Elementi di calcolo delle probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi di calcolo delle probabilità"

Transcript

1 Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo una pallina. E più probabile pescare una pallina bianca o una nera?... E se nell urna ci fossero 400 palline bianche e 600 nere?... B) In un urna voglio introdurre 1000 palline. Quante bianche e quante nere dovrò mettere nell urna se voglio che sia uguale la probabilità di estrarre una bianca o una nera?... Osserva che ai quesiti proposti hai risposto facilmente e senza esitazioni. E non c è stato disaccordo nelle risposte fra te e i tuoi compagni. Eppure non abbiamo iniziato il discorso spiegando cosa si debba intendere per "probabilità". Esempio 1 Immagina di occuparti delle vendite in una fabbrica di provette di vetro. Il docente di laboratorio di scienze della SSPSS vorrebbe acquistare una partita di tali contenitori per il nuovo laboratorio e ti chiede di esaminare un campione della merce in vendita. Da tale esame dipenderà l acquisto delle provette. Immagina di aver a disposizione in magazzino 12 recipienti già imballati, dei quali però uno è crepato (mentre i rimanenti 11 sono perfetti). Il tuo capo ti aveva raccomandato di metterlo da parte, ma tu te ne eri dimenticato e ora ti trovi piuttosto in imbarazzo. Posto di fronte ai 12 pacchi, il possibile compratore ne indica uno perché sia aperto: c è 1 possibilità su 12 che la provetta scelta sia quella crepata? Speriamo che tu non sia così sfortunato! Esempio 2 Il lancio di un dado da gioco: il numero "6" ha 1 su 6 possibilità di uscire nel lancio. Le situazioni descritte sono esempi di prova aleatoria (aleatoria deriva dalla parola latina "alea" che significa proprio "dado da gioco" ) cioè una prova della quale non si sa con certezza il risultato che uscirà. Nella prova dell esempio 1 può succedere uno dei seguente eventi: "il pacco scelto contiene una provetta crepata" (e questo può succedere in 1 caso su 12); "il pacco scelto contiene una provetta intatta" (e questo può succedere in 11 casi su 12). L evento "il pacco scelto contiene la provetta crepata" ha probabilità di accadere 12<0, mentre l evento "il pacco scelto contiene una provetta intatta" ha probabilità 11 12< Infatti la probabilità p di un evento e (quando tutti i casi sono egualmente possibili quindi equiprobabili) è definita dal rapporto p(e) = numero dei casi favorevoli numero dei casi possibili Da questa definizione si deduce la seguente condizione: 1

2 0 p(e) 1 Analogamente nell esempio 2 l evento "esce il numero 6" ha probabilità 1 6 evento contrario "esce un numero diverso da 6" ha probabilità 5 (5 su 6). 6 (1 su 6), mentre il suo Quindi la somma delle probabilità di un evento e e del suo evento contrario c vale sempre 1. Dunque: p(e)+ p(c)=1 p(e)=1 p(c) Un evento si dice evento certo quando ha probabilità 1, cioè quando i casi favorevoli sono tutti quelli possibili. Esempio 1 La probabilità che dal lancio di un dado esca un numero più piccolo di 10 è ovviamente 1. Riassumendo: Teoria Esempio: lancio di un dado SiaS lo spazio campionario, cioél insieme S = {1, 2, 3, 4, 5, 6} di tutti gli esiti possibili. Siaeun evento dell insieme S Per esempioe 1 = esce 1, e 2 = esce 2. 0 p(e) 1 p(e 1 )= 1 6 In particolare p(e) =1se l evento è certo e = esce un numero tra1e6 p(e)=1 p(e) =0se l evento è impossibile e=esce un numero più grande di 7 p(e) =0 Siaeun evento ec il suo evento contrario e = esce1; c = esce un numero diverso da 1 p(e) + p(c)=1 p(e)= 1 6 p(c) = =1 Notazione insiemistica e somma di probabilità Esempio 2 Visualizziamo la prova aleatoria con i diagrammi di Venn. L insieme di tutti i casi possibili è detto spazio campione S mentre gli eventi "esce il numero 1" E 1 = {1} oppure "esce il numero 2"E 2 = {2}, oppure... "esce il numero 6"E 6 = {6} sono dei sottoinsiemi di S. 2

