obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no?

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no?"

Transcript

1 appello ENE - docente: E. Piazza obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no? il presente elaborato si compone di x (ics) pagine Cognome Nome matr.n. Avvertimento: nello svolgimento degli esercizi se una quantità è indicata con il simbolo x continuare a chiamarla x, e se si chiama W non chiamarla X, e se si chiama t i non chiamarla x i, e se si chiama T n nonindicarlacon X n.sevoletescriveredipendentinonscriveteindipendenti,sedovete sottrarre non sommate. Si fanno troppi errori di distrazione. Mi raccomando: concentrazione. Si consiglia di lavorare con 3 decimali, arrotondando opportunamente. Problema 1. Gli arrivi delle auto al distributore della BENZON sono ben descritte da un processo di Poisson. Mediamente in un ora si presentano alla pompa 10 automobili. Il distributore apre alle 7: Qual è la probabilità che la prima auto si presenti esattamente alle 7:35? Sia N(t) il numero di auto che si presentano alla pompa in t minuti, per cui N(t) Pois(tν), ν= = 1 6, e sia T il tempo di attesa per la prima auto alla pompa, per cui T exp(ν). P[T =5]= Qual è la probabilità che la prima auto si presenti dopo le 7:35? P[T >5]=P[N(5)=0]=P[Pois(5ν)=0]=e ν5 =e 5/6 = Qual è la probabilità che la seconda auto si presenti al distributore dopo 20 minuti dall apertura? P[N(20) 1]=P[Pois(20ν) 1]=P[Pois(20ν)=0]+P[Pois(20ν)=1]= =e 20ν +20νe 20ν =0.1546= = Qual è la probabilità che arrivino esattamente 6 auto tra le 8 e le 8:30? P[N(30)=6]=P[Pois(30ν)=30]=e 30ν(30ν)6 = ! 1.5 Mediamente quanto tempo intercorre tra l arrivo di un auto e la successiva? E[T]=1/ν=6 minuti. La pompa rimane aperta 8 ore ogni giorno. 1.6 Quanto vale la media giornaliera degli arrivi? E[N(480)]=480 ν= Qual è la probabilità che in 200 giorni gli arrivi superino il numero di 16 mila? In 200 giorni la pompa rimane aperta minuti, per cui N(96 000) P(16 000). Poichè >5, vale N(96 000) N(16 000;16 000), per cui P[N(96 000) >16 000] 0.5 1

2 Problema 2. Un agenzia pubblicitaria è sul punto di decidere in merito ad un ingente investimento in vista dei mondiali di calcio che si svolgeranno in Russia nel Vuole quindi capire se intraprendere una determinata campagna promozionale attraverso Twitter, e a tal fine vuole verificare se la percentuale p di tifosi che commenta su Twitter i mondiali di calcio sia in crescita dal 2010 al L agenzia sta per ricevere i risultati di un intervista fatta al termine dei mondiali del 2010 a un campione casuale di 120 tifosi ai quali è stato semplicemente chiesto se durante quei mondiali abbiano pubblicato almeno un tweet per commentarli. Analogamente il 15 luglio, al termine dei mondiali del 2014, l agenzia porrà lo stesso quesito a un nuovo campione casuale, sempre di 120 tifosi. 2.1 Si introduca un opportuno test statistico per verificare l ipotesi di interesse per l agenzia, sulla base dei dati campionari che saranno a disposizione il 15 luglio. Si introducano esplicitamente: variabili (o popolazioni) oggetto dell inferenza, ipotesi nulla, ipotesi alternativa, campioni casuali, regione critica di livello α. 1, almeno un tweet X 2010 = risposta di un tifoso nel 2010= B(p 2010 ) 0, altrimenti, 1, almeno un tweet X 2014 = risposta di un tifoso nel 2014= B(p 2014 ) 0, altrimenti, p k = percentuale di tifosi che commenta i mondiali con almeno un tweet nell anno k H 0 : p 2010 p 2014 vs H 1 : p 2010 < p 2014 X 2010,1,...,X 2010,120 campione casuale B(p 2010 ) X 2014,1,...,X 2014,120 campione casuale B(p 2014 ) p 2010 p 2014 R α : Z 0 = < z α p (1 p) ( ) dove 120 j=1 p k = X 120 k,j j=1, p= X 2010,j+ 120 j=1 X 2014,j Arrivano i risultati della prima intervista: nel 2010, su 120 tifosi, 78 hanno pubblicato almeno un tweet sui mondiali. Impazienti di dare una risposta all agenzia, a bordo di una DeLorean raggiungiamo il 15 luglio 2014: nel 2014, su 120 tifosi, 102 hanno pubblicato almeno un tweet sui mondiali. 2,2 Dare una risposta all agenzia ad un livello di significatività del 5%. Essendo p 2010 =0.65, p 2014 =0.85, p=0.75, risulta Z 0 = < z α = 1.645, pertanto l ipotesi nulla viene rifiutata a livello 0.05: l agenzia ha motivo di ritenere che la percentuale di tifosi che commenta su Twitter i mondiali di calcio sia aumentata. 2,3 La conclusione è forte o debole? La conclusione è forte. 2.4 Calcolare il p-value dei dati raccolti. Il p-value dei dati raccolti è il livello α per cui Z 0 = = z α, per cui z α = α=φ(z α )=Φ( )= α= =

