Guida alla realizzazione dell impianto di terra - seconda parte -

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Guida alla realizzazione dell impianto di terra - seconda parte -"

Transcript

1 Guida alla realizzazione dell impianto di terra - seconda parte - Pubblicato il: 11/03/2004 Aggiornato al: 12/03/2004 di Gianluigi Saveri L impianto di terra è costituito dall insieme di elementi metallici che collegano, per motivi di sicurezza o funzionali, varie parti dell impianto elettrico. Secondo la funzione che è chiamato ad assolvere un impianto di terra può distinguersi in: messa a terra di protezione, messa a terra per lavori, messa a terra di funzionamento. 1. Collegamenti equipotenziali, connessioni e collettore principale di terra 1.1. Collegamenti equipotenziali Sono conduttori che collegano fra di loro parti che normalmente si trovano al potenziale di terra garantendo quindi l equipotenzialità fra l impianto di terra e le masse estranee e consentendo di ridurre la resistenza complessiva dell impianto. Non essendo conduttori attivi e non dovendo sopportare gravose correnti di guasto il loro dimensionamento non segue regole legate alla portata ma alla resistenza meccanica del collegamento. Per gli ambienti ordinari le norme prescrivono le sezioni minime che devono essere rispettata per questi conduttori distinguendo tra conduttori equipotenziali principali (EQP) e conduttori equipotenziali supplementari (EQS). Sono detti principali se collegano le masse estranee entranti alla base dell edificio al nodo principale di terra, sono detti supplementari negli altri casi (fig. 11). Fig.11: Esempio di scelta delle sezioni minime dei conduttori equipotenziali I collegamenti equipotenziali supplementari sono obbligatori solo in particolari situazioni ambientali come ad esempio nei bagni. Sono necessari anche nei casi in cui la protezione viene attuata senza l impianto di terra come ad esempio quando si utilizza la Fig.12: Tipici collari adatti per collegamenti equipotenziali protezione per separazione elettrica. Devono essere effettuati utilizzando appositi morsetti a collare (fig. 12) di materiale adatto ad evitare il formarsi di coppie galvaniche che potrebbero favorire la corrosione. Le sezioni minime prescritte per tali collegamenti sono raccolte nella tabella 4. 1

2 Sezione del conduttore Conduttori equipotenziali di protezione principale PE (mm 2 ) Principale EQP 10 = 16 = 25 > 35 EQS PE di sezione minore ( 1 ) Supplementare EQS: collegamento massa-massa; collegamento massa-massa estranea Sezione del conduttore equipotenziale (mm 2 ) EQS ½ della sezione del corrispondente conduttore PE In ogni caso la sezione del conduttore EQS deve essere: 2,5 mm 2 se protetto meccanicamente; 4 mm 2 se non protetto meccanicamente ( 1 ) É opportuno aumentare la sezione del conduttore EQS sulla base della corrente di guasto effettiva quando le due masse appartengono a circuiti con sezioni dei conduttori di protezione molto diverse. Questo per evitare che sul conduttore EQS, dimensionato in base alla sezione del conduttore di protezione minore, possano circolare correnti di guasto non sopportabili dal conduttore stesso 1.2. Connessioni e collettore principale di terra Ogni impianto di terra deve disporre di un collettore principale di terra (fig. 13) che può essere una piastra metallica in acciaio zincato o in rame stagnato o cadmiato o una apposita morsettiera. Fig.13: Esempio di collettore principale di terra Le giunzioni e le connessioni fra i vari elementi dell impianto di terra devono essere eseguite a regola d arte in modo che sia garantita la continuità elettrica nel tempo. Il contatto deve essere ben saldo per evitare possibili allentamenti (fig. 14 e 15) e, ove necessario, le connessioni devono essere facilmente accessibili e sezionabili per facilitare le operazioni di manutenzione e verifica. Fig.14: Esempi di connessioni a regola d arte collegamento ai ferri d armatura connessione di tondini di ferro mediante legatura connessione di tondini di ferro tramite saldatura forte Fig.15: Esempi di connessioni a regola d arte collegamento fra tubo e corda isolata collegamenti fra corde nude 2

3 2. Come proteggere il dispersore dalla corrosione Guida alla realizzazione dell impianto di terra (seconda parte) 2.1. Processi di corrosione Dal punto di vista chimico fisico i metalli e le leghe, nelle normali condizioni ambientali, non sono in equilibrio ma tendono a trasformarsi nei loro composti: ossidi, idrossidi, carbonati, solfati, cloruri ecc. Si tratta di processi di alterazione cui sono soggetti quasi tutti i metalli, ad eccezione dei cosiddetti metalli nobili, come il platino, l oro e l argento, e che si manifestano in seguito ad ossidazione della superficie a contatto con l ambiente. Alla base di questo fenomeno, chiamato corrosione, vi è quasi sempre lo scambio di elettroni fra una specie chimica che li cede (ossidazione) ed una seconda specie chimica che li acquista (riduzione). In questa reazione, detta appunto di ossidoriduzione, la specie chimica che si corrode è quella che perde elettroni. Non sempre però l ossidazione conduce alla corrosione. Certi metalli assumono un comportamento, detto passivazione, nel quale si ha la formazione di alcuni prodotti di corrosione non solubili, in genere ossidi, che aderendo intimamente alla superficie del metallo ostacolano il processo di corrosione che si sviluppa quindi molto più lentamente. Due sono i meccanismi fondamentali secondo i quali si esplica la corrosione dei metalli: corrosione chimica corrosione elettrochimica. Corrosione chimica La corrosione chimica consiste in una reazione tra un metallo e un liquido o tra un metallo e un gas, come ad esempio il ferro che reagisce a certe temperature con l ossigeno presente nell atmosfera producendo i suoi ossidi (fig. 16). In questo caso il metallo cede elettroni all ossigeno con formazione di ioni metallo carichi positivamente e ioni ossigeno carichi negativamente che si legano determinando la formazione di uno strato, più o meno aderente alla superficie, di prodotti della corrosione. Il processo non è generalmente accompagnato da passaggio di corrente elettrica. Corrosione elettrochimica La corrosione elettrochimica può avvenire, quando i metalli sono immersi in un elettrolita, a temperatura prossima a quella ordinaria attraverso due reazioni principali, una all anodo ed una al catodo (fig. 17): Fig. 16: La corrosione di tipo chimico avviene a causa della reazione tra un metallo e un liquido o tra un metallo e un gas le reazioni anodiche sono reazioni di ossidazione che tendono a distruggere il metallo dell anodo che si discioglie sottoforma di ioni oppure ritorna allo stato combinato di ossido; le reazioni catodiche sono invece sempre reazioni di riduzione di alcuni ioni con corrispondente consumo degli elettroni prodotti dalla reazione anodica e transitati attraverso il metallo. Fig. 17: Corrosione elettrochimica 3

4 Il processo corrosivo di metalli interrati in terreno elettrolitico può sostanzialmente avvenire per i seguenti motivi: metalli diversi a contatto fra loro; metalli diversi collegati elettricamente fra loro; metalli diversi in presenza di correnti continue; metallo ricoperto da strati di terreno non omogeneo diversamente permeabili ai gas. Corrosione di contatto Affinché il processo corrosivo si verifichi e necessario che i due metalli siano diversi e che siano in contatto fra di loro. In presenza di un suolo elettrolitico, se i due metalli hanno potenziali diversi (tab.1), si crea fra di loro una differenza di potenziale (coppia galvanica). Metallo Potenziale Elettrochimico (V) Litio -3,02 Sodio -2,72 Magnesio -1,80 Alluminio -1,45 Manganese -1,10 Zinco -0,77 Cromo -0,56 Ferro -0,43 Cadmio -0,42 Nichel -0,20 Stagno -0,14 Piombo -0,13 Idrogeno 0,0 Antimonio +0,2 Rame +0,35 Argento +0,80 Mercurio +0,86 Platino +0,87 Oro +1,5 Tab. 1 - Scala galvanica dei metalli di interesse elettrotecnico riferita all'elettrodo d'idrogeno Gli elettroni si spostano dal metallo a potenziale minore verso quello a potenziale maggiore. In presenza di un ossidante, ad esempio ossigeno contenuto in terreno umido, questo verrà ridotto, anche sulla superficie del metallo a potenziale maggiore, sempre a spese degli elettroni del metallo a potenziale minore. Quanto più è negativo il potenziale del metallo, tanto più facile risulta la sua ossidazione. In figura 18 un collare di rame (catodo), Fig. 18: Corrosione fra metalli diversi a contatto immersi in soluzione elettrolitica più propenso a ridursi rispetto al ferro, in intimo contatto con un tubo di ferro (anodo), riceve gli elettroni che migrano verso di lui provenienti dal ferro. 4

5 L ossigeno che viene ridotto nei pressi del contatto si riduce tutto a spese degli elettroni dell anodo di ferro mentre il rame funge da catodo inerte provocando l accelerazione del processo di ossidazione localizzato nei pressi della zona di contatto fra i due metalli. Il rame non partecipa attivamente ad alcun processo, non si ossida e non si riduce, in questo caso l ossidante è solamente l ossigeno. Il risultato di tale processo è una circolazione di corrente tra anodo e catodo e una corrosione in prossimità della giunzione tra collare e tubo. Corrosione fra metalli diversi collegati elettricamente Due metalli diversi interrati in suolo elettrolitico costituiscono una pila la cui forza elettromotrice è pari alla differenza di potenziale elettrochimico degli stessi metalli. Se per qualche motivo i due metalli sono messi fra di loro in collegamento elettrico si avrà circolazione di corrente attraverso l anodo che si ossida cedendo elettroni e il catodo che si riduce acquistando ioni positivi. La corrosione avverrà tanto più velocemente quanto i metalli saranno distanti nella scala dei potenziali elettrochimici di tab. 1. Il fenomeno dipende infatti dal valore della corrente presente nel circuito che a sua volta è legata in modo direttamente proporzionale alla differenza di potenziale dovuta alla loro distanza nella scala dei potenziali elettrochimici. Nel fenomeno corrosivo riveste un ruolo di notevole importanza anche il rapporto tra le aree delle superfici metalliche degli elettrodi in contatto con l elettrolita. La corrosione anodica risulterà tanto più celere e invasiva quanto maggiore è la superficie del catodo rispetto a quella dell anodo. Fig. 19: I collegamenti equipotenziali possono essere causa di corrosione Un metallo che nella scala elettrochimica è molto positivo e di grande superficie non può essere accoppiato, a meno di non subire un estesa corrosione, con un metallo a potenziale inferiore e di piccola superficie (ad esempio rivetto di ferro su lastra di rame). É invece possibile il contrario, piccole superfici catodiche accoppiate con grandi superfici anodiche non manifestano abitualmente dal punto di vista della corrosione situazioni particolarmente allarmanti (ad esempio rivetto di rame su lastra di ferro). In fig. 19 un serbatoio in acciaio è collegato in equipotenzialità mediante corda di rame direttamente accoppiata con corda di acciaio. Si possono creare delle pile che favorendo la circolazione di correnti galvaniche nel terreno rendono particolarmente vulnerabili alla corrosione metalli come l acciaio. Corrosione fra metalli diversi per presenza di correnti continue La generazione di tensioni galvaniche può essere causata dalla presenza in terreno elettrolitico di correnti continue vaganti (il fenomeno si manifesta solo in presenza di correnti continue perché con le comuni correnti alternate a 50 Hz l anodo e il catodo si alternano cinquanta volte al secondo non permettendo lo spostamento degli ioni metallici) con gli elettrodi che possono essere distanti fra di loro anche di alcuni metri. Fig. 20: Corrosione causata da presenza di correnti continue vaganti Le correnti vaganti nel terreno 5

6 normalmente sono generate da impianti alimentati in corrente continua come impianti di trazione o impianti di protezione catodica. Il fenomeno risulta particolarmente evidente nei pressi delle stazioni di conversione dove tali correnti possono interessare nel loro percorso metalli con diverso potenziale elettrochimico. In figura 20 una grande struttura metallica in ferro interrata a pochi metri da un dispersore di rame può essere corrosa perché le correnti vaganti favoriscono il trasporto di ioni metallici dall anodo (struttura in ferro) verso il catodo (dispersore in rame). Corrosione di metallo ricoperto da strati di terreno diversamente permeabili ai gas La corrosione non si alimenta necessariamente solo in presenza di due metalli diversi. A volte la non omogeneità dei materiali metallici di uso industriale interrati in strati di terreno di diversa consistenza, perciò differentemente areati, può determinare il formarsi di aree anodiche e catodiche quando gli stessi sono immersi in soluzioni elettrolitiche. In questi casi si verifica il meccanismo della corrosione elettrochimica perché esiste una eterogeneità nel metallo che determina la formazione di una pila. Fig. 21: Un dispersore in terreni di diversa permeabilità ai gas può determinare, in presenza di un elettrolita, il formarsi di aree anodiche e catodiche che possono dar luogo a fenomeni di corrosione Una corrente elettrica circola tra anodo e catodo e le zone costituenti l anodo sono attaccate. Questo problema è ben rappresentato da un dispersore di ferro conficcato in un terreno in parte di riporto, poco omogeneo e ben areato, ed in parte in un terreno più compatto e poco areato (fig. 21) Materiali e accorgimenti per limitare il rischio di corrosione In fase di progettazione i rischi di corrosione possono essere agevolmente fronteggiati, dopo un attento esame delle condizioni di installazione e posa, scegliendo materiali adatti. Si deve evitare, quando possibile, l unione di materiali dissimili per evitare che si generino coppie galvaniche con conseguente circolazione di corrente. Fig. 22: Nelle giunzioni fra metalli devono essere impiegati morsetti dichiarati adatti dal costruttore Quando fosse comunque necessario collegare fra di loro metalli molto distanti nella scala dei potenziali elettrochimici, come ad esempio rame e ferro, devono essere impiegati morsetti dichiarati adatti dal costruttore (fig. 22). Oltre a questo, o se necessario in alternativa, possono essere approntate delle barriere fisiche, mediante nastrature con materiali autovulcanizzanti, vernici, resine o catrame, tali da rendere la giunzione impermeabile all acqua e all aria. A tal proposito occorre sottolineare come il pericolo di corrosione sia tanto più elevato quanto maggiore è la superficie del catodo che si riduce rispetto a quella dell anodo che si ossida corrodendosi (rapporti fra catodo e anodo superiori a 100). Particolarmente vulnerabili possono rivelarsi quelle strutture metalliche che vengono protette contro la corrosione mediante trattamenti superficiali. Può infatti accadere, per piccoli difetti nel trattamento, che piccole porzioni restino scoperte. Se un dispersore in rame che funge da catodo è collegato con una struttura metallica in acciaio e presenta una superficie 6