3 Nel diagramma di Venn qui sopra, prova tu a disegnare l evento "esce un numero pari" E = {numero pari}, come sottoinsieme di S. Esempio 1 L evento "la provetta è crepata" e l evento "la provetta è intatta" sono eventi che non si possono verificare simultaneamente, e si dicono incompatibili o disgiunti. In questo caso sono anche contrari o complementari, perché o accade l uno oppure l altro, cioè insieme esauriscono le possibilità. Esempio 2 Gli eventi E p = {pari} (tirando il dado, esce un numero pari) e E 1 = {1} (esce il numero 1) sono incompatibili ma non contrari. Gli eventi E p = {pari} (tirando il dado, esce un numero pari) e E d = {dispari} (esce un numero dispari) sono contrari (e quindi incompatibili). L evento E p = {pari} (tirando il dado, esce un numero pari) e l evento E 2 = {2} (esce il numero 2) invece non sono incompatibili. In generale: due eventi E 1, E 2 sono incompatibili o disgiunti se la loro intersezione E 1 E 2 = due eventi E 1, E 2 sono contrari o complementari se la loro intersezione E 1 E 2 = e se la somma delle loro probabilità è p(e 1 )+ p(e 2 )=1 Esempio 2.1 Qual è la probabilità che lanciando un dado "esca un numero pari" oppure "il numero 3"? Visualizza nel diagramma di Venn il sottoinsieme che ci interessa. Tra tutte le 6 possibilità, i casi favorevoli sono "esce 2, 4, 6" e "esce 3": in tutto 4 casi, dunque la probabilità è = 4 6<0, 667. Dal punto di vista insiemistico, la congiunzione "o", "oppure" si traduce con il simbolo di unione. Dunque se E p = {2, 4, 6}, E 3 = {3}, il quesito posto sopra chiede la probabilità di E E 3. In questo caso p(e E 3 )= p(e)+ p(e 3 ), cioè la probabilità di due eventi incompatibili è la somma delle probabilità dei singoli eventi! Esempio 2.2 Qual è la probabilità che "esca un numero pari" oppure "esca un numero multiplo di 3"? 3

4 Qui la questione è più complicata perché il 6 è sia pari sia multiplo di 3, e non dobbiamo contarlo come caso favorevole due volte. Se E p = {2, 4, 6} e F = {3, 6}, allora p(e p F)= p(e p )+ p(f) p(e p F)= = 4 6<0, 667. La differenza fra i due esempi è che nell esempio 2.1 gli eventi erano incompatibili, mentre nell esempio 2.2 non lo sono. In generale la probabilità di un evento A o di un evento B è: ESEMPIO 3 se A B = p(a B)= p(a)+ p(b) se A B p(a B) = p(a) + p(b) p(a B) Nel gioco della roulette è previsto di poter puntare su uno o su due numeri (tale puntata si chiama "cavallo") compresi tra lo 0 e il 36 (in tutto sono 37 numeri), oppure sui numeri pari (sono 18) o sui dispari (sono 18), oppure sui numeri rossi (sono 18) o su quelli neri (sono 18). Osserva che lo 0 è verde. La probabilità che esca lo 0 è 1/37; la probabilità che esca un numero nero è 18/37; la probabilità che esca un numero pari è 18/37; la probabilità che esca un numero nero e pari è ; la probabilità che esca un numero nero o un numero pari é

5 Riassumendo P(A B)=P(A)+P(B) P(A B)=P(A)+P(B) P(A B) Probabilità composta Analizziamo in questo paragrafo il caso in cui le prove aleatorie sono più d una. Le due prove possono essere indipendenti l una dall altra oppure il risultato della prima prova può influire sul risultato della seconda. Abbiamo la seguente regola Regola della moltiplicazione Se A e B sono eventi indipendenti (cioè se il verificarsi di A non è influenzata dal verificarsi di B) abbiamo p(a B)= p(a) p(b) Nel caso di eventi dipendenti vedremo come risolvere il problema mediante un esempio. Il diagramma ad albero Se un esperimento è a più stadi il problema di descrivere i possibili risultati può essere semplificato mediante l uso dei diagrammi ad albero: - per ogni stadio ci sono tanti rami quante sono le possibilità - il numero totale dei percorsi rappresenta il numero totale di eventi possibili - ad ogni percorso è associata la probabilità corrispondente all evento 5

6 Ecco la regola generale per "muoversi" su un diagramma ad albero Esempio 0 Da un urna contenente 6 palline bianche (B) e 4 nere (N) se ne estraggono due a caso, una di seguito all altra senza reimbussolamento. Si vuole determinare qual è la probabilità: p(b 1 B 2 )=che la prima pallina sia bianca e la seconda bianca p(b 1 N 2 ) = che la prima pallina sia bianca e la seconda nera p(n 1 B 2 ) = che la prima pallina sia nera e la seconda bianca p(n 1 N 2 )=che la prima pallina sia nera e la seconda nera Questo esempio di probabilità composta di eventi non indipendenti può venir visualizzata mediante il seguente diagramma ad albero: 6

