ Giorno solare e giorno siderale. La durata del giorno solare

Dettagli

TX Figura 1: collegamento tra due antenne nello spazio libero.

TX Figura 1: collegamento tra due antenne nello spazio libero. Collegamenti Supponiamo di avere due antenne, una trasmittente X e una ricevente X e consideriamo il collegamento tra queste due antenne distanti X X Figura : collegamento tra due antenne nello spazio

Dettagli

Ulteriori problemi di fisica e matematica

Ulteriori problemi di fisica e matematica Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Agosto 2010 Ulteriori problemi di fisica e matematica Giovanni Romano Perché un raggio di luce proveniente dal Sole e fatto passare attraverso

Dettagli

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni Alessandro Farini: note per le lezioni di ottica del sistema visivo Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni 1 Lo spettro elettromagnetico La radiazione

Dettagli

Struttura Elettronica degli Atomi

Struttura Elettronica degli Atomi Prof. A. Martinelli Struttura Elettronica degli Atomi Dipartimento di Farmacia 1 La Natura ondulatoria della luce - La luce visibile è una piccola parte dello spettro delle onde elettromagnetiche. 1 La

Dettagli

Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale...

Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale... IMMAGINI Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale... 9 Immagini - 1/11 Ottica geometrica È la branca dell ottica che

Dettagli

POLARIZZAZIONE ORIZZONTALE O VERTICALE?

POLARIZZAZIONE ORIZZONTALE O VERTICALE? A.R.I. Sezione di Parma Conversazioni del 1 Venerdì del Mese POLARIZZAZIONE ORIZZONTALE O VERTICALE? Venerdi, 7 dicembre, ore 21:15 - Carlo, I4VIL Oscillatore e risuonatore di Hertz ( http://www.sparkmuseum.com

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

Acustica. Caratteristiche distintive del suono. Altezza. Intensità W S

Acustica. Caratteristiche distintive del suono. Altezza. Intensità W S Acustica L acustica studia le caratteristiche del suono e della sua propagazione. l suono è generato da un corpo vibrante, come una corda, una membrana elastica, le corde vocali. La sorgente del suono

Dettagli

All interno dei colori primari e secondari, abbiamo tre coppie di colori detti COMPLEMENTARI.

All interno dei colori primari e secondari, abbiamo tre coppie di colori detti COMPLEMENTARI. Teoria del colore La teoria dei colori Gli oggetti e gli ambienti che ci circondano sono in gran parte colorati. Ciò dipende dal fatto che la luce si diffonde attraverso onde di diversa lunghezza: ad ogni

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura.

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura. ONDE Quando suoniamo un campanello oppure accendiamo la radio, il suono è sentito in punti distanti. Il suono si trasmette attraverso l aria. Se siamo sulla spiaggia e una barca veloce passa ad una distanza

Dettagli

L osservazione in luce bianca è, per così dire, l osservazione del Sole al naturale ovviamente dopo averne attenuato la fortissima emissione di luce.

L osservazione in luce bianca è, per così dire, l osservazione del Sole al naturale ovviamente dopo averne attenuato la fortissima emissione di luce. L osservazione in luce bianca è, per così dire, l osservazione del Sole al naturale ovviamente dopo averne attenuato la fortissima emissione di luce. Questa attenuazione si ottiene mediante l uso di un

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

Informatica per la comunicazione" - lezione 7 -

Informatica per la comunicazione - lezione 7 - Informatica per la comunicazione - lezione 7 - Campionamento La codifica dei suoni si basa sulla codifica delle onde che li producono, a sua volta basata su una procedura chiamata campionamento.! Il campionamento

Dettagli

La propagazione della luce in una fibra ottica

La propagazione della luce in una fibra ottica La propagazione della luce in una fibra ottica La rifrazione della luce Consideriamo due mezzi trasparenti alla luce, separati da una superficie piana. Il primo mezzo ha indice di rifrazione n, il secondo

Dettagli

1.Visione_01 Ottica geometrica. Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona

1.Visione_01 Ottica geometrica. Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona 1.Visione_01 Ottica geometrica Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona Obiettivi Principi di refrazione delle lenti, indice di refrazione

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine Il fotone Emanuele Pugliese, Lorenzo Santi URDF Udine Interpretazione di Einstein dell effetto fotoelettrico Esistono «particelle»* di luce: i fotoni! La luce è composta da quantità indivisibili di energia

Dettagli

LE ONDE. r r. - durante l oscillazione l energia cinetica si trasforma in potenziale e viceversa

LE ONDE. r r. - durante l oscillazione l energia cinetica si trasforma in potenziale e viceversa LE ONDE Generalità sulle onde meccaniche Quando un corpo si muoe, la sua energia meccanica si sposta da un punto all altro dello spazio. Ma l energia meccanica può anche propagarsi senza che i sia spostamento

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

APPUNTI SUL CAMPO MAGNETICO ROTANTE

APPUNTI SUL CAMPO MAGNETICO ROTANTE APPUTI UL CAPO AGETICO ROTATE Campo agnetico Rotante ad una coppia polare Consideriamo la struttura in figura che rappresenta la vista, in sezione trasversale, di un cilindro cavo, costituito da un materiale

Dettagli

Lo spessimetro ( a cura di Elena Pizzinini)

Lo spessimetro ( a cura di Elena Pizzinini) Lo spessimetro ( a cura di Elena Pizzinini) 1) Che cos è? Lo spessivetro è uno strumento (brevettato dalla ditta Saint Gobain) dal funzionamento piuttosto semplice che permette di misurare lo spessore

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura.

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura. Verifica dei postulati di Einstein sulla velocità della luce, osservazioni sull esperimento di Michelson e Morley Abbiamo visto che la necessità di introdurre un mezzo come l etere nasceva dalle evidenze

Dettagli

Olografia. Marcella Giulia Lorenzi

Olografia. Marcella Giulia Lorenzi Olografia Marcella Giulia Lorenzi 2 Che cos è l olografia L olografia è un modo per creare immagini tridimensionali, chiamate ologrammi, usando i raggi laser. Fu inventata da Dennis Gabor, che nel 1971

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Un altro importante parametro di questo processo è la risoluzione che rappresenta la distanza minima che la litografia può apprezzare.

Un altro importante parametro di questo processo è la risoluzione che rappresenta la distanza minima che la litografia può apprezzare. TECNICHE LITOGRAFICHE La litografia è un processo basilare nella realizzazione di circuiti integrati,esso consiste nel depositare un materiale detto resist sul wafer da processare che una volta esposto

Dettagli

LA MATERIA MATERIA. COMPOSIZIONE (struttura) Atomi che la compongono

LA MATERIA MATERIA. COMPOSIZIONE (struttura) Atomi che la compongono LA MATERIA 1 MATERIA PROPRIETÀ (caratteristiche) COMPOSIZIONE (struttura) FENOMENI (trasformazioni) Stati di aggregazione Solido Liquido Aeriforme Atomi che la compongono CHIMICI Dopo la trasformazione

Dettagli

Parte Seconda La Misura

Parte Seconda La Misura Il procedimento di misura è uno dei procedimenti fondamentali della conoscenza scientifica in quanto consente di descrivere quantitativamente una proprietà di un oggetto o una caratteristica di un fenomeno.

Dettagli

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:

Dettagli

Campi elettrici, magnetici ed elettromagnetici

Campi elettrici, magnetici ed elettromagnetici Campi elettrici, magnetici ed elettromagnetici Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campo Elettrico: si definisce campo elettrico il fenomeno fisico che conferisce

Dettagli

Campi elettrici, magnetici ed elettromagnetici. Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo

Campi elettrici, magnetici ed elettromagnetici. Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campi elettrici, magnetici ed elettromagnetici Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campo Elettrico: si definisce campo elettrico il fenomeno fisico che conferisce

Dettagli

Il riduttore di focale utilizzato è il riduttore-correttore Celestron f/ 6.3.

Il riduttore di focale utilizzato è il riduttore-correttore Celestron f/ 6.3. LE FOCALI DEL C8 Di Giovanni Falcicchia Settembre 2010 Premessa (a cura del Telescope Doctor). Il Celestron C8 è uno Schmidt-Cassegrain, ovvero un telescopio composto da uno specchio primario concavo sferico

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

L analisi della luce degli astri: fotometria e spettrometria

L analisi della luce degli astri: fotometria e spettrometria Università del Salento Progetto Lauree Scientifiche Attività formativa Modulo 1 L analisi della luce degli astri: fotometria e spettrometria Vincenzo Orofino Gruppo di Astrofisica LA LUCE Natura della

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

FOTOVOLTAICO LA RADIAZIONE SOLARE

FOTOVOLTAICO LA RADIAZIONE SOLARE FOTOVOLTAICO LA RADIAZIONE SOLARE Il Sole Sfera di gas riscaldato da reazioni di fusione termonucleare che, come tutti i corpi caldi emette una radiazione elettromagnetica o solare. L energia solare è

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) Prof. Gianluca Todisco

Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) Prof. Gianluca Todisco Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) 1 LA LUCE NELLA STORIA Nell antica Grecia c era chi (i pitagorici) pensavano che ci fossero dei fili sottili che partono dagli

Dettagli