obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no?

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no?"

Transcript

1 appello ENE - docente: E. Piazza obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no? il presente elaborato si compone di x (ics) pagine Cognome Nome matr.n. Avvertimento: nello svolgimento degli esercizi se una quantità è indicata con il simbolo x continuare a chiamarla x, e se si chiama W non chiamarla X, e se si chiama t i non chiamarla x i, e se si chiama T n nonindicarlacon X n.sevoletescriveredipendentinonscriveteindipendenti,sedovete sottrarre non sommate. Si fanno troppi errori di distrazione. Mi raccomando: concentrazione. Si consiglia di lavorare con 3 decimali, arrotondando opportunamente. Problema 1. Gli arrivi delle auto al distributore della BENZON sono ben descritte da un processo di Poisson. Mediamente in un ora si presentano alla pompa 10 automobili. Il distributore apre alle 7: Qual è la probabilità che la prima auto si presenti esattamente alle 7:35? Sia N(t) il numero di auto che si presentano alla pompa in t minuti, per cui N(t) Pois(tν), ν= = 1 6, e sia T il tempo di attesa per la prima auto alla pompa, per cui T exp(ν). P[T =5]= Qual è la probabilità che la prima auto si presenti dopo le 7:35? P[T >5]=P[N(5)=0]=P[Pois(5ν)=0]=e ν5 =e 5/6 = Qual è la probabilità che la seconda auto si presenti al distributore dopo 20 minuti dall apertura? P[N(20) 1]=P[Pois(20ν) 1]=P[Pois(20ν)=0]+P[Pois(20ν)=1]= =e 20ν +20νe 20ν =0.1546= = Qual è la probabilità che arrivino esattamente 6 auto tra le 8 e le 8:30? P[N(30)=6]=P[Pois(30ν)=30]=e 30ν(30ν)6 = ! 1.5 Mediamente quanto tempo intercorre tra l arrivo di un auto e la successiva? E[T]=1/ν=6 minuti. La pompa rimane aperta 8 ore ogni giorno. 1.6 Quanto vale la media giornaliera degli arrivi? E[N(480)]=480 ν= Qual è la probabilità che in 200 giorni gli arrivi superino il numero di 16 mila? In 200 giorni la pompa rimane aperta minuti, per cui N(96 000) P(16 000). Poichè >5, vale N(96 000) N(16 000;16 000), per cui P[N(96 000) >16 000] 0.5 1

2 Problema 2. Un agenzia pubblicitaria è sul punto di decidere in merito ad un ingente investimento in vista dei mondiali di calcio che si svolgeranno in Russia nel Vuole quindi capire se intraprendere una determinata campagna promozionale attraverso Twitter, e a tal fine vuole verificare se la percentuale p di tifosi che commenta su Twitter i mondiali di calcio sia in crescita dal 2010 al L agenzia sta per ricevere i risultati di un intervista fatta al termine dei mondiali del 2010 a un campione casuale di 120 tifosi ai quali è stato semplicemente chiesto se durante quei mondiali abbiano pubblicato almeno un tweet per commentarli. Analogamente il 15 luglio, al termine dei mondiali del 2014, l agenzia porrà lo stesso quesito a un nuovo campione casuale, sempre di 120 tifosi. 2.1 Si introduca un opportuno test statistico per verificare l ipotesi di interesse per l agenzia, sulla base dei dati campionari che saranno a disposizione il 15 luglio. Si introducano esplicitamente: variabili (o popolazioni) oggetto dell inferenza, ipotesi nulla, ipotesi alternativa, campioni casuali, regione critica di livello α. 1, almeno un tweet X 2010 = risposta di un tifoso nel 2010= B(p 2010 ) 0, altrimenti, 1, almeno un tweet X 2014 = risposta di un tifoso nel 2014= B(p 2014 ) 0, altrimenti, p k = percentuale di tifosi che commenta i mondiali con almeno un tweet nell anno k H 0 : p 2010 p 2014 vs H 1 : p 2010 < p 2014 X 2010,1,...,X 2010,120 campione casuale B(p 2010 ) X 2014,1,...,X 2014,120 campione casuale B(p 2014 ) p 2010 p 2014 R α : Z 0 = < z α p (1 p) ( ) dove 120 j=1 p k = X 120 k,j j=1, p= X 2010,j+ 120 j=1 X 2014,j Arrivano i risultati della prima intervista: nel 2010, su 120 tifosi, 78 hanno pubblicato almeno un tweet sui mondiali. Impazienti di dare una risposta all agenzia, a bordo di una DeLorean raggiungiamo il 15 luglio 2014: nel 2014, su 120 tifosi, 102 hanno pubblicato almeno un tweet sui mondiali. 2,2 Dare una risposta all agenzia ad un livello di significatività del 5%. Essendo p 2010 =0.65, p 2014 =0.85, p=0.75, risulta Z 0 = < z α = 1.645, pertanto l ipotesi nulla viene rifiutata a livello 0.05: l agenzia ha motivo di ritenere che la percentuale di tifosi che commenta su Twitter i mondiali di calcio sia aumentata. 2,3 La conclusione è forte o debole? La conclusione è forte. 2.4 Calcolare il p-value dei dati raccolti. Il p-value dei dati raccolti è il livello α per cui Z 0 = = z α, per cui z α = α=φ(z α )=Φ( )= α= =

3 Problema 3. Dopo la delusione mondiale, il difensore della Juventus e della nazionale Leonardo Bonucci, notoriamente avvezzo al gioco d azzardo, decide di consolarsi con le scommesse. In particolare è molto interessato alle quote che i bookmaker inglesi danno per la somma dei Km percorsi dalle due squadre durante i 90 minuti della finale mondiale 2014, e vorrebbe scommettere sul fatto che tale somma sarà maggiore di 190. Pertanto raccoglie informazioni sulla variabile Y = somma dei Km percorsi dai giocatori delle due squadre durante una partita dei mondiali 2014 analizzando i dati relativi alle 48 partite della fase a gironi 1. Per questi dati y= s 2 y= Inoltre il test di Shapiro-Wilk per la normalità di Y, eseguito sempre su questi dati, restituisce un p value di , mentre il loro Normal Probability Plot è riportato in Figura. Bonucci però non si accontenta dei dati relativi alla sola variabile Y, poiché ritiene che ci possa essere una relazione tra la somma Y dei Km percorsi e la temperatura x (in gradi centigradi) alla quale è stata giocata la partita, e vorrebbe sfruttare questa relazione prima di scommettere. 1 per questo esercizio sono stati utilizzati i dati veri raccolti direttamente dal sito ufficiale della FIFA 3

4 Per fare questo raccoglie le temperature relative alle stesse 48 partite e imposta il seguente modello empirco gaussiano di regressione lineare: Y = β 0 +β 1 X+ε, ε N(0,σ 2 ). I risultati ottenuti elaborando i dati tramite il software statistico R sono i seguenti: Inoltre in figura 4

5 sono riportati i grafici di diagnostica dei residui, mentre il test di Shapiro-Wilk sui residui restituisce un p-value di Scrivere l equazione della retta ai minimi quadrati. y= x. 3.2 Discutere la validità dell ipotesi gaussiana del modello empirico di regressione lineare. Le ipotesi gaussiane del modello di regressione lineare sono rispettate, infatti dal grafico dei residui osservo che non ci sono tendenze o andamenti anomali della variabilità (quindi l ipotesi di omoschedasticità è rispettata), mentre dal Normal Probability Plot e dal valore piuttosto alto del p-value del test di Shapiro-Wilk non ho evidenza per rifiutare l ipotesi di normalità dei residui. 3.3 Discutere più in generale la bontà del modello empirico di regressione lineare. Questo modello di regressione non risulta essere adatto al problema in analisi: la percentuale di variabilità di Y spiegata dal modello con la variabilità di x è bassissima (R 2 = ) e la regressione non risulta essere significativa (p-value della regressione molto alto: ). 3.4 Costruire un opportuno intervallo di previsione al 95% per la somma Y dei km percorsi dalle due squadre durante la finale dei mondiali di calcio Suggerimento: ricordiamo che data una variabile aleatoria gaussiana Y sia (Y 1,...,Y n ) un campione di n osservazioni da Y. Allora un intervallo di previsione per un ulteriore osservazione Y n+1 si può ottenere considerando che Y n+1 Y n t n 1. S 1+ 1 n Essendo il modello non significativo non ha senso utilizzarlo per fare previsione. Fortunatamente però, non abbiamo evidenza per rifiutare l ipotesi di normalità di Y, e possiamo quindi utilizzare l intervallo di previsione per una popolazione gaussiana: y±s y 1+ 1 n t α/2;n 1= y±s y t 0.025;47= ± =( , ). 3.5 Consigliereste a Bonucci di scommettere? Essendo l intervallo di previsione completamente superiore al valore 190, cosiglieremmo a Bonucci di scommettere. 5

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecnico di Milano - Anno Accademico 200-20 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Esercitazione 9 2 Giugno 20 Esercizio. In un laboratorio per il test dei materiali,

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD.

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Advanced level Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Sommario Toolbox finance Analisi dei portafogli Analisi grafica Determinate Date Toolbox statistics Analisi

Dettagli

Esercitazioni-aula-parte-III

Esercitazioni-aula-parte-III Esercitazioni-aula-parte-III Esempio par.7.2) Ross Sia (X 1,..., X n ) un campione aleatorio estratto da una popolazione esponenziale di parametro θ incognito. Determinare l espressione dello stimatore

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA

UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA TESI DI LAUREA CONFRONTO TRA MODELLI STATISTICI NON PARAMETRICI :UNA APPLICAZIONE

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali

la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali 1/29 la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali modelli teorici e modelli empirici l'osservazione dei processi

Dettagli

Problema pratico: Test statistico = regola di decisione

Problema pratico: Test statistico = regola di decisione La verifica delle ipotesi statistiche Problema pratico: Quale, tra diverse situazioni possibili, riferite alla popolazione, è quella meglio sostenuta dalle evidenze empiriche? Coerenza del risultato campionario

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Indice. pag. 15. Prefazione. Introduzione» 17

Indice. pag. 15. Prefazione. Introduzione» 17 Indice Prefazione 15 Introduzione 17 1. Pianificazione della qualità 1.1. Il concetto di 6 sigma 1.1.1. Le aree e le fasi del sei sigma 1.2. I processi produttivi e la variabilità 1.2.1. Cause comuni 1.2.2.

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

IN MATLAB distribuzione di frequenza. >> x(1)=7.5; >> for i=2:7 x(i)=x(i-1)+5; end. IN MATLAB distribuzione di frequenza

IN MATLAB distribuzione di frequenza. >> x(1)=7.5; >> for i=2:7 x(i)=x(i-1)+5; end. IN MATLAB distribuzione di frequenza IN MATLAB distribuzione di frequenza 2-1 4. Usare la function histc(dati,x) 2-2 1. Riportare i dati in un file (ad esempio dati.mat); 2. load ascii dati: viene creata una variabile dati contenente il campione;

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Obiettivi. Metodi statistici per il controllo della qualità. Indice. UNI - Ente Nazionale Italiano di Unificazione

Obiettivi. Metodi statistici per il controllo della qualità. Indice. UNI - Ente Nazionale Italiano di Unificazione Obiettivi Metodi statistici per il controllo della qualità Evidenziare come tipici problemi industriali richiedano un controllo statistico di qualità Segnalare l esistenza di specifiche norme UNI che definiscono

Dettagli

Politecnico di Milano Temi d esame di STATISTICA dell AA 2004/2005 per allievi ING INF [2L]. Proff. A. Barchielli, I. Epifani

Politecnico di Milano Temi d esame di STATISTICA dell AA 2004/2005 per allievi ING INF [2L]. Proff. A. Barchielli, I. Epifani Politecnico di Milano Temi d esame di STATISTICA dell AA 004/005 per allievi ING INF [L]. Proff. A. Barchielli, I. Epifani 1 1 STATISTICA per ING INF [L] Proff. A. Barchielli, I. Epifani 0.06.05 I diritti

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

10 CONTROLLO STATISTICO DELLA QUALITÀ

10 CONTROLLO STATISTICO DELLA QUALITÀ 10 CONTROLLO STATISTICO DELLA QUALITÀ 10.2.2 Il controllo di un processo Considerazioni sulle carte di controllo A fianco del numero di elementi non conformi delle carte di controllo p e pn e del numero

Dettagli

INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione

INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione Pagina 1 PIANI A SINGOLA VARIABILE Questi piani sono l esempio

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove Corso di laurea in Ing. Gestionale, a.a. 2001/2002 Prova scritta di Metodi Matematici e Statistici del 25 giugno 2002 Si effettuano n prove ciascuna delle quali consiste nello scegliere una moneta tra

Dettagli

Modello di regressione lineare

Modello di regressione lineare Modello di regressione lineare a cura di Giordano dott. Enrico enrico.giordano@meliorbanca.com Nel presente lavoro viene descritto in modo dettagliato (attraverso anche un impatto visivo), l analisi di

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

MODULI DI LINEAMENTI DI MATEMATICA

MODULI DI LINEAMENTI DI MATEMATICA R. MANFREDI - E. FABBRI - C. GRASSI TRIENNIO licei scientifici MODULI DI LINEAMENTI DI MATEMATICA per il triennio della scuola secondaria di secondo grado L CALCOLO DELLE PROBABILITÀ E ELEMENTI DI STATISTICA

Dettagli

Università degli studi di Modena e Reggio Emilia. SugarScape

Università degli studi di Modena e Reggio Emilia. SugarScape Università degli studi di Modena e Reggio Emilia Facoltà di Scienze della Comunicazione e dell'economia CLS: Economia e Gestione delle Reti e dell'innovazione Insegnamento: Tecniche e modelli di simulazione

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2014

COORDINAMENTO PER MATERIE SETTEMBRE 2014 Pagina 1 di 8 COORDINAMENTO PER MATERIE SETTEMBRE 2014 AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico) [ ] Biennio, Attività e Insegnamenti obbligatori di

Dettagli

PROGETTO PRIMO SPORT PADOVA. Conoscenza e gradimento del progetto da parte delle famiglie. Padova 8 aprile 2014

PROGETTO PRIMO SPORT PADOVA. Conoscenza e gradimento del progetto da parte delle famiglie. Padova 8 aprile 2014 Conoscenza e gradimento del progetto da parte delle famiglie Padova 8 aprile 2014 I motivi di un indagine con le famiglie Per monitorare utilità e efficacia dell investimento pubblico Perché la promozione

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

CORSO DI STATISTICA N.O. - II CANALE Esercizi

CORSO DI STATISTICA N.O. - II CANALE Esercizi CORSO DI STATISTICA N.O. - II CANALE Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi su sintesi di distribuzioni semplici Esercizio 1.1 Data la seguente distribuzione

Dettagli

CONTROLLI STATISTICI

CONTROLLI STATISTICI CONTROLLI STATISTICI Si definisce Statistica la disciplina che si occupa della raccolta, effettuata in modo scientifico, dei dati e delle informazioni, della loro classificazione, elaborazione e rappresentazione

Dettagli

Inter Roma - Inter. Lazio Inter - Lazio Roma Inter - Roma

Inter Roma - Inter. Lazio Inter - Lazio Roma Inter - Roma 5 Campionati di calcio di serie A Che cosa si impara nel capitolo 5 Si può vedere come è cambiato il gioco del calcio - partite vinte/perse/pareggiate e goal fatti/subiti attraverso la tabella a doppia

Dettagli

CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi

CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi 1 CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi di statistica descrittiva Esercizio 1.1 (Prof. Pieraccini, 20 6-00) In

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

Analisi del valore delle celebrities sui social media. Gli Azzurri della Nazionale di calcio. 4-24 giugno 2014. Report dimostrativo Social Celebrities

Analisi del valore delle celebrities sui social media. Gli Azzurri della Nazionale di calcio. 4-24 giugno 2014. Report dimostrativo Social Celebrities Analisi del valore delle celebrities sui social media Gli Azzurri della Nazionale di calcio 4-24 giugno 2014 Report dimostrativo Social Celebrities Indice SINTESI ANALISI COMPLESSIVA AZZURRI FOCUS VALORIALE

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

Capitoli del testo. ALBERTO FORTUNATO a l b e r t o f o r t u n a t o. c o m CONTENUTI

Capitoli del testo. ALBERTO FORTUNATO a l b e r t o f o r t u n a t o. c o m CONTENUTI CONTENUTI Capitoli del testo Capitolo 1 Il controllo del processo Capitolo 2 Rilevazione e registrazione dei dati Capitolo 3 L analisi strutturale del processo Capitolo 4 L analisi dinamica-strutturale

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Nota informativa. sul. Palinsesto Complementare

Nota informativa. sul. Palinsesto Complementare PAG. 1 DI 36 Nota informativa sul Palinsesto Complementare Versione 1.1 VERSIONE 1.1 PAG. 2 DI 36 INDICE 1. PROCESSO DI APPROVAZIONE DELLE PROPOSTE PER IL PROGRAMMA COMPLEMENTARE 5 1.1 PROCESSO DI ASSEVERAZIONE

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Analisi della performance temporale della rete

Analisi della performance temporale della rete Analisi della performance temporale della rete In questo documento viene analizzato l andamento nel tempo della performance della rete di promotori. Alcune indicazioni per la lettura di questo documento:

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Regolamento del concorso a premi Score Predictor

Regolamento del concorso a premi Score Predictor Regolamento del concorso a premi Score Predictor Versione modificata a valere dal 05.01.2015 IMPRESA PROMOTRICE Juventus Football Club S.p.A. con sede legale e amministrativa in Torino, Corso Galileo Ferraris,

Dettagli

ELEMENTI DI STATISTICA DESCRITTIVA

ELEMENTI DI STATISTICA DESCRITTIVA Metodi Statistici e Probabilistici per l Ingegneria ELEMENTI DI STATISTICA DESCRITTIVA Corso di Laurea in Ingegneria Civile Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain E-mail:

Dettagli

Cenni di statistica descrittiva

Cenni di statistica descrittiva Cenni di statistica descrittiva La statistica descrittiva è la disciplina nella quale si studiano le metodologie di cui si serve uno sperimentatore per raccogliere, rappresentare ed elaborare dei dati

Dettagli

Metodologie statistiche per l analisi del rischio PROGETTAZIONE ED ANALISI DEGLI ESPERIMENTI PER L ANALISI DEL RISCHIO

Metodologie statistiche per l analisi del rischio PROGETTAZIONE ED ANALISI DEGLI ESPERIMENTI PER L ANALISI DEL RISCHIO Corso di Laurea in Sicurezza igienico-sanitaria degli alimenti Metodologie statistiche per l analisi del rischio PROGETTAZIONE ED ANALISI DEGLI ESPERIMENTI PER L ANALISI DEL RISCHIO Facoltà di Medicina

Dettagli

CORSO DI STATISTICA N.O. - II CANALE Esercizi

CORSO DI STATISTICA N.O. - II CANALE Esercizi CORSO DI STATISTICA N.O. - II CANALE Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi su sintesi di distribuzioni semplici Esercizio 1.1 Data la seguente distribuzione

Dettagli

Costruzione ed uso delle Carte di Controllo

Costruzione ed uso delle Carte di Controllo Validazione dei metodi ed incertezza di misura nei laboratori di prova addetti al controllo di alimenti e bevande Costruzione ed uso delle Carte di Controllo Bologna 25 novembre 2004 Introduzione Grafico

Dettagli

- Premessa...pag. 3. - Tabella dati.pag. 4. - Analisi di regressione lineare multipla pag. 5. - Individuazione residui anomali.pag.

- Premessa...pag. 3. - Tabella dati.pag. 4. - Analisi di regressione lineare multipla pag. 5. - Individuazione residui anomali.pag. Istituto Universitario di Architettura di Venezia Facoltà di Pianificazione del d Territorio Corso di laurea in Scienze della Pianificazione Urbanistica e Territoriale Esame di Metodi Quantitativi per

Dettagli

La probabilità nella vita quotidiana

La probabilità nella vita quotidiana La probabilità nella vita quotidiana Introduzione elementare ai modelli probabilistici Bruno Betrò bruno.betro@mi.imati.cnr.it CNR - IMATI San Pellegrino, 6/9/2011 p. 1/31 La probabilità fa parte della

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

Progetto di analisi statistica: misurazione della costante di Hubble e verifica della legge di espansione dell Universo

Progetto di analisi statistica: misurazione della costante di Hubble e verifica della legge di espansione dell Universo Andrea Pisoni, andreapisoni@virgilio.it Davide Valentinis, davidevalentinis@virgilio.it Laureandi in Ingegneria Fisica, Politecnico di Milano Progetto di analisi statistica: misurazione della costante

Dettagli

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no.

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no. LA VERIFICA D IPOTESI Alla base dell inferenza statistica vi è l assunzione che i fenomeni collettivi possano essere descritti efficacemente mediante delle distribuzioni di probabilità. Abbiamo già considerato

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

FANTAONLINE.IT. Il fantacalcio come non lo hai vissuto mai. Manuale Utente. Versione: 1.3 del 15.10.2014

FANTAONLINE.IT. Il fantacalcio come non lo hai vissuto mai. Manuale Utente. Versione: 1.3 del 15.10.2014 FANTAONLINE.IT Manuale Utente Versione: 1.3 del 15.10.2014 Sommario CREAZIONE LEGA... 6 GESTIONE PARTECIPANTI E AGGIUNTA/RIMOZIONE AMMINISTATORI... 8 AGGIORNAMENTO PARAMETRI LEGA... 10 Lega con Duplicati...

Dettagli

I Metodi statistici utili nel miglioramento della qualità 27

I Metodi statistici utili nel miglioramento della qualità 27 Prefazione xiii 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento della qualità 1 1.1.1 Le componenti della qualità 2 1.1.2 Terminologia

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda

Dettagli

LAB LEZ. 1 STATISTICA DESCRITTIVA CON R

LAB LEZ. 1 STATISTICA DESCRITTIVA CON R LAB LEZ. 1 STATISTICA DESCRITTIVA CON R 1 2 L AMBIENTE DI SVILUPPO DI RStudio 1 3 4 2 1 FINESTRA PER GLI SCRIPT E PER VISUALIZZARE I DATI 2 CONSOLE DEI COMANDI 3 VARIABILI PRESENTI NELLA MEMORIA DEL PROGRAMMA

Dettagli

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12) Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola

Dettagli

Lezioni di Metodologia Sperimentale. Cesare Bini Dipartimento di Fisica Sapienza Università di Roma

Lezioni di Metodologia Sperimentale. Cesare Bini Dipartimento di Fisica Sapienza Università di Roma Lezioni di Metodologia Sperimentale Cesare Bini Dipartimento di Fisica Sapienza Università di Roma Programma delle lezioni Perché occorre fare un analisi statistica dei dati sperimentali in Medicina? Il

Dettagli

PIANIFICAZIONE DEI TRASPORTI. Prof. Massimo Di Gangi Dipartimento di Ingegneria Civile Corso di Pianificazione dei Trasporti A.A. 2008/2009 - Intro 1

PIANIFICAZIONE DEI TRASPORTI. Prof. Massimo Di Gangi Dipartimento di Ingegneria Civile Corso di Pianificazione dei Trasporti A.A. 2008/2009 - Intro 1 PIANIFICAZIONE DEI TRASPORTI Dipartimento di Ingegneria Civile Corso di Pianificazione dei Trasporti A.A. 2008/2009 - Intro 1 Il sistema della domanda di trasporto Specificazione di un modello di scelta

Dettagli

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi:

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: Funzioni Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la temperatura

Dettagli

Panini: in edicola l'album "Calciatori 2014-2015". Novità: le figurine delle maglie, il calciomercato, l'italia che verrà e

Panini: in edicola l'album Calciatori 2014-2015. Novità: le figurine delle maglie, il calciomercato, l'italia che verrà e Panini: in edicola l'album "Calciatori 2014-2015". Novità: le figurine delle maglie, il calciomercato, l'italia che verrà ed il Quiz del tifoso di Alessandro Ferro - 08, gen, 2015 http://www.siciliajournal.it/panini-in-edicola-lalbum-calciatori-2014-2015-novita-le-figurine-delle-maglieil-calciomercato-litalia-che-verra-ed-il-quiz-del-tifoso/

Dettagli

Capitolo 7 Guida operativa del programma TQ Controlla

Capitolo 7 Guida operativa del programma TQ Controlla Capitolo 7 Guida operativa del programma TQ Controlla Panoramica delle funzionalità Fornisce un ampio ventaglio di strumenti per il controllo statistico dei processi (SPC) in modo da soddisfare ogni esigenza

Dettagli

15. Antico gioco russo

15. Antico gioco russo 15. Antico gioco russo In un antico gioco russo, attraverso i risultati casuali ottenuti dall allacciamento di cordicelle, i giovani cercavano una previsione sul tipo di legame che si sarebbe instaurata

Dettagli

L analisi statistica

L analisi statistica Statistica medica per IMS / 1 L analisi statistica Statistica medica per IMS / 2 Esempio (de Gans et al. NEJM 2002, 347: 1549-56) Esito Desametazone Trattamento Placebo Totale Sfavorevole Favorevole Totale

Dettagli

Strategie alternative ai metodi sperimentali

Strategie alternative ai metodi sperimentali Strategie alternative ai metodi sperimentali 1. 2. I quasi-esperimenti (non sperimentali) prevedono la descrizione del fenomeno in esame. Il metodo descrive le variabili in esame, non prevede alcuna manipolazione

Dettagli

Software TotoQuote expert 2014

Software TotoQuote expert 2014 Picchetto oggettivo da totoquote Quote bookmakers Modulo - valuebet 2014 Settaggio valuebet Settaggio quote 1x2 Segni valuebet Il valuebet è una formula per cercare di capire quale segno 1x2, andrebbe

Dettagli

Confronto di metodologie statistiche per l analisi di risultati di Customer Satisfaction

Confronto di metodologie statistiche per l analisi di risultati di Customer Satisfaction Confronto di metodologie statistiche per l analisi di risultati di Customer Satisfaction S. Gorla: Citroën Italia S.p.A. e Consigliere di giunta AicqCN; E. Belluco: statistico, PG. Della Role: master Black

Dettagli

Il D.Lgs 102/2014 prescrive che gli audit energetici consentano

Il D.Lgs 102/2014 prescrive che gli audit energetici consentano Sul sito di Energy Manager News è consultabile la bibliografia di riferimento utilizzata per la realizzazione delle tre puntate sulla diagnosi energetica pubblicate sui numeri 4, 5 e 6 della rivista VEDEMECUM

Dettagli

Dossier 7 Il possesso e l acquisto di beni durevoli (1997-2004)

Dossier 7 Il possesso e l acquisto di beni durevoli (1997-2004) Dossier 7 Il possesso e l acquisto di beni durevoli (1997-2004) Audizione del Presidente dell Istituto nazionale di statistica, Luigi Biggeri presso le Commissioni congiunte V del Senato della Repubblica

Dettagli