7 Supponiamo di voler determinare, ad esempio, la probabilità che la seconda pallina estratta sia nera. Risulterà: Esempio 1 p(n 2 ) = p(b 1 N 2 )+ p(n 1 N 2 )= = 7 15 Torniamo all esempio della fabbrica di provette di cui tu sei il magazziniere. Finora ti è andata bene: la provetta che il docente della SSPSS ha scelto è intatta, tuttavia non è del modello che desidera acquistare. Tu, pronto, gli proponi l acquisto di provette di un altro tipo che si trovano nel locale adiacente su una scaffalatura a tre ripiani. Su ciascun ripiano sono poste 12 scatole contenenti una provetta, ma anche questa volta qualcuno di tali recipienti vitrei è difettoso: sul primo ripiano 2 provette su 12 sono crepate; sul secondo ben 3 su 12 sono rovinate; sull ultimo ripiano tutte le 12 provette sono perfette. Il docente compratore decide di controllare 1 recipiente imballato fra tutti i 36 che gli hai mostrato, per vedere se fa al caso suo. Procederà nel seguente modo: prima sceglierà uno dei 3 ripiani, estraendo a sorte un biglietto fra tre biglietti numerati da 1 a 3, poi sceglierà una delle 12 provette su quel dato ripiano, pescando un biglietto tra 12 biglietti numerati da 1 a 12. Se la provetta così designata andrà bene, il docente stipulerà con te un contratto per l acquisto di un intera partita di recipienti, altrimenti? la tua ditta ha perso un cliente. Qual è la probabilità che il contratto venga stipulato? Chiaramente il problema è formato da due prove aleatorie consecutive: la scelta del ripiano (1 su 3) e la scelta della provetta su un ripiano (a seconda della prima scelta, hai 10 su 12 possibilità che il recipiente estratto vada bene, oppure 9 su 12 possibilità che vada bene, oppure 12 su 12). Il complesso di tale prova si chiama prova composta. Schematizziamo la procedura di sorteggio con un diagramma ad albero formato da due strati di ramificazione e da 36 rami. La prima prova aleatoria è costituita da 3 eventi "è stato scelto il primo ripiano r 1 ", "è stato scelto il secondo ripiano r 2 " oppure "è stato scelto il terzo ripiano r 3 "; il totale dei casi possibili o spazio campione è: S prima prova = {r 1, r 2, r 3 }. 7

8 Ognuno dei 3 eventi ha la stessa probabilità di accadere: p(r 1 )= p(r 2 )= p(r 3 ) = 1 3 e p(r 1 )+ p(r 2 )+ p(r 3 )=1 La seconda prova aleatoria dipende dalla prima: se è stato scelto il primo ripiano r 1, gli eventi possibili sono: e 1 = è stata estratta una provetta crepata la cui probabilità è p(e 1 )= 2 12 = 1 6 e 2 = è stata estratta una provetta perfetta la cui probabilità è p(e 2 )= = 5 6 se è stato scelto il secondo ripiano r 2, gli eventi possibili sono: e 1 = è stata estratta una provetta crepata la cui probabilità è p(e 2 )= 3 12 = 1 4 e 2 = è stata estratta una provetta perfetta la cui probabilità è p(e 2 )= 9 12 = 3 4 se è stato scelto il terzo ripiano r 3, gli eventi possibili sono: e 2 = è stata estratta una provetta perfetta la cui probabilità è p(e 2 )= = 1 (e 1 = è stata estratta una provetta perfetta la cui probabilità è p(e 1 )= 0 12 = 0) La probabilità di uno dei 36 eventi della prova composta (ad esempio che venga scelto il primo ripiano e che la provetta estratta sia crepata) si calcola "percorrendo" il ramo dell albero probabilistico descritto (il primo ramo) e moltiplicando i valori della probabilità dei singoli eventi lungo il ramo. La prova aleatoria composta è data dai seguenti eventi: se è stato scelto il primo ripiano r 1, gli eventi possibili sono: E 11 = è stata estratta una provetta crepata sul primo ripiano la cui probabilità è: p(e 11 ) = 1 1 =

9 E 12 = è stata estratta una provetta perfetta sul primo ripiano la cui probabilità è: p(e 12 ) = 1 5 = se è stato scelto il secondo ripiano r 2, gli eventi possibili sono: E 21 = è stata estratta una proveta crepata sul secondo ripiano la cui probabilità è: p(e 21 ) = 1 1 = E 22 = è stata estratta una provetta perfetta sul secondo ripiano la cui probabilità è: p(e 22 ) = = 1 4 se è stato scelto il terzo ripiano r 3, gli eventi possibili sono: E 32 = è stata estratta una provetta perfetta sul terzo ripiano la cui probabilità è: p(e 32 ) = = 1 3 (E 31 = è stata estratta una provetta crepata sul terzo ripiano la cui probabilità è: p(e 31 ) = =0) Verifica che la somma di tutte le probabilità è 1. La risposta al quesito iniziale "qual è la probabilità che il contratto venga stipulato" è dato dalla probabilità degli eventi E 12 E 22 E 32. Dunque: p= p(e 12 ) + p(e 22 )+ p(e 32 )= = = Verifica che la probabilità che il contratto non venga stipulato è: q = p(e 11 )+ p(e 21 ) + p(e 31 )= 5 36 Dato un evento E, il suo evento contrario è quell evento che si verifica quando e sono quando non si verifica E: lo indichiamo con il simbolo Ē. Es.: nel lancio di una moneta, l evento contrario dell uscita "testa" è l uscita "croce". Dato un evento E e il suo contrario Ē, si ha che p(ē)=1 p(e). Esempio 2 Lanciando due dadi qual è la probabilità che escano due 6 (per un totale di 12 punti)? Costruisci un diagramma ad albero e verifica che la probabilità di questo evento è: 1 1 = <2, 78% E qual è la probabilità che esca un totale di 11 punti (con un dado 5 e con l altro dado 6, oppure con il primo dado 6 e con il secondo 5)? Sullo stesso diagramma ad albero verifica che la probabilità è: = = 1 18<5, 56% 9

10 Glossario dei termini più utilizzati e riassunto 10

11 Problemi vari 11

12 12

13 13

14 14

15 15

16 16

17 17

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Probabilità e statistica. Veronica Gavagna

Probabilità e statistica. Veronica Gavagna Probabilità e statistica Veronica Gavagna Testa o croce? Immaginiamo di lanciare una moneta facendola cadere su un piano liscio chiunque dirà che la probabilità dell evento testa sarà del 50%, al pari

Dettagli

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Rita Giuliano (Pisa) 0. Introduzione. È ormai acquisizione comune il fatto che uno

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

CALCOLO COMBINATORIO E PROBABILITA

CALCOLO COMBINATORIO E PROBABILITA CALCOLO COMBINATORIO E PROBABILITA Con calcolo combinatorio si indica quel settore della matematica che studia i possibili modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l obiettivo

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi ommario Corso di tatistica Facoltà di Economia a.a. 2006-2007 2007 francesco mola L algebra degli eventi Diagrammi di Venn Teoremi fondamentali Probabilità Condizionata ed Indipendenza tocastica Lezione

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Ciao!! Un cielo stellato così come lo puoi vedere con i tuoi occhi. Il cielo visto da un potente telescopio molto lontano dalle città

Ciao!! Un cielo stellato così come lo puoi vedere con i tuoi occhi. Il cielo visto da un potente telescopio molto lontano dalle città 1 Ciao!! Quando guardi il cielo ogni volta che si fa buio, se è sereno, vedi tanti piccoli punti luminosi distribuiti nel cielo notturno: le stelle. Oggi si apre l immaginario Osservatorio per guardare...

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

IL TUO CORPO NON E STUPIDO! Nonostante se ne parli ancora oggi, il concetto di postura corretta e dello stare dritti è ormai superato.!!

IL TUO CORPO NON E STUPIDO! Nonostante se ne parli ancora oggi, il concetto di postura corretta e dello stare dritti è ormai superato.!! IL TUO CORPO NON E STUPIDO Avrai sicuramente sentito parlare di postura corretta e magari spesso ti sei sentito dire di stare più dritto con la schiena o di non tenere le spalle chiuse. Nonostante se ne

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

ma quanto è antico quest osso?

ma quanto è antico quest osso? ATTIVITÀ: ma quanto è antico quest osso? LIVELLO SCOLARE: primo biennio della scuola secondaria di secondo grado PREREQUISITI: lettura e costruzione di grafici, concetti di base di statistica modello atomico,

Dettagli

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO QUESTIONARIO SUGLI STILI DI APPRENDIMENTO Le seguenti affermazioni descrivono alcune abitudini di studio e modi di imparare. Decidi in quale misura ogni affermazione si applica nel tuo caso: metti una

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici

Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici Ogni qual volta si effettua una raccolta di dati di tipo numerico è inevitabile fornirne il valore medio. Ma che cos è il valore

Dettagli

ISCRIZIONI ON LINE Registrazione delle famiglie. Direzione Generale per i contratti, gli acquisti e per i sistemi informativi e la statistica

ISCRIZIONI ON LINE Registrazione delle famiglie. Direzione Generale per i contratti, gli acquisti e per i sistemi informativi e la statistica Registrazione delle famiglie Come avviene la registrazione da parte delle famiglