Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni"

Transcript

1 Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Prof.ssa L. Pezza (A.A ) IV Lezione del laura.pezza 1

2 Equazioni non lineari Il problema: determinare le soluzioni o radici, dell equazione non lineare f(x) = 0 cioè quei valori ξ tali che f(ξ) = 0 (zeri della funzione ). I passi per risolvere numericamente il problema I. Separazione delle radici: per avere informazioni sulla dislocazione degli zeri di f II. Costruzione della successione {x n }: scegliere la legge per generare la successione in modo da garantire la convergenza a ξ; in pratica si vorrebbe anche una convergenza veloce III. Scelta dei criteri d arresto: l algoritmo iterativo è infinito si deve troncarlo. 2

3 Costruzione della successione: il metodo di bisezione Il metodo di bisezione o dicotomico si basa sul Teorema degli zeri. Ipotesi di applicabilità : i 1 E dato un intervallo, I = [a, b], di separazione della radice ξ di f(x) = 0 i 2 f(a)f(b) < 0. i 1 f C[a, b] e ξ è l unica radice in [a, b] i 2 ξ ha molteplicità dispari. 3

4 Step 1. Calcolare, x = (a + b)/2, (punto medio dell intervallo) Step 2. Se f(x ) 0 ( f(x ) = 0 x = ξ soluzione ), allora [a 1, b 1 ] = [x, b] se f(a)f(x ) > 0 [a, x ] se f(a)f(x ) < 0 I passi precedenti si applicano quindi di nuovo all intervallo [a 1, b 1 ] e poi iterativamente. 4

5 f(x) x 1 ξ x2 x a a 0 2 =a 1 b 2 b 1 =b 0 b 1 a 1 = b a 2, b 2 a 2 = b 1 a 1 2 = b a 2 2, 5

6 Il metodo costruisce quindi le successioni Proprietà delle successioni p 1 a k a k 1, b k b k 1, k p 2 p 3 a 0 = a, b 0 = b {a k }, {b k }, {x k }, k > 0 a k ξ b k, k elemento separatore b k a k = b a 2 k {a k }, {b k } (monotone, limitate) a k approssimazioni per difetto b k approssimazioni per eccesso 6

7 Convergenza del metodo di bisezione Errore di troncamento: e k = x k ξ e k = x k ξ < b k a k = b a 2 k 0 (Convergenza) Ordine di convergenza: e k+1 = 1 2 e k (asintoticamente) Ordine p = 1, costante asintotica C = 1 2 Ad ogni passo l errore viene dimezzato, = ad ogni passo si guadagna una cifra binaria per guadagnare una cifra decimale servono 3-4 iterazioni. 7

8 Stima del numero di iterate e k b a 2 k e k ε se (C.S.) b a 2 k ɛ k log(b a) log(ɛ) log 2 Condizione d arresto b k a k < ε, ε tolleranza prefissata. 8

9 Esempio f(x) = x 3 x 1, [a, b] = [1, 2] Stima delle iterate: ɛ = 10 8 : 2 k 10 8 k 26.6 a 26 = < ξ < = b 26 x = , e 27 = 0.75e 08, f(x 27 ) = 0.17e 07 9

10 Esercizio Data l equazione f(x) = x 3/2 2 log(x ) = 0 I. Separare le radici con un intervallo di ampiezza non superiore a 0.5 II.Stimare quante iterate sono sufficienti per ottenere un approssimazione alla 10 cifra decimale della radice maggiore con il metodo di bisezioni. I. f(x) = 0 f 1 (x) = x 3/2 = 2 log(x ) = f 2 (x), x 0. f 1, f 2 entrambe crescenti, f 1 > 0, x > 0, f 2 (0) < 0 10

11 Caso a: la potenza si mantiene sempre aldi sopra del logaritmo 5 Caso b: se la potenza incontra il logaritmo in un punto, allora gli due zeri sono necessariamente due f 1 è sempre sopra f 2 : non ci sono radici f 1 incontra f 2 in un punto: allora ci sono necessariamente 2 radici Per tabulazione si individuano le variazioni di segno: f(0) = 2 log 0.6 > 0, f(1.5) 0.2 < 0, f(3) 0.7 > 0 quindi esiste una radice ξ 1 [0, 1.5] e una radice ξ 2 [1.5, 3] 11