3 Problema 3. Dopo la delusione mondiale, il difensore della Juventus e della nazionale Leonardo Bonucci, notoriamente avvezzo al gioco d azzardo, decide di consolarsi con le scommesse. In particolare è molto interessato alle quote che i bookmaker inglesi danno per la somma dei Km percorsi dalle due squadre durante i 90 minuti della finale mondiale 2014, e vorrebbe scommettere sul fatto che tale somma sarà maggiore di 190. Pertanto raccoglie informazioni sulla variabile Y = somma dei Km percorsi dai giocatori delle due squadre durante una partita dei mondiali 2014 analizzando i dati relativi alle 48 partite della fase a gironi 1. Per questi dati y= s 2 y= Inoltre il test di Shapiro-Wilk per la normalità di Y, eseguito sempre su questi dati, restituisce un p value di , mentre il loro Normal Probability Plot è riportato in Figura. Bonucci però non si accontenta dei dati relativi alla sola variabile Y, poiché ritiene che ci possa essere una relazione tra la somma Y dei Km percorsi e la temperatura x (in gradi centigradi) alla quale è stata giocata la partita, e vorrebbe sfruttare questa relazione prima di scommettere. 1 per questo esercizio sono stati utilizzati i dati veri raccolti direttamente dal sito ufficiale della FIFA 3

4 Per fare questo raccoglie le temperature relative alle stesse 48 partite e imposta il seguente modello empirco gaussiano di regressione lineare: Y = β 0 +β 1 X+ε, ε N(0,σ 2 ). I risultati ottenuti elaborando i dati tramite il software statistico R sono i seguenti: Inoltre in figura 4

5 sono riportati i grafici di diagnostica dei residui, mentre il test di Shapiro-Wilk sui residui restituisce un p-value di Scrivere l equazione della retta ai minimi quadrati. y= x. 3.2 Discutere la validità dell ipotesi gaussiana del modello empirico di regressione lineare. Le ipotesi gaussiane del modello di regressione lineare sono rispettate, infatti dal grafico dei residui osservo che non ci sono tendenze o andamenti anomali della variabilità (quindi l ipotesi di omoschedasticità è rispettata), mentre dal Normal Probability Plot e dal valore piuttosto alto del p-value del test di Shapiro-Wilk non ho evidenza per rifiutare l ipotesi di normalità dei residui. 3.3 Discutere più in generale la bontà del modello empirico di regressione lineare. Questo modello di regressione non risulta essere adatto al problema in analisi: la percentuale di variabilità di Y spiegata dal modello con la variabilità di x è bassissima (R 2 = ) e la regressione non risulta essere significativa (p-value della regressione molto alto: ). 3.4 Costruire un opportuno intervallo di previsione al 95% per la somma Y dei km percorsi dalle due squadre durante la finale dei mondiali di calcio Suggerimento: ricordiamo che data una variabile aleatoria gaussiana Y sia (Y 1,...,Y n ) un campione di n osservazioni da Y. Allora un intervallo di previsione per un ulteriore osservazione Y n+1 si può ottenere considerando che Y n+1 Y n t n 1. S 1+ 1 n Essendo il modello non significativo non ha senso utilizzarlo per fare previsione. Fortunatamente però, non abbiamo evidenza per rifiutare l ipotesi di normalità di Y, e possiamo quindi utilizzare l intervallo di previsione per una popolazione gaussiana: y±s y 1+ 1 n t α/2;n 1= y±s y t 0.025;47= ± =( , ). 3.5 Consigliereste a Bonucci di scommettere? Essendo l intervallo di previsione completamente superiore al valore 190, cosiglieremmo a Bonucci di scommettere. 5

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecnico di Milano - Anno Accademico 200-20 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Esercitazione 9 2 Giugno 20 Esercizio. In un laboratorio per il test dei materiali,

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

Regressione Lineare con un Singolo Regressore

Regressione Lineare con un Singolo Regressore Regressione Lineare con un Singolo Regressore Quali sono gli effetti dell introduzione di pene severe per gli automobilisti ubriachi? Quali sono gli effetti della riduzione della dimensione delle classi

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD.

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Advanced level Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Sommario Toolbox finance Analisi dei portafogli Analisi grafica Determinate Date Toolbox statistics Analisi

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Esercitazioni-aula-parte-III

Esercitazioni-aula-parte-III Esercitazioni-aula-parte-III Esempio par.7.2) Ross Sia (X 1,..., X n ) un campione aleatorio estratto da una popolazione esponenziale di parametro θ incognito. Determinare l espressione dello stimatore

Dettagli

EMBA PART TIME 2012 ROMA I ANNO

EMBA PART TIME 2012 ROMA I ANNO BUSINESS STATISTICS: ASSIGNMENT II: EMBA PART TIME 2012 ROMA I ANNO PROF. MOSCONI ESERCIZIO 1: USO DEL MODELLO DI REGRESSIONE PER DETERMINARE IL VALORE DEGLI IMMOBILI. ESERCIZIO 2: PREVISIONE DI VARIABILI

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO I TEST STATISTICI E IL P-VALUE Obiettivo di questo Learning Object è ripassare la teoria ma soprattutto la pratica dei test statistici, con un attenzione particolare ai test che si usano in Econometria.

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

La Regressione Lineare

La Regressione Lineare La Regressione Lineare. Cos è l Analisi della Regressione Multipla? L analisi della regressione multipla è una tecnica statistica che può essere impiegata per analizzare la relazione tra una variabile

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007

Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007 Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007 Nome: Alberto Cognome: De Sole Matricola: 01234567890 Codice 9784507811 Esercizio Risposta Voto 1 a b c d e 1 2 V

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA

UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA TESI DI LAUREA CONFRONTO TRA MODELLI STATISTICI NON PARAMETRICI :UNA APPLICAZIONE

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali

la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali 1/29 la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali modelli teorici e modelli empirici l'osservazione dei processi

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Legge del Raffreddamento di Newton

Legge del Raffreddamento di Newton Legge del Raffreddamento di Newton www.lepla.eu Obiettivo L'obiettivo di questo esperimento è studiare l'andamento temporale della temperatura di un oggetto che si raffredda e trovare un modello matematico

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

Indice. pag. 15. Prefazione. Introduzione» 17

Indice. pag. 15. Prefazione. Introduzione» 17 Indice Prefazione 15 Introduzione 17 1. Pianificazione della qualità 1.1. Il concetto di 6 sigma 1.1.1. Le aree e le fasi del sei sigma 1.2. I processi produttivi e la variabilità 1.2.1. Cause comuni 1.2.2.

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Criteri di Valutazione della scheda - Solo a carattere indicativo -

Criteri di Valutazione della scheda - Solo a carattere indicativo - Criteri di Valutazione della scheda - Solo a carattere indicativo - Previsioni Sono state fatte le previsioni e discussi i valori attesi con il ragionamento con cui sono stati calcolati E stata usata la

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

- Premessa...pag. 3. - Tabella dati.pag. 4. - Analisi di regressione lineare multipla pag. 5. - Individuazione residui anomali.pag.

- Premessa...pag. 3. - Tabella dati.pag. 4. - Analisi di regressione lineare multipla pag. 5. - Individuazione residui anomali.pag. Istituto Universitario di Architettura di Venezia Facoltà di Pianificazione del d Territorio Corso di laurea in Scienze della Pianificazione Urbanistica e Territoriale Esame di Metodi Quantitativi per

Dettagli

INTRODUZIONE STATISTICA

INTRODUZIONE STATISTICA INTRODUZIONE STATISTICA (scienza dello stato): insieme dei principi e di metodi per la raccolta, elaborazione, utilizzazione e interpretazione di informazioni riguardanti fenomeni collettivi. In termini

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

CONTROLLI STATISTICI

CONTROLLI STATISTICI CONTROLLI STATISTICI Si definisce Statistica la disciplina che si occupa della raccolta, effettuata in modo scientifico, dei dati e delle informazioni, della loro classificazione, elaborazione e rappresentazione

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Modello di regressione lineare

Modello di regressione lineare Modello di regressione lineare a cura di Giordano dott. Enrico enrico.giordano@meliorbanca.com Nel presente lavoro viene descritto in modo dettagliato (attraverso anche un impatto visivo), l analisi di

Dettagli

Inter Roma - Inter. Lazio Inter - Lazio Roma Inter - Roma

Inter Roma - Inter. Lazio Inter - Lazio Roma Inter - Roma 5 Campionati di calcio di serie A Che cosa si impara nel capitolo 5 Si può vedere come è cambiato il gioco del calcio - partite vinte/perse/pareggiate e goal fatti/subiti attraverso la tabella a doppia

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12) Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola

Dettagli

Problema pratico: Test statistico = regola di decisione

Problema pratico: Test statistico = regola di decisione La verifica delle ipotesi statistiche Problema pratico: Quale, tra diverse situazioni possibili, riferite alla popolazione, è quella meglio sostenuta dalle evidenze empiriche? Coerenza del risultato campionario

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

CURRICOLO MATEMATICA

CURRICOLO MATEMATICA 1 CURRICOLO MATEMATICA Competenza 1 al termine della scuola dell Infanzia 2 NUMERI Raggruppare, ordinare, contare, misurare oggetti, grandezze ed eventi direttamente esperibili. Utilizzare calendari settimanali

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Regressione Logistica: un Modello per Variabili Risposta Categoriali

Regressione Logistica: un Modello per Variabili Risposta Categoriali : un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione

Dettagli

Catalogo dei corsi di statistica e di marketing research

Catalogo dei corsi di statistica e di marketing research I nostri corsi di formazione Catalogo dei corsi di statistica e di marketing research 06/02/2009 Knowledge management for marketing intelligence La nostra esperienza di formazione I ricercatori e i consulenti

Dettagli

Analisi della performance temporale della rete

Analisi della performance temporale della rete Analisi della performance temporale della rete In questo documento viene analizzato l andamento nel tempo della performance della rete di promotori. Alcune indicazioni per la lettura di questo documento:

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove Corso di laurea in Ing. Gestionale, a.a. 2001/2002 Prova scritta di Metodi Matematici e Statistici del 25 giugno 2002 Si effettuano n prove ciascuna delle quali consiste nello scegliere una moneta tra

Dettagli

Tiziano Vargiolu. Elementi di Probabilità e Statistica

Tiziano Vargiolu. Elementi di Probabilità e Statistica Tiziano Vargiolu Elementi di Probabilità e Statistica Ristampa: marzo 2014 ISBN 978 88 7178 349 9 ISBN 88 7178 349 2 2002 by CLEUP sc Coop. Libraria Editrice Università di Padova via Belzoni 118/3 Padova

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Obiettivi. Metodi statistici per il controllo della qualità. Indice. UNI - Ente Nazionale Italiano di Unificazione

Obiettivi. Metodi statistici per il controllo della qualità. Indice. UNI - Ente Nazionale Italiano di Unificazione Obiettivi Metodi statistici per il controllo della qualità Evidenziare come tipici problemi industriali richiedano un controllo statistico di qualità Segnalare l esistenza di specifiche norme UNI che definiscono

Dettagli

CAPITOLO TRE IL MIO MODO DI GIOCARE E LE ESCHE CHE MI ATTIRANO

CAPITOLO TRE IL MIO MODO DI GIOCARE E LE ESCHE CHE MI ATTIRANO CAPITOLO TRE IL MIO MODO DI GIOCARE E LE ESCHE CHE MI ATTIRANO Sommario Nel primo capitolo di questo quaderno lei ha ritenuto che il gioco d azzardo sta causando problemi nella sua vita. Si è posto obiettivi

Dettagli

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004 esercitazione 8 p. 1/8 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004 Luca Monno Università degli studi di Pavia luca.monno@unipv.it http://www.lucamonno.it

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Esercizi di riepilogo Statistica III canale, anno 2008

Esercizi di riepilogo Statistica III canale, anno 2008 Esercizio 1 - Esercizio 5 esame 22 giugno 2004 Esercizi di riepilogo Statistica III canale, anno 2008 Data la seguente distribuzione di 100 dipendenti di un azienda in base al tempo impiegato (in minuti)

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

Test di restrizioni lineari nel MRLM: Esempi

Test di restrizioni lineari nel MRLM: Esempi Test di restrizioni lineari nel MRLM: Esempi Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Test F: esempi 2012 1 / 23 Funzione di produzione Cobb-Douglas Esempio GDP

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525.

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525. UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 15 dicembre 2014 7 LEZIONE PROBABILITA L incertezza Nella misura di una qualsiasi

Dettagli

! Si suppone che il peso della popolazione maschile di tesserati di una certa Federazione

! Si suppone che il peso della popolazione maschile di tesserati di una certa Federazione ! Un paziente non-fumatore (e che non ha mai fumato) si presenta dal medico in quanto lamenta una forma di tosse cronica. Il paziente viene sottoposto a una biopsia al polmone. La biopsia fornisce tre

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito Soluzioni della simulazione del 17/05/2011 Gianmarco Altoè Dipartimento di Psicologia Università di Cagliari, Anno Accademico 2010-2011 Leggere BENE le avvertenze prima

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione

INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione Pagina 1 PIANI A SINGOLA VARIABILE Questi piani sono l esempio

Dettagli

Costruzione ed uso delle Carte di Controllo

Costruzione ed uso delle Carte di Controllo Validazione dei metodi ed incertezza di misura nei laboratori di prova addetti al controllo di alimenti e bevande Costruzione ed uso delle Carte di Controllo Bologna 25 novembre 2004 Introduzione Grafico

Dettagli

FANTAONLINE.IT. Il fantacalcio come non lo hai vissuto mai. Manuale Utente. Versione: 1.3 del 15.10.2014

FANTAONLINE.IT. Il fantacalcio come non lo hai vissuto mai. Manuale Utente. Versione: 1.3 del 15.10.2014 FANTAONLINE.IT Manuale Utente Versione: 1.3 del 15.10.2014 Sommario CREAZIONE LEGA... 6 GESTIONE PARTECIPANTI E AGGIUNTA/RIMOZIONE AMMINISTATORI... 8 AGGIORNAMENTO PARAMETRI LEGA... 10 Lega con Duplicati...

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 8 Marzo 007 Facoltà di Astronomia ESERCIZIO 1 La seguente tabella riporta la distribuzione congiunta della situazione lavorativa e dello

Dettagli

Appunti: Teoria Dei Test

Appunti: Teoria Dei Test Appunti: Teoria Dei Test Fulvio De Santis, Luca Tardella e Isabella Verdinelli Corsi di Laurea A + E + D + G + R 1. Introduzione. Il test d ipotesi è un area dell inferenza statistica in cui si valuta

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Politecnico di Milano Temi d esame di STATISTICA dell AA 2004/2005 per allievi ING INF [2L]. Proff. A. Barchielli, I. Epifani

Politecnico di Milano Temi d esame di STATISTICA dell AA 2004/2005 per allievi ING INF [2L]. Proff. A. Barchielli, I. Epifani Politecnico di Milano Temi d esame di STATISTICA dell AA 004/005 per allievi ING INF [L]. Proff. A. Barchielli, I. Epifani 1 1 STATISTICA per ING INF [L] Proff. A. Barchielli, I. Epifani 0.06.05 I diritti

Dettagli