7 notevolmente superiore rispetto alle piccole superfici scoperte della struttura stessa, si ha un attacco particolarmente aggressivo sulle piccole superfici non protette che si comportano come anodo. Questo si spiega perché il fenomeno corrosivo è tanto più rapido quanto maggiore è la densità di corrente che fluisce attraverso l anodo. In grandi superfici senza rivestimento la densità è bassa e la corrosione lenta, in piccole superfici la densità è grande e la corrosione molto intensa. A distanze di pochi metri da strutture metalliche interrate è quindi buona norma non installare impianti di terra costruiti utilizzando metalli nobili come il rame per evitare di incorrere nei fenomeni di corrosione appena descritti. Nei terreni particolarmente acidi è bene evitare l uso di acciaio zincato e preferire il rame mentre nei terreni salmastri ricchi di cloruri è bene evitare l uso di acciaio inossidabile. L uso del rame va evitato in presenza di composti ammoniacali che si trovano in genere nei pressi di scarichi di fognatura o di deiezioni di origine animale (può essere utilizzato rame stagnato o ricoperto di piombo o acciaio zincato a caldo). L allumino subisce il processo di passivazione perché è attaccato dalla corrosione solo in superficie e tende a ricoprirsi di un sottile strato di ossido che lo protegge da ulteriore corrosione. Fig. 23: Esempi di corretto collegamento del dispersore ai ferri di armatura L ossido però è anche isolante e porta a sconsigliare l uso di tale metallo per la costruzione del dispersore. L acciaio dolce utilizzato per i ferri d armatura immerso nel calcestruzzo si nobilita assumendo caratteristiche che raggiungono valori di potenziale simili a quelli del rame che nel calcestruzzo mantiene invece inalterate le sue caratteristiche risultando per questo compatibile con l acciaio (in alcuni casi per motivi economici si utilizzano corde in acciaio ramato). Particolare cura è invece necessario porre al collegamento dei ferri d armatura con corde di ferro zincato perché si potrebbe formare una coppia galvanica nella quale il ferro funge da catodo e lo zinco della corda da anodo. Si può evitare la corrosione della corda zincata proteggendo la superficie della giunzione con catrame o resine e nastrando con cura la corda fino al collegamento col dispersore (fig. 23). Una giunzione molto comune negli impianti di terra è quella fra acciaio zincato e rame. Per evitare la corrosione fra zinco e rame si può utilizzare per la giunzione un metallo con potenziale elettrochimico intermedio come il bronzo o l ottone oppure utilizzare capocorda stagnati o cadmiati (fig. 24). Fig. 24: Per evitare la corrosione dovuta a giunzioni fra rame e zinco si possono utilizzare capocorda in rame stagnati o morsetti in ottone In ogni caso, per quanto concerne resistenza meccanica e protezione contro la corrosione, devono essere rispettare le dimensioni minime prescritte dalla norma CEI 11-1 e

8 3. La misura della resistenza di terra 3.1. Generalità I rilievi strumentali da effettuare sugli impianti di terra hanno lo scopo, vista l importanza che riveste l impianto dal punto di vista della sicurezza, di accertarne l effettiva rispondenza alle specifiche di progetto. Accertare l efficienza di un impianto di terra significa controllare il buono stato dei materiali ed operare le seguenti misure e verifiche: misura della resistività del terreno; misura della resistenza di terra; misura delle tensioni di passo e di contatto; verifica dell equipotenzialità delle masse; verifica della pericolosità di eventuali potenziali trasferiti. La misura della resistività del terreno è preliminare alla stesura del progetto perché, nonostante i risultati della misura siano piuttosto aleatori e variabili, ci permette di calcolare in prima approssimazione il valore che dovrebbe assumere la resistenza del nostro impianto di terra. Ad impianto ultimato, possibilmente nelle normali condizioni di esercizio, si effettua la misura della resistenza di terra il cui valore non si deve discostare troppo da quello calcolato in fase di progetto. Ad impianto funzionante saranno effettuate misurazioni a scadenze periodiche per verificare il mantenimento nel tempo delle caratteristiche originali dell impianto. Con il presente articolo, trascurando momentaneamente sia la misura delle tensioni di passo e di contatto sia la verifica delle equipotenzialità delle masse e della presenza di potenziali trasferiti, si intendono approfondire le tecniche di misurazione della resistenza di terra evidenziandone limiti e difficoltà di esecuzione La resistenza di terra e i potenziali del terreno Il terreno funge da conduttore elettrico ogni qualvolta tra due punti viene applicata, attraverso degli elettrodi (dispersori), una differenza di potenziale. La resistenza di terra è quella che esiste tra il dispersore infisso nel terreno ed un punto preso sufficientemente lontano a potenziale indisturbato (potenziale nullo). Il valore di questa resistenza, che coincide praticamente con la resistenza di una certa porzione di terreno che circonda il dispersore (la resistenza di contatto del dispersore col terreno è praticamente trascurabile), può essere rilevato con opportune misure. Con una semplice misura voltamperometrica possiamo esaminare come varia il potenziale del terreno fra i due dispersori E-A in funzione della distanza (fig. 25). 1. Se il collegamento fosse ottenuto, anziché attraverso il terreno, con un conduttore a sezione costante 2. In presenza di impedenza (quando la resistenza Fig.25: Andamento del potenziale nel terreno tra due dispersori collegati allo stesso generatore del dispersore in misura è molto bassa) non trascurabile sull anello costituito dal circuito di prova 3. Lungo la retta che unisce i due dispersori 4. Lungo la retta, in direzione opposta alla precedente, che esce dal dispersore in misura 8

9 Spostando l elettrodo di tensione dal dispersore E verso il dispersore A, lungo la retta che congiunge i due dispersori, le indicazioni fornite dal voltmetro tendono a crescere in modo non lineare fino a raggiungere il punto P 1 (curva n. 3). Tra il punto P 1 e il punto P 2 la tensione si mantiene costante per riprendere a crescere da P 2 verso A sino a quando l elettrodo di tensione si congiunge col dispersore ausiliario A. Il tratto P 1 -P 2 si può considerare a potenziale nullo o meglio, la resistenza del terreno assume tra P 1 -P 2 valore zero rispetto ai punti E-A. Se l elettrodo del voltmetro viene spostato lungo la retta che si sviluppa in direzione opposta alla precedente la tensione tende ad aumentare fino a raggiungere un valore asintotico costante rappresentato in figura dalla curva n. 4. Qualora la resistenza di terra del dispersore fosse molto bassa potrebbe non essere più trascurabile la componente induttiva. Si deve allora considerare l impedenza determinata dall anello costituito dal circuito percorso dalla corrente di prova e la curva assume la forma n. 2. Abitualmente si parla di resistenza di terra piuttosto che di impedenza di terra perché si considera, come normalmente accade, prevalente l effetto resistivo rispetto a quello induttivo. La semplificazione risulta accettabile nel caso di impianti di piccole dimensioni (resistenze di terra maggiori di 1ohm), mentre potrebbe non esserlo per gli impianti molto estesi quando presentano valori di resistenza minori di 0,1 ohm. Misura della resistività del terreno La conoscenza della resistività del terreno risulta fondamentale per una corretta progettazione dell impianto di terra e influenza in modo determinante il valore complessivo della resistenza che si potrà ottenere. Uno dei metodi di misura più comuni è il metodo del Wenner (fig. 26). Il metodo è rigorosamente valido solamente per elettrodi sferici di piccole dimensioni interrati e con connessioni isolate. Ciononostante, se la parte di elettrodo infissa nel terreno a è Fig.26: Circuito di misura della resistività del terreno col metodo dei quattro punti minima rispetto alla distanza d fra gli elettrodi, i dispersori possono essere assimilati a emisfere e il metodo fornisce risultati sufficientemente attendibili. Si infiggono nel terreno quattro sonde, allineate e ad ugual distanza (d) le une dalle altre, ad una stessa profondità, trascurabile rispetto alla distanza d. Due picchetti, collegati ad un generatore di corrente alternata, sono detti amperometrici, mentre gli altri due, detti voltmetrici sono collegati ad un voltmetro. La resistività del terreno può essere ricavata dalla semplice relazione: dove U è la tensione misurata col voltmetro (ad alta resistenza interna) tra la coppia di elettrodi intermedi, I la corrente di prova iniettata nel terreno attraverso la coppia di elettrodi estremi e d la distanza tra gli elettrodi (per evitare rischi di sovrapposizione di correnti vaganti può essere utile impiegare un alimentazione a frequenza leggermente diversa da quella di rete). Poiché normalmente il terreno non è omogeneo la resistività del terreno non risulta uniforme. La resistività varia al variare della distanza fra le sonde e può essere utile effettuare una serie di misure variando la distanza d e mantenendo costante la profondità di infissione a. La distanza fra i picchetti viene proporzionalmente aumentata allargandosi verso l esterno rispetto ad un punto centrale preso come riferimento. La serie di risultati forniti dalle misure permette di ottenere dati relativi a profondità diverse di terreno aumentando, all aumentare della distanza fra gli elettrodi aumenta, infatti, anche la penetrazione della corrente nel suolo. La resistività del terreno è data dalla media aritmetica dei valori misurati. 9

10 3.3. La misura della resistenza di terra I sistemi di misura della resistenza di terra sono numerosi e le tecniche sono ormai consolidate e in uso da molto tempo. Il metodo più diffuso e consigliato dalle norme CEI è il metodo della caduta di tensione o voltamperometrico (fig. 27). Il metodo prevede di iniettare una corrente alternata (la corrente continua non viene utilizzata perché essendo il terreno un conduttore di natura elettrolitica le misure potrebbero essere viziate da forze elettromotrici di tipo elettrolitico o da correnti continue vaganti) attraverso i dispersori in misura e di permetterne la richiusura attraverso un dispersore ausiliario. La correttezza della misura dipende dalla posizione che assumono il dispersore ausiliario e l elettrodo di tensione fra di loro e rispetto al dispersore in misura. Il dispersore Fig.27: Misura della resistenza di terra con metodo voltamperometrico ausiliario deve essere posto in un punto del terreno sufficientemente lontano rispetto a quello in prova in modo che la misura non sia viziata dall influenza reciproca. Si può ritenere con buona approssimazione che ad una distanza di circa cinque volte la lunghezza del dispersore o cinque volte la diagonale se si considera una rete di dispersori cessi la zona di influenza fra i dispersori. Fig.28: Variazione del potenziale del potenziale nel terreno tra due dispersori L andamento che assume la curva relativa ai potenziali del terreno in queste condizioni è quella di fig. 28. Tale andamento è giustificato dal fatto che la sezione del conduttore terreno che è attraversato dalla corrente di prova non è costante in tutti i suoi punti. La sonda di tensione deve essere conficcata in un punto dove la resistenza può essere considerata trascurabile e il potenziale uguale a zero (zona B1-B2 della curva di fig. 28). Lo schema di collegamento rappresentato in fig. 27 presuppone un alimentazione dalla rete tramite un trasformatore di sicurezza è l impiego di un voltmetro e di un amperometro. Innanzitutto, prima di far circolare corrente nel circuito di misura, occorre verificare che il voltmetro non indichi alcuna tensione dovuta a correnti di dispersione estranee al circuito di prova la cui origine, se ne fosse rilevata la presenza, dovrà essere individuata ed eliminata. Si alimenta quindi con un generatore facendo circolare una corrente nel circuito di prova tra il dispersore in misura e il dispersore ausiliario. Se si indica con I la corrente che circola nel circuito e con U E la tensione indicata dal voltmetro, applicando la legge di ohm si può calcolare la resistenza di terra R E : La misura può essere considerata attendibile e tale rapporto rappresenta l effettiva resistenza di terra solo se la sonda di tensione è infissa nella zona di non influenza del dispersore in misura e del dispersore ausiliario di corrente. 10

11 Per verificarne l esatta posizione, disposta la sonda di corrente alla maggior distanza possibile dal dispersore in prova, si sposta di alcuni metri la sonda di tensione da e verso il dispersore in prova finché le letture del voltmetro, non subendo più variazioni significative, possono essere considerate attendibili. La misurazione della resistenza di terra è relativamente semplice, ma può comportare difficoltà operative e indurre a incertezze e a errori anche rilevanti. Dal punto di vista operativo si riscontrano difficoltà nell individuare aree a distanza utile, spesso private e diverse da quelle di proprietà, ove installare il dispersore ausiliario o far transitare le interconnessioni tra i dispersori e nel realizzare un dispersore ausiliario di resistenza adeguata che permetta la circolazione della corrente di prova quando si alimenta in bassa tensione. Per motivi di sicurezza occorre inoltre presidiare e rendere inaccessibile il dispersore ausiliario dove potrebbero stabilirsi tensioni di contatto elevate e pericolose per le persone (fig. 29: Inacessibilità dell area del dispersore ausiliario per evitare contatti con tensioni pericolose. Ipotizzando una R E di 1 ohm, una R A di 49 ohm e di applicare al circuito di prova una tensione U di 400V sul dispersore ausiliario si stabilisce una tensione pericolosa U A di 392V). Le difficoltà suesposte e soprattutto la mancanza di spazi adeguati alla realizzazione dei dispersori ausiliari può portare ad eseguire misure non corrette: Fig.29: Inacessibilità dell area del dispersore ausiliario per evitare contatti con tensioni pericolose 1. I dispersori sono troppo vicini, le reciproche influenze fanno assumere al dispersore in misura un potenziale che dipende solo da una parte della resistenza di terra (fig.30: Il dispersore ausiliario è posizionato troppo vicino a quello in prova. La tensione misurata è solo una parte della tensione totale di terra U E [U P U E ] ); Fig.30: Il dispersore ausiliario è posizionato troppo vicino a quello in prova 2. La sonda voltmetrica è posizionata troppo vicina al dispersore in prova in un punto a potenziale maggiore di zero e il voltmetro misura solo una parte della tensione totale di terra U E (fig. 31: La sonda di tensione è infissa in un punto del terreno troppo vicino al dispersore in misura. Il voltmetro misura solo una parte della tensione totale di terra U E. La misura fornisce un valore errato per difetto [U P < U E ] ); 3. La sonda di tensione è troppo vicina al dispersore ausiliario il voltmetro misura una tensione superiore alla tensione totale di terra U E (fig.32: La sonda di tensione è infissa in un punto del terreno troppo vicino al dispersore ausiliario. Il voltmetro misura una tensione superiore alla tensione totale di terra U E. La Fig.31: La sonda di tensione è infissa in un punto del terreno troppo vicino al dispersore in misura 11

12 misura fornisce un valore errato per eccesso [U P > U E ] ). Guida alla realizzazione dell impianto di terra (seconda parte) Fig.32: La sonda di tensione è infissa in un punto del terreno troppo vicino al dispersore ausiliario Fig.33: Il dispersore in misura e il dispersore ausiliario sono sufficientemente lontani e la sonda di tensione è posizionata correttamente in un punto a potenziale zero Fig.35: Se la resistenza di terra e la resistenza del conduttore di collegamento al dispersore in prova hanno lo stesso ordine di grandezza la misura deve tener conto della caduta di tensione su tale conduttore di collegamento Fig.34: Circuito equivalente di misura della resistenza di terra col metodo voltamperometrico Solo se i dispersori sono posizionati al di fuori delle reciproche influenze (fig. 33: Il dispersore in misura e il dispersore ausiliario sono sufficientemente lontani e la sonda di tensione è posizionata correttamente in un punto a potenziale zero. Il voltmetro misura la tensione totale di terra U E e la misura può ritenersi corretta [U P = U E ]) la misura può ritenersi affidabile. Nei casi dubbi è possibile, invertendo il collegamento voltmetrico (in fig. 34 invertendo il collegamento B - A con B - D), misurare la resistenza del dispersore ausiliario per confrontare il valore misurato con quello teorico calcolato. Se la misura non è molto diversa dal valore di resistenza calcolato che ci si aspettava la misura può ritenersi corretta. Fig.36: Se il circuito amperometrico e quello voltmetrico sono separati la misura della resistenza di terra non comprende la resistenza sui conduttori di collegamento La misura può essere effettuata anche con strumenti portatili, a tre o quattro morsetti dotati di generatore interno, che forniscono direttamente i valori della resistenza di terra. Lo schema di collegamento può essere quello di figura 35 (Se la resistenza di terra e la resistenza del conduttore di collegamento al dispersore in prova hanno lo 12

13 Fig.37: Misura della resistenza di terra col metodo del dispersore ausiliario a resistenza trascurabile (metodo dei due punti) Guida alla realizzazione dell impianto di terra (seconda parte) stesso ordine di grandezza la misura deve tener conto della caduta di tensione su tale conduttore di collegamento) o di figura 36. Nel primo caso lo strumento rileva anche la caduta di tensione sul conduttore che collega il dispersore in misura. Di questo bisogna tener conto quando la resistenza del dispersore è dello stesso ordine di grandezza di quella del conduttore di collegamento. Nel secondo caso la resistenza dei conduttori non influisce sul valore misurato della resistenza di terra essendo il circuito voltmetrico indipendente da quello amperometrico. In alcune situazioni di difficile operatività e quando è necessario effettuare rilievi preliminari della resistenza di terra (il metodo può rivelarsi affetto da considerevoli errori anche se a favore della sicurezza) si può optare per il metodo dei due punti. Se nei pressi del dispersore in prova è possibile usufruire di un dispersore ausiliario a resistenza trascurabile, facendo attraversare il circuito da una corrente alternata (fig. 37) è possibile applicando la legge di ohm determinare un valore di resistenza che è la somma delle resistenza dei due dispersori. La misura può essere considerata attendibile solo se la resistenza del dispersore ausiliario è trascurabile rispetto a quella del dispersore in prova; ad esempio un dispersore in prova poco esteso (uno o due picchetti) ed una tubazione idrica interrata ed estesa. 13

La misura della resistenza di terra

La misura della resistenza di terra La misura della resistenza di terra Saveri Gianluigi 1. Generalità I rilievi strumentali da effettuare sugli impianti di terra hanno lo scopo, vista l importanza che riveste l impianto dal punto di vista

Dettagli

Come proteggere il dispersore dalla corrosione

Come proteggere il dispersore dalla corrosione Come proteggere il dispersore dalla corrosione Pubblicato il: 15/12/2003 Aggiornato al: 15/12/2003 di Gianluigi Saveri Dal punto di vista chimico fisico i metalli e le leghe, nelle normali condizioni ambientali,

Dettagli

IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A.

IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d Ingegneria dell Università degli Studi di Cagliari

Dettagli

Guida alla realizzazione dell impianto di terra di Gianluigi Saveri

Guida alla realizzazione dell impianto di terra di Gianluigi Saveri Guida alla realizzazione dell impianto di terra di Gianluigi Saveri 1. Generalità L impianto di terra è costituito dall insieme di elementi metallici che collegano, per motivi di sicurezza o funzionali,

Dettagli

Impianto di terra. messa a terra di protezione, è una misura atta a proteggere le persone dai contatti diretti;

Impianto di terra. messa a terra di protezione, è una misura atta a proteggere le persone dai contatti diretti; Impianto di terra Generalità L impianto di terra costituisce fondamentalmente un mezzo per disperdere correnti elettriche nel terreno e per proteggere, unitamente ai dispositivi d interruzione automatica

Dettagli

Le verifiche negli impianti elettrici: tra teoria e pratica. Guida all esecuzione delle verifiche negli impianti elettrici utilizzatori a Norme CEI

Le verifiche negli impianti elettrici: tra teoria e pratica. Guida all esecuzione delle verifiche negli impianti elettrici utilizzatori a Norme CEI Le verifiche negli impianti elettrici: tra teoria e pratica (Seconda parte) Guida all esecuzione delle verifiche negli impianti elettrici utilizzatori a Norme CEI Concluso l esame a vista, secondo quanto

Dettagli

L' IMPIANTO DI MESSA A TERRA

L' IMPIANTO DI MESSA A TERRA L' IMPIANTO DI MESSA A TERRA SCELTA E DIMENSIONAMENTO DEI COMPONENTI ELETTRICI Nella sesta edizione della norma, il capitolo 54 "Messa a terra e condutture di protezione" ha subito poche modifiche, che

Dettagli

PDF created with pdffactory trial version www.pdffactory.com

PDF created with pdffactory trial version www.pdffactory.com 1 INTRODUZIONE La Norma CEI 64-8/6 tratta delle verifiche per gli impianti elettrici in BT. Le prove eseguibili sono in ordine sequenziale dirette a verificare e/o misurare: continuità dei conduttori di

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

Sistemi Elettrici }BT }AT

Sistemi Elettrici }BT }AT Sistemi Elettrici DEFINIZIONE (CEI 11-1) Si definisce SISTEMA ELETTRICO la parte di impianto elettrico costituita dai componenti elettrici aventi una determinata TENSIONE NOMINALE (d esercizio). Un sistema

Dettagli

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Norma CEI 11-1 Campo di applicazione e definizioni

Norma CEI 11-1 Campo di applicazione e definizioni Norma CEI 11-1 Campo di applicazione e definizioni di Gianluigi Saveri 1. Campo di applicazione La nona edizione della Norma CEI 11-1, derivata dal documento di armonizzazione europeo HD 637, è entrata

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Si intende una parte conduttrice, che non fa parte dell'impianto. grado di introdurre nell'impianto un potenziale, generalmente quello di terra

Si intende una parte conduttrice, che non fa parte dell'impianto. grado di introdurre nell'impianto un potenziale, generalmente quello di terra MASSA Parte conduttrice, facente parte dell'impianto elettrico o di un apparecchio utilizzatore, che non è in tensione in condizioni ordinarie di isolamento, ma che può andare in tensione in caso di cedimento

Dettagli

Guida alla realizzazione dell impianto di terra

Guida alla realizzazione dell impianto di terra Guida alla realizzazione dell impianto di terra 1. Generalità L impianto di terra è costituito dall insieme di elementi metallici che collegano, per motivi di sicurezza o funzionali, varie parti dell impianto

Dettagli

Milano, 24 aprile 2008 Prot. SC/gm/ n. 975/08 Lettera Circolare

Milano, 24 aprile 2008 Prot. SC/gm/ n. 975/08 Lettera Circolare Milano, 24 aprile 2008 Prot. SC/gm/ n. 975/08 Lettera Circolare Oggetto: Linee guida per le dichiarazioni di rispondenza degli impianti elettrici ed elettronici esistenti - ai sensi del DM 37/08 art. 7

Dettagli

VERIFICA E COLLAUDO DELLE PROTEZIONI CONTRO I CONTATTI INDIRETTI NEGLI IMPIANTI ELETTRICI DEI SISTEMI TT BT

VERIFICA E COLLAUDO DELLE PROTEZIONI CONTRO I CONTATTI INDIRETTI NEGLI IMPIANTI ELETTRICI DEI SISTEMI TT BT Fonti: VERIFICHE E COLLAUDI DEGLI IMPIANTI ELETTRICI E SPECIALI AUTORE: LUCA LUSSORIO - EDITORE: GRAFILL- 2011 MANUALE D USO COMBITEST 2019 HT ITALIA 2004 VERIFICA E COLLAUDO DELLE PROTEZIONI CONTRO I

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

SENSORI E TRASDUTTORI

SENSORI E TRASDUTTORI SENSORI E TRASDUTTORI Il controllo di processo moderno utilizza tecnologie sempre più sofisticate, per minimizzare i costi e contenere le dimensioni dei dispositivi utilizzati. Qualsiasi controllo di processo

Dettagli

IMPIANTI ELETTRICI DI CANTIERE IMPIANTO DI MESSA A TERRA DEI CANTIERI

IMPIANTI ELETTRICI DI CANTIERE IMPIANTO DI MESSA A TERRA DEI CANTIERI IMPIANTO DI MESSA A TERRA DEI CANTIERI Tutte le masse, le masse estranee e i dispositivi di protezione contro le scariche atmosferiche devono essere collegati ad un unico impianto di messa a terra, ovvero

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

IMPIANTI DI MESSA A TERRA

IMPIANTI DI MESSA A TERRA IMPIANTI DI MESSA A TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d Ingegneria dell Università degli Studi

Dettagli

Il neutro, un conduttore molto "attivo" (3)

Il neutro, un conduttore molto attivo (3) 1 Il neutro, un conduttore molto "attivo" (3) 3. I sistemi elettrici in relazione al modo di collegamento a terra del neutro e delle masse In funzione della messa a terra del neutro e delle masse, un sistema

Dettagli

QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO

QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO (PARTE 1) FOCUS TECNICO Gli impianti di riscaldamento sono spesso soggetti a inconvenienti quali depositi e incrostazioni, perdita di efficienza nello

Dettagli

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE 1 PERDITE DI CARICO LOCALIZZATE Sono le perdite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze

Dettagli

Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria

Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria Corso di laurea in Ingegneria Meccanica Corso di Tecnologie di Chimica Applicata LA CORROSIONE Nei terreni

Dettagli

... corso di chimica elettrochimica 1

... corso di chimica elettrochimica 1 ... corso di chimica elettrochimica 1 CONTENUTI reazioni elettrochimiche pile e celle elettrolitiche potenziale d elettrodo e forza elettromotrice equazione di Nernst elettrolisi leggi di Faraday batterie

Dettagli

VERIFICA E CONTROLLO DEGLI IMPIANTI NEI LOCALI AD USO MEDICO. RELATORI: Dr. Nicola CARRIERO Dr. Carmineraffaele ROSELLI

VERIFICA E CONTROLLO DEGLI IMPIANTI NEI LOCALI AD USO MEDICO. RELATORI: Dr. Nicola CARRIERO Dr. Carmineraffaele ROSELLI VERIFICA E CONTROLLO DEGLI IMPIANTI NEI LOCALI AD USO MEDICO RELATORI: Dr. Nicola CARRIERO Dr. Carmineraffaele ROSELLI OGGETTO E SCOPO DELLE VERIFICHE Per verifica si intende l insieme delle operazioni

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Protezione da fulmini ka

Protezione da fulmini ka Cap. 3 Protezione da corrosione galvanica: Isolatori galvanici Tester corrosione Protezione da picchi di tensione: AC Power Defender Aber Marine Protezione da scariche atmosferiche: Parafulmini Protezioni

Dettagli

Verifiche su impianti di Terra. Apparecchiature per la verifica degli impianti di messa a terra e modalità d uso

Verifiche su impianti di Terra. Apparecchiature per la verifica degli impianti di messa a terra e modalità d uso Apparecchiature per la verifica degli impianti di messa a terra e modalità d uso 1 Principale normativa inerente impianti di messa a terra Impianti elettrici CEI 99-2 (IEC EN 61936-1) CEI 99-3 (EN 50522)

Dettagli

Guida pratica all impianto elettrico nell appartamento (seconda parte)

Guida pratica all impianto elettrico nell appartamento (seconda parte) Guida pratica all impianto elettrico nell appartamento (seconda parte) Pubblicato il: 17/05/2004 Aggiornato al: 25/05/2004 di Gianluigi Saveri 1. L impianto elettrico L appartamento che si prende come

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Definizione. La terra. Folgorazione. Rischi elettrico. Effetti. Tipi di corrente elettrica. Cavi. Adempimenti Primo Soccorso

Definizione. La terra. Folgorazione. Rischi elettrico. Effetti. Tipi di corrente elettrica. Cavi. Adempimenti Primo Soccorso 1 Tipi di corrente elettrica Rischi elettrico Definizione Cavi La terra Folgorazione Effetti Adempimenti Primo Soccorso 2 Possiamo paragonare la corrente elettrica ad una cascata e l energia trasferita

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

Collegamento a terra degli impianti elettrici

Collegamento a terra degli impianti elettrici Collegamento a terra degli impianti elettrici E noto che il passaggio di corrente nel corpo umano provoca dei danni che possono essere irreversibili se il contatto dura troppo a lungo. Studi medici approfonditi

Dettagli

PROVE SULLA MACCHINA A CORRENTE CONTINUA

PROVE SULLA MACCHINA A CORRENTE CONTINUA LABORATORIO DI MACCHINE ELETTRICHE PROVE SULLA MACCHINA A CORRENTE CONTINUA PROVE SULLA MACCHINA A C. C. Contenuti Le prove di laboratorio che verranno prese in esame riguardano: la misura a freddo, in

Dettagli

Impianti fotovoltaici connessi alla rete

Impianti fotovoltaici connessi alla rete Aspetti tecnici legati alla progettazione e realizzazione di impianti di generazione e alla loro connessione alla rete La Guida CEI 82-25: Guida alla realizzazione di sistemi di generazione fotovoltaica

Dettagli

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE CALCOLO ELETTRICO DELLE LINEE ELETTRICHE Appunti a cura dell Ing. Stefano Usai Tutore del corso di ELETTROTECNICA per meccanici e chimici A. A. 2001/ 2002 e 2002/2003 Calcolo elettrico delle linee elettriche

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Gli acciai inossidabili

Gli acciai inossidabili Gli acciai inossidabili Gli acciai inossidabili sono delle leghe a base di ferro, di cromo e di carbonio ed anche di altri elementi quali il nichel, il molibdeno, il silicio, il titanio, che li rendono

Dettagli

Si classifica come una grandezza intensiva

Si classifica come una grandezza intensiva CAP 13: MISURE DI TEMPERATURA La temperatura È osservata attraverso gli effetti che provoca nelle sostanze e negli oggetti Si classifica come una grandezza intensiva Può essere considerata una stima del

Dettagli

Corrente elettrica. La disputa Galvani - Volta

Corrente elettrica. La disputa Galvani - Volta Corrente elettrica La disputa Galvani - Volta Galvani scopre che due bastoncini di metalli diversi, in una rana, ne fanno contrarre i muscoli Lo interpreta come energia vitale Volta attribuisce il fenomeno

Dettagli

Il modello generale di commercio internazionale

Il modello generale di commercio internazionale Capitolo 6 Il modello generale di commercio internazionale [a.a. 2013/14] adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) 6-1 Struttura della presentazione Domanda e

Dettagli

Generatore radiologico

Generatore radiologico Generatore radiologico Radiazioni artificiali alimentazione: corrente elettrica www.med.unipg.it/ac/rad/ www.etsrm.it oscar fiorucci. laurea.tecn.radiol@ospedale.perugia.it Impianto radiologico trasformatore

Dettagli

Prof. M. Maja (Politecnico di Torino) "CORROSIONE E OSSIDAZIONE ANODICA DEL TITANIO"

Prof. M. Maja (Politecnico di Torino) CORROSIONE E OSSIDAZIONE ANODICA DEL TITANIO Prof. M. Maja (Politecnico di Torino) "CORROSIONE E OSSIDAZIONE ANODICA DEL TITANIO" In questi ultimi anni, sono stati fatti molti studi riguardanti la corrosione del titanio, a testimonianza del crescente

Dettagli

Regole della mano destra.

Regole della mano destra. Regole della mano destra. Macchina in continua con una spira e collettore. Macchina in continua con due spire e collettore. Macchina in continua: schematizzazione di indotto. Macchina in continua. Schematizzazione

Dettagli

DANNEGGIAMENTI IN ESERCIZIO FENOMENI DI DANNEGGIAMENTO IN ESERCIZIO IN COMPONENTI MECCANICI REALIZZATI CON MATERIALI METALLICI

DANNEGGIAMENTI IN ESERCIZIO FENOMENI DI DANNEGGIAMENTO IN ESERCIZIO IN COMPONENTI MECCANICI REALIZZATI CON MATERIALI METALLICI FENOMENI DI DANNEGGIAMENTO IN ESERCIZIO IN COMPONENTI MECCANICI REALIZZATI CON MATERIALI METALLICI 1 LA CORROSIONE Fenomeno elettrochimico che si può manifestare quando un metallo o una lega metallica

Dettagli

GUIDA ALL INSTALLAZIONE DI UN SISTEMA FISSO AUTOMATICO DI RIVELAZIONE E ALLARME D INCENDIO

GUIDA ALL INSTALLAZIONE DI UN SISTEMA FISSO AUTOMATICO DI RIVELAZIONE E ALLARME D INCENDIO GUIDA ALL INSTALLAZIONE DI UN SISTEMA FISSO AUTOMATICO DI RIVELAZIONE E ALLARME D INCENDIO La presente guida mette in risalto solo alcuni punti salienti estrapolati dalla specifica norma UNI 9795 con l

Dettagli

Riscaldatori a cartuccia

Riscaldatori a cartuccia Riscaldatori a cartuccia Cartuccia Pg01 di 14 2011-01 E.M.P. Srl - Italy - www.emp.it Riscaldatori a cartuccia HD Alta densità di potenza Descrizione La tecnologia costruttiva dei riscaldatori a cartuccia

Dettagli

Fondamenti di macchine elettriche Corso SSIS 2006/07

Fondamenti di macchine elettriche Corso SSIS 2006/07 9.13 Caratteristica meccanica del motore asincrono trifase Essa è un grafico cartesiano che rappresenta l andamento della coppia C sviluppata dal motore in funzione della sua velocità n. La coppia è legata

Dettagli

LA SICUREZZA DELLE APPARECCHIATURE ELETTRICHE

LA SICUREZZA DELLE APPARECCHIATURE ELETTRICHE LA SICUREZZA DELLE APPARECCHIATURE ELETTRICHE Torino 21-23 marzo 2006 ABAG SRL http:// www.abag.it 1 CONSIDERAZIONI GENERALI E DEFINIZIONI cos'è la marcatura ce chi ne va soggetto e quali direttive occorre

Dettagli

Nuove norme sulla protezione contro i fulmini

Nuove norme sulla protezione contro i fulmini Nuove norme sulla protezione contro i fulmini Pubblicato il: 31/05/2006 Aggiornato al: 31/05/2006 di Gianfranco Ceresini Nello scorso mese di aprile sono state pubblicate dal CEI le attese nuove norme

Dettagli

PROTEZIONE DAI CONTATTI INDIRETTI NEI SISTEMI TT

PROTEZIONE DAI CONTATTI INDIRETTI NEI SISTEMI TT POTEZONE DA CONTATT NDETT NE SSTEM TT Appunti a cura dell ng. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d ngegneria dell Università degli

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA CONTATTI DIRETTI contatti con elementi attivi dell impianto elettrico che normalmente sono in tensione CONTATTI INDIRETTI contatti con masse che possono trovarsi

Dettagli

Gli impianti elettrici. nei cantieri edili

Gli impianti elettrici. nei cantieri edili Gli impianti elettrici nei cantieri edili Agli impianti elettrici nei cantieri si applicano la Sezione 704 della norma CEI 64-8 (VI Ediz.) (cantieri di costruzione e di demolizione) e la guida CEI 64-17

Dettagli

LE BATTERIE DA AVVIAMENTO

LE BATTERIE DA AVVIAMENTO LE BATTERIE DA AVVIAMENTO 1. Principio di funzionamento 1 Le batterie da avviamento comunemente usate su moto e scooter della gamma SYM sono batterie al piombo, il cui elemento base è la cella, costituita

Dettagli

Storia dei generatori di tensione e della corrente elettrica

Storia dei generatori di tensione e della corrente elettrica Storia dei generatori di tensione e della corrente elettrica Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia 1778 Alessandro Volta, in analogia al potenziale gravitazionale definito

Dettagli

CABINE ELETTRICHE DI TRASFORMAZIONE

CABINE ELETTRICHE DI TRASFORMAZIONE Cabtrasf_parte_prima 1 di 8 CABINE ELETTRICHE DI TRASFORMAZIONE parte prima Una cabina elettrica è il complesso di conduttori, apparecchiature e macchine atto a eseguire almeno una delle seguenti funzioni:

Dettagli

Blanke Profilo di chiusura

Blanke Profilo di chiusura Dati tecnici Blanke Profilo di chiusura Per la protezione dei bordi in caso di chiusure di rivestimenti al pavimento ed alle pareti Uso e funzioni: Blanke Profilo di chiusura è un profilo speciale per

Dettagli

funzionamento degli accumulatori al piombo/acido.

funzionamento degli accumulatori al piombo/acido. Il triangolo dell Incendio Possibili cause d incendio: I carrelli elevatori Particolare attenzione nella individuazione delle cause di un incendio va posta ai carrelli elevatori, normalmente presenti nelle

Dettagli

IL TRASFORMATORE REALE

IL TRASFORMATORE REALE Il trasformatore ideale è tale poiché: IL TRASFORMATORE REALE si ritengono nulle le resistenze R 1 e R 2 degli avvolgimenti; il flusso magnetico è interamente concatenato con i due avvolgimenti (non vi

Dettagli

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo diverse metodologie. 1 La tempra termica (o fisica) si basa

Dettagli

METODOLOGIA OPERATIVA PER L ESECUZIONE DELLE VERIFICHE STRUMENTALI

METODOLOGIA OPERATIVA PER L ESECUZIONE DELLE VERIFICHE STRUMENTALI METODOLOGIA OPERATIVA PER L ESECUZIONE DELLE VERIFICHE STRUMENTALI INDICE MOEV-1 Verifica impianti di terra per sistemi elettrici TT Protezione mediante interruzione automatica dell alimentazione MOEV-2

Dettagli

Esercitazione n 1: Circuiti di polarizzazione (1/2)

Esercitazione n 1: Circuiti di polarizzazione (1/2) Esercitazione n 1: Circuiti di polarizzazione (1/2) 1) Per il circuito in Fig. 1 determinare il valore delle resistenze R B ed R C affinché: = 3 ma - V CE = 7 V. Siano noti: = 15 V; β = 120; V BE = 0,7

Dettagli

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. Negli ultimi anni, il concetto di risparmio energetico sta diventando di fondamentale

Dettagli

Locali ad uso medico

Locali ad uso medico 1 Locali ad uso medico 1.1 Generalità 1. Locali di gruppo 0 e gruppo 1 (ex tipo B e A) Fra i locali considerati a maggior rischio elettrico, e quindi soggetti a specifiche prescrizioni (nuova sezione 710

Dettagli

SPD: che cosa sono e quando devono essere usati

SPD: che cosa sono e quando devono essere usati Antonello Greco Gli SPD, o limitatori di sovratensione, costituiscono la principale misura di protezione contro le sovratensioni. La loro installazione può essere necessaria per ridurre i rischi di perdita

Dettagli

Amplificatori Audio di Potenza

Amplificatori Audio di Potenza Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso

Dettagli

Criteri di progettazione elettrica di impianti gridconnected

Criteri di progettazione elettrica di impianti gridconnected Criteri di progettazione elettrica di impianti gridconnected Per quanto attiene gli impianti connessi alla rete elettrica, vengono qui presentati i criteri di progettazione elettrica dei principali componenti,

Dettagli

tecnologia PROPRIETÀ DEI METALLI Scuola secondaria primo grado. classi prime Autore: Giuseppe FRANZÈ

tecnologia PROPRIETÀ DEI METALLI Scuola secondaria primo grado. classi prime Autore: Giuseppe FRANZÈ tecnologia PROPRIETÀ DEI METALLI Scuola secondaria primo grado. classi prime Autore: Giuseppe FRANZÈ LE PROPRIETÀ DEI MATERIALI DA COSTRUZIONE Si possono considerare come l'insieme delle caratteristiche

Dettagli

DOCUMENTO TECNICO DI DESCRIZIONE DEL SERVIZIO PER LA VERIFICA DEGLI IMPIANTI ELETTRICI DI MESSA A TERRA E DEGLI IMPIANTI DI SOLLEVAMENTO

DOCUMENTO TECNICO DI DESCRIZIONE DEL SERVIZIO PER LA VERIFICA DEGLI IMPIANTI ELETTRICI DI MESSA A TERRA E DEGLI IMPIANTI DI SOLLEVAMENTO DOCUMENTO TECNICO DI DESCRIZIONE DEL SERVIZIO PER LA VERIFICA DEGLI IMPIANTI ELETTRICI DI MESSA A TERRA E DEGLI IMPIANTI DI SOLLEVAMENTO Capitolato Tecnico 1 di 5 SOMMARIO 1. OGGETTO... 3 2. DURATA...

Dettagli

Relazione Tecnica Progetto dell Impianto Elettrico

Relazione Tecnica Progetto dell Impianto Elettrico Relazione Tecnica Progetto dell Impianto Elettrico Rotatoria ingresso cittadella universitaria Premessa: La presente relazione tecnica è finalizzata ad indicare la caratteristiche dei principali componenti

Dettagli

CORROSIONE INTERSTIZIALE

CORROSIONE INTERSTIZIALE CORROSIONE INTERSTIZIALE La corrosione interstiziale presenta alcuni aspetti in comune con la pitting corrosion. Si tratta di corrosione localizzata e si manifesta con la formazione di caverne in corrispondenza

Dettagli

I locali da bagno e doccia

I locali da bagno e doccia I locali da bagno e doccia 1. Classificazione delle Zone In funzione della pericolosità, nei locali bagno e doccia (Norma 64-8 sez. 701) si possono individuare quattro zone (fig. 1) che influenzano i criteri

Dettagli

Dispositivo di conversione di energia elettrica per aerogeneratori composto da componenti commerciali.

Dispositivo di conversione di energia elettrica per aerogeneratori composto da componenti commerciali. Sede legale: Viale Vittorio Veneto 60, 59100 Prato P.IVA /CF 02110810971 Sede operativa: Via del Mandorlo 30, 59100 Prato tel. (+39) 0574 550493 fax (+39) 0574 577854 Web: www.aria-srl.it Email: info@aria-srl.it

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

Serie elettrochimica I

Serie elettrochimica I Serie elettrochimica I Li/Li+ -3,045 Al/Al3+ -1,66 Co/Co2+ -0,30 K/K+ -2,925 Ti/Ti2+ -1,63 Ni/Ni2+ -0,25 Sr/Sr2+ -2,89 Zr/Zr4+ -1,53 Mo/Mo3+ -0,20 Ca/Ca2+ -2,87 Mn/Mn2+ -1,19 Sn/Sn2+ -0,140 Na/Na+ -2,713

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica Liceo Scientifico G. TARANTINO ALUNNO: Pellicciari Girolamo VG PRIMA LEGGE DI OHM OBIETTIVO: Verificare la Prima leggi di Ohm in un circuito ohmico (o resistore) cioè verificare che l intensità di corrente

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

CASI DI STUDIO e ANALISI TECNOLOGICA DELLE VARIABILITA

CASI DI STUDIO e ANALISI TECNOLOGICA DELLE VARIABILITA CASI DI STUDIO e ANALISI TECNOLOGICA DELLE VARIABILITA Il mio obbiettivo per limitare il ponte termico del balcone è quello di garantire la continuità dell isolante tra la muratura e la partizione orizzontale

Dettagli

RELAZIONE TECNICA IMPIANTO ELETTRICO

RELAZIONE TECNICA IMPIANTO ELETTRICO RELAZIONE TECNICA IMPIANTO ELETTRICO (Decreto n. 37 del 22 Gennaio 2008) Pagina 1 di 9 INDICE 1. OGGETTO...3 2. NORMATIVA DI RIFERIMENTO...3 3. DESCRIZIONE LAVORO....4 3.1.ALIMENTAZIONE IMPIANTO DI ILLUMINAZIONE

Dettagli

Prevenzione della Corrosione

Prevenzione della Corrosione DL MK1 BANCO DI LAVORO PER LA PROTEZIONE CATODICA La Protezione Catodica è una tecnica di controllo della corrosione di una superficie metallica facendola funzionare come il catodo di una cella elettrochimica.

Dettagli

I CIRCUITI ELETTRICI. Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi.

I CIRCUITI ELETTRICI. Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi. I CIRCUITI ELETTRICI Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi. Definiamo ramo un tratto di circuito senza diramazioni (tratto evidenziato in rosso nella

Dettagli

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI LE FONDAZIONI Generalità sulle fondazioni Fondazioni dirette Plinti isolati Trave rovescia Esecutivi di strutture di fondazione Generalità Le opere di fondazione hanno il compito di trasferire le sollecitazioni

Dettagli

352&(662',&20%867,21(

352&(662',&20%867,21( 352&(662',&20%867,21( Il calore utilizzato come fonte energetica convertibile in lavoro nella maggior parte dei casi, è prodotto dalla combustione di sostanze (es. carbone, metano, gasolio) chiamate combustibili.

Dettagli

779 CAVI PER SISTEMI DI PESATURA

779 CAVI PER SISTEMI DI PESATURA 779 CAVI PER SISTEMI DI PESATURA Cavi per sistemi di Pesatura Prospecta propone una gamma completa di cavi per la connessione di sistemi di pesatura, realizzati tramite celle di carico elettroniche. L

Dettagli

SICUREZZA ELETTRICA collegamento a terra degli impianti elettrici

SICUREZZA ELETTRICA collegamento a terra degli impianti elettrici SICUREA ELERICA collegamento a terra degli impianti elettrici classificazione dei sistemi elettrici in basa al collegamento a terra sistemi, -C,-S,I corrente di impiego collegamenti equipotenziali guasto

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO. ---- Sicurezza elettrica ---- Materia: Elettronica, Telecomunicazioni ed applicazioni. prof. Ing.

I.P.S.I.A. Di BOCCHIGLIERO. ---- Sicurezza elettrica ---- Materia: Elettronica, Telecomunicazioni ed applicazioni. prof. Ing. I.P.S.I.A. Di BOCCHIGLIERO a.s. 2011/2012 -classe IV- Materia: Elettronica, Telecomunicazioni ed applicazioni ---- Sicurezza elettrica ---- alunni Paletta Francesco Scalise Pietro Iacoi Domenico Turco

Dettagli