12 Affinamento dell intervallo (ampiezza 0.5) - Radice ξ 1 : f(0) > 0, f(1) > 0 ξ 1 [1, 1.5] - Radice ξ 2 : applichiamo bisezioni (f(1.5) < 0, f(3) > 0) n a k ( ) b k (+) x f(x ) Segue ξ 2 [2.25, 2.625] = [a 2, b 2 ] e b 2 a 2 = < 0.5. II. Stima del numero di iterate b a 2 k k log 2 log ( ) k

13 Costruzione della successione: metodo di Newton In un intorno I di ξ, si approssima f con una sua tangente (tecnica di linearizzazione) Equazione della tangente t a f nel punto (x, f(x)): t : y f(x) = f (x)(x x) y = f(x) {y = 0} t {y = 0}: x = x f(x) f (x) 13

14 Interpretazione geometrica del metodo di Newton Prima iterazione: Approssimazione iniziale: x 0 Intersezione di t 0 (tangente a f in (x 0, f(x 0 ))) con y = 0 x 1 = x 0 f(x 0) f nuova approssimazione di ξ (x 0 ) (x 0,f(x 0 )). f(x) t 0 ξ x 1 x 0 a x b 14

15 Seconda iterazione: Approssimazione iniziale : x 1 Intersezione di t 1 (tangente a f in (x 1, f(x 1 ))) con y = 0 x 2 = x 1 f(x 1) f nuova approssimazione di ξ (x 1 ) (x 0,f(x 0 )). f(x) (x,f(x )) 1 1. t 1 ξ x 1 t 0 x 0 a x b 15

16 La funzione d iterazione del metodo di Newton In generale, se f 0 almeno in un intorno di ξ x 0 assegnato x k = x k 1 f(x k 1) f, k = 1, 2,... (x k 1 ) Metodo del punto unito con funzione d iterazione: ϕ NR (x) = x f(x) f (x) 16

17 Il metodo di Newton: un esempio f(x) = 4x 3 5x Vogliamo approssimare ξ = 0 a) x 0 = t f(x). ξ f(x). ξ t 0 1 t a x b x 2k = 0.5 x 2k+1 = 0.5 a x b 17

18 b) x 0 = 0.35 k x k x k x k 1 f(x k ) e e e e e e

19 c) x 0 = 0.65 k x k x k x k 1 f(x k ) e e e e e e e e e e e e e e e e e e e e

20 Cosa succede dal punto di vista geometrico x 0 = ξ 5 t x 0 è vicina ad un punto estremale: cercata. si esce dall intorno della radice La successione è convergente e quindi (Teorema 1) converge ad uno zero di f (diverso da 0) 20

21 Metodo di Newton: convergenza x k = ϕ NR (x k 1 ) = x k 1 f(x k 1) f (x k 1 ), k = 1, 2,... ; x 0 dato Teorema di convergenza 1. Sia ξ l unica radice di f(x) = 0 in [a, b], di molteplicità µ = 1 i 1 f C 2 [a, b] i 2 f (x) 0, x [a, b], x ξ. t 1 un intorno di ξ, I(ξ) [a, b] tale che x 0 I(ξ) il metodo di Newton converge con ordine di convergenza p 2 Nota. Se µ > 1 allora p = 1, C = 1 1 µ 21

22 Dim. i 1, i 2 ϕ NR (x) = f(x)f (x) [f (x)] 2 C0 [a, b], x ξ f (ξ) 0 ϕ NR C0 [a, b], ϕ NR (ξ) = 0 I(ξ) in cui ϕ NR (x) γ < 1 Il metodo converge per il teorema del punto fisso. Dal teorema dell ordine di convergenza p > 1. 22

23 Definizione. Sia f C 2 [a, b] tale che f(a)f(b) < 0, f (x) 0, x [a, b]. Si dice estremo di Fourier di f quello dei due estremi a, b per il quale risulta f( )f ( ) > 0. a b b a 23

24 a b b a I quattro casi possibili di estremo di Fourier 24

25 Teorema di convergenza 2. Sia data l equazione f(x) = 0 avente una radice ξ [a, b] e siano verificate le seguenti ipotesi i 1 f C 2 [a, b] i 2 f(a)f(b) < 0 i 3 f (x) 0, x [a, b]. allora t 1 ξ è l unico zero di f in [a, b] t 2 se x 0 coincide con l estremo di Fourier di f, {x k } generata dal metodo di Newton è monotona e convergente a ξ con ordine p = 2. 25

26 Esempio f(x) = 4x 3 5x = 0 (v. prima) Si ha f (x) = 24x > 0 x > 0 e f(x) > 0 x > 2 ogni valore di x > 2 è estremo di Fourier per la radice maggiore Nel caso x 0 = 0.65 si ha x = l estremo di Fourier Il m. di N. converge alla radice maggiore (Teor. di convergenza 2) Se si sceglie per esempio x 0 [ 0.4, 0.4] il m. di N. converge a ξ = 0 (Teor. di convergenza 1) NOTA: A priori è generalmenete impossibile sapere quanto x 0 deve essere vicino alla radice. 26

27 Esempio Si consideri l equazione f(x) = cos x xe x = 0 (v. Lezione precedente). Si vuole approssimare ξ [ π, π/2]. f (x) = cos x e x (x + 2) non è a segno costante in [ π, π/2]. Si applica il teor. di convergenza 1. x 0 = 3π/4 3 a iterate: 6 cifre decimali 4 a 14 cifre decimali (si conquistano tutte le cifre con cui si lavora): ξ = Verificate che per approssimare la radice positiva si può applicare il teor. di convergenza 2. 27

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2016-2017) IV Lezione del 06.03.2017 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) III Lezione del 12.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 I metodi

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) V Lezione del 15.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Metodo di Newton:

Dettagli

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile).

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile). SOLUZIONE DI EQUAZIONI NON-LINEARI Molti problemi sono espressi nella forma f(x) = 0 con f(x) funzione non lineare (es. log(x 2 + a) + b cos x = 0, x 5 + ax 3 + b = 0) La determinazione delle radici in

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Metodi per il calcolo degli zeri di funzioni non lineari

Metodi per il calcolo degli zeri di funzioni non lineari Metodi per il calcolo degli zeri di funzioni non lineari N. Del Buono 1 Introduzione Le radici di un equazione non lineare f(x) = 0 non possono, in generale, essere espresse esplicitamente e anche quando

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Problemi non lineari Definizione f : R R F : R n R m f (x) = 0 F(x) = 0 In generale si determina

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Equazioni non lineari Metodi di linearizzazione Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Equazioni non lineari Introduzione e Metodo di Bisezione Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

1 Esercizi relativi al Capitolo 1

1 Esercizi relativi al Capitolo 1 1 Esercizi relativi al Capitolo 1 1. (a) x = 7; (b) (x) 4 = (32.1) 4 = (14.25) 10 ; (c) x = 5; (d) (200) x = (18) 10 ; x = 3; y = (11330) 8 = (4824) 10 ; (e) x = 2882.125; y = 231002.02; (f) (x) 3 = (12122.1012)

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) XXIV Lezione dell 8.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Formule di Newton-Cotes

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Metodi per la ricerca degli zeri

Metodi per la ricerca degli zeri Chapter 5 Metodi per la ricerca degli zeri 5.1 Introduzione In questo capitolo ci occuperemo della soluzione di equazioni del tipo f(x) = 0 (5.1) dove f è una funzione a valori reali della variabile reale

Dettagli

Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso

Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso 2 aprile 215 Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ). Richiami

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Analisi Numerica (A.A ) Appunti delle lezioni: Equazioni non lineari

Analisi Numerica (A.A ) Appunti delle lezioni: Equazioni non lineari Analisi Numerica (A.A. 2014-2015) Appunti delle lezioni: Equazioni non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A. Scarpa, Pal. B, I piano, Stanza n. 16 Tel. 06

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) XXII Lezione del 3.05.2018 http://www.dmmm.uniroma1.it/ pezza 1 Formule di quadratura

Dettagli

MATLAB:Metodi Numerici per zeri di funzioni.

MATLAB:Metodi Numerici per zeri di funzioni. 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Metodi Numerici per zeri di funzioni Metodo delle successive bisezioni Sappiamo che la procedura definita dal

Dettagli

Risoluzione di equazioni non lineari

Risoluzione di equazioni non lineari Risoluzione di equazioni non lineari Si considera il problema di determinare la soluzione dell equazione f(x) = 0 ove f(x) è una funzione definita in un intervallo [a, b], chiuso e limitato. Ogni valore

Dettagli

Metodi Numerici per l Approssimazione degli Zeri di una Funzione

Metodi Numerici per l Approssimazione degli Zeri di una Funzione Metodi Numerici per l Approssimazione degli Zeri di una Funzione Luca Gemignani luca.gemignani@unipi.it 29 marzo 2018 Indice Lezione 1: Il Metodo di Bisezione. 1 Lezione 2: Metodi di Iterazione Funzionale.

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 2 - EQUAZIONI NON LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Elementi introduttivi 2 3 4 Introduzione Problema: trovare le soluzioni di

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 2. Determinazione numerica degli zeri di una funzione Si consideri il seguente problema: Data f : [a, b] R, determinare i valori

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2018-2019) XVI Lezione ed Esercitazione d esame del 03.04.2019 http://www.dmmm.uniroma1.it/ laura.pezza

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 2 - EQUAZIONI NON LINEARI Introduzione Problema: trovare le soluzioni di un equazione del tipo f() = 0 Esempio sin a = 0 e = 3 1.0 2.0 0.5

Dettagli

RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE

RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE Introduzione Si vogliano individuare, se esistono, le radici o soluzioni dell equazione f(x)=0. Se f(x) è un polinomio di grado superiore al secondo o se è una

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di equazioni non lineari Problema 1 La pressione richiesta per affondare nella sabbia

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2017-2018) Metodi Numerici Appunti delle lezioni: Equazioni non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Equazioni non lineari

Equazioni non lineari Capitolo 2 Equazioni non lineari 2.1 Richiami di teoria Prerequisiti: teorema di Gauss, nozioni elementari di calcolo differenziale. In generale, per risolvere una equazione della forma f(x) = 0 dove f

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 17 gennaio A(x) =

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 17 gennaio A(x) = Calcolo Numerico Corso di Laurea in Ingegneria Elettronica Appello del 7 gennaio 204 Sia M = F (2, 3). Dopo aver mostrato che 20 M, determinare tutti gli elementi ξ M tali che: ξ > 20 Per ogni x R, sia:

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Introduzione In molte applicazioni intervengono equazioni che non siamo in grado di risolvere analiticamente, o la cui risoluzione risulta molto complessa e laboriosa. Un importante

Dettagli

restituisce un approssimazione di uno zero di f in [a, b] dopo aver eseguito k iterazioni. Determinare k. Sia: 1 f(x) =

restituisce un approssimazione di uno zero di f in [a, b] dopo aver eseguito k iterazioni. Determinare k. Sia: 1 f(x) = Lezione 10 In questa lezione concluderemo la discussione riguardante il metodo di bisezione. Esercizio. Sia f : [a, b] R una funzione continua tale che f(a)f(b) < 0. La procedura: z = Bisezione (f, a,

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

Cancellazione numerica e zeri di funzione. Dott. Marco Caliari

Cancellazione numerica e zeri di funzione. Dott. Marco Caliari Cancellazione numerica e zeri di funzione Dott. Marco Caliari PLS a.s. 01 013 Capitolo 1 Aritmetica floating point 1.1 I numeri macchina Data la capacità finita di un calcolatore, solo alcuni dei numeri

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Equazioni non lineari 1 / 40 Problema Data una

Dettagli

Soluzione di Equazioni non lineari

Soluzione di Equazioni non lineari Soluzione di Equazioni non lineari Corso di Calcolo Numerico 20 Marzo 2018 Function in MATLAB Lo scopo di una funzione è quello di prendere in input un certo numero di valori, fare alcune operazioni con

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 4: Functions. Soluzione di Equazioni non lineari

Laboratorio di Calcolo Numerico Laboratorio 4: Functions. Soluzione di Equazioni non lineari Laboratorio di Calcolo Numerico Laboratorio 4: Functions. Soluzione di Equazioni non lineari Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 29 Marzo 2017 Function

Dettagli

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del 9.8.2. Data l equazione x x = (a) Mostrare che essa ammette una e una sola soluzione

Dettagli

Calcolo del fattore di convergenza

Calcolo del fattore di convergenza Calcolo del fattore di convergenza Dato uno schema iterativo si ha: lim k x k+1 ξ x k ξ p = M p è l ordine di convergenza del metodo iterativo M è la costante asintotica dell errore o fattore di convergenza.

Dettagli

Esercizi proposti di Analisi Numerica

Esercizi proposti di Analisi Numerica Esercizi proposti di Analisi Numerica Silvia Bonettini Dipartimento di Matematica, Università di Ferrara 30 gennaio 2012 1 Conversioni, operazioni di macchina e analisi dell errore 1. Convertire i numeri

Dettagli

Metodi iterativi per equazioni nonlineari.

Metodi iterativi per equazioni nonlineari. Metodi iterativi per equazioni nonlineari. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 aprile 2016 Alvise Sommariva Introduzione 1/ 14 Introduzione Si supponga sia f

Dettagli

Analisi cinematica di meccanismi articolati

Analisi cinematica di meccanismi articolati Analisi cinematica di meccanismi articolati metodo dei numeri complessi rev 10 1 Il quadrilatero articolato b β a c α d γ Posizione a + b = c + d a e iα + b e iβ = c e iγ + d a cos α + b cos β = c cos

Dettagli

METODI DI PUNTO FISSO

METODI DI PUNTO FISSO METODI DI PUNTO FISSO Sia ϕ : [a, b] R [a, b] continua. Def. α è punto fisso per ϕ se ϕ(α) = α Il metodo di punto fisso è: { x (0) dato x (k+1) = ϕ(x (k) ), per k 0 Scrivere una function per l approssimazione

Dettagli

A.A Prof. R. Morandi

A.A Prof. R. Morandi Svolgimento di alcuni esercizi del corso di Calcolo Numerico A.A. - Prof. R. Morandi Versione in aggiornamento ( gennaio ): ogni segnalazione di imprecisioni è gradita Aritmetica Finita Esercizio : Assegnati

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

Calcolo Numerico (A.A ) Esercitazione n. 9. Metodo del punto unito, Metodo di Newton per sistemi

Calcolo Numerico (A.A ) Esercitazione n. 9. Metodo del punto unito, Metodo di Newton per sistemi Calcolo Numerico (A.A. 2012-2013) Esercitazione n. 9 Metodo del punto unito, Metodo di Newton per sistemi 23-04-2013 Esercizio 1.25 L. Gori, M.L. Lo Cascio, F. Pitolli, Esercizi di Calcolo Numerico, II

Dettagli

Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2018-2019) II Lezione del 27.02.2019 http://www.dmmm.uniroma1.it/ laura.pezza

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO Premessa APPUNTI DI CALCOLO NUMERICO Equazioni non lineari Mawell Sia data una unzione ( ) : non lineare e si cerchino le radici (o gli zeri) della seguente equazione ( ) = di variabile reale con valori

Dettagli

Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A )

Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A ) Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 1/10/2018.

Dettagli

Lezione 5, 5/11/2014

Lezione 5, 5/11/2014 Lezione 5, 5/11/2014 Elena Gaburro, elenagaburro@gmail.com 1 Ordine di convergenza di un metodo Definizione 1.1. Sia {x k } una successione convergente ad α. Consideriamo l errore assoluto in modulo al

Dettagli

Corso di Laurea in Informatica Sede di Brindisi Esame di Analisi Matematica 25 giugno ex+1 x 2 2x. f (x) =

Corso di Laurea in Informatica Sede di Brindisi Esame di Analisi Matematica 25 giugno ex+1 x 2 2x. f (x) = 25 giugno 215 f (x) = ex+1 x 2 2x 2. Si calcoli il seguente integrale: 4 2 x log(x 2 1) dx. 3. Si enunci la definizione di funzione continua. 4. Si enunci il teorema di Fermat e, facoltativamente, lo si

Dettagli

Analisi Numerica: zeri di funzione

Analisi Numerica: zeri di funzione Analisi Numerica: zeri di funzione S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste Introduzione Introduzione Da qui in avanti nel corso, non ci occuperemo più degli errori di arrotondamento

Dettagli

Esercizio 1. Errori di cancellazione

Esercizio 1. Errori di cancellazione Esercizio 1. Errori di cancellazione Si risponda alle seguente domande: 1. Si calcoli analiticamente lim 0 e 1 2. Si calcoli la quantità y = e 1 per = 10 15 usando MATLAB. Quale è l errore commesso? (Si

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3-24/3/2014

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3-24/3/2014 Complementi di Matematica e Calcolo Numerico A.A. 2012-2013 Laboratorio 3-24/3/2014 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare

Dettagli

Note del corso di Laboratorio di Programmazione e Calcolo: Soluzione numerica di equazioni non lineari

Note del corso di Laboratorio di Programmazione e Calcolo: Soluzione numerica di equazioni non lineari Corso di laurea in Matematica SAPIENZA Università di Roma Note del corso di Laboratorio di Programmazione e Calcolo: Soluzione numerica di equazioni non lineari Dipartimento di Matematica Guido Castelnuovo

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 1 - INTRODUZIONE Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole, 9th

Dettagli

Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri

Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri Francesco Genovese, Università di Pavia 8 febbraio 2008 Sommario Questa relazione di laboratorio di Analisi Numerica (corso dell A.A.

Dettagli

Università Politecnica delle Marche - Facoltà di Ingegneria Ing. Informatica e Automatica - Ing. Logistica e Produzione

Università Politecnica delle Marche - Facoltà di Ingegneria Ing. Informatica e Automatica - Ing. Logistica e Produzione ANALISI NUMERICA - Primo Parziale - TEMA A PARTE I. Si chiede allo studente di trattare i seguenti argomenti nel modo più completo possibile. 1. Propagazione degli errori nel caso di operazioni elementari

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002 Università di Foggia - Facoltà di Economia Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 00 Cognome e nome............................................ Numero di matricola...........

Dettagli

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione

Dettagli

Complementi di Matematica A.A Laboratorio 10

Complementi di Matematica A.A Laboratorio 10 Complementi di Matematica A.A. 2016-2017 Laboratorio 10 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare la funzione predefinita

Dettagli

Metodi di Ottimizzazione

Metodi di Ottimizzazione Metodi di Ottimizzazione Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famospaghi, @famoconti http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti Filosofia generale dei metodi iterativi Metodi iterativi per Sistemi Lineari Convergenza

Dettagli

Raccolta di compiti degli appelli precedenti

Raccolta di compiti degli appelli precedenti Ingegneria Informatica e delle Telecomunicazioni Anno accademico 24-25. Docente Costanza Conti Raccolta di compiti degli appelli precedenti Nota: Gli esercizi riportati si riferiscono a compiti dei precendeti

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Numero di matricola VOTO...

Matematica A Corso di Laurea in Chimica. Prova scritta del Numero di matricola VOTO... Matematica A Corso di Laurea in Chimica Prova scritta del 04.12.07 Tema A Nome Cognome Numero di matricola VOTO... Svolgere gli esercizi utilizzando ESCLUSIVAMENTE lo spazio predisposto P1) Data la funzione

Dettagli

Daniela Lera A.A. 2008-2009

Daniela Lera A.A. 2008-2009 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Equazioni non lineari Metodo di Newton Il metodo di Newton sfrutta le informazioni sulla funzione

Dettagli

Equazioni nonlineari

Equazioni nonlineari Equazioni nonlineari Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 20 marzo 2019 Alvise Sommariva Equazioni nonlineari 1/ 96 Soluzione numerica di equazioni

Dettagli

Calcolo numerico I e laboratorio, a.a. 2016/2017

Calcolo numerico I e laboratorio, a.a. 2016/2017 Calcolo numerico I e laboratorio, a.a. 016/017 Giacomo Albi giacomo.albi@univr.it Questo note rappresentano un complemento alle lezioni in classe, e non hanno alcuna pretesa di essere esaustive, o sostitutive

Dettagli

Esame di Analisi Matematica Prova scritta del 9 giugno 2009

Esame di Analisi Matematica Prova scritta del 9 giugno 2009 Prova scritta del 9 giugno 2009 A1 Data la funzione f(x) = x2 3 e x, (f) determinare in base al grafico di f il numero delle soluzioni dell equazione f(x) = λ al variare di Calcolare un valore approssimato

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11: testo soluzioni Proff. S. De Marchi e M. R. Russo 12 luglio 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11: testo soluzioni Proff. S. De Marchi e M. R. Russo 12 luglio 2011 Esame di Calcolo Numerico per Informatica A.A. 200/: testo soluzioni Proff. S. De Marchi e M. R. Russo 2 luglio 20 L esame consiste di 4 domande aperte e 0 esercizi a risposta multipla. Per gli esercizi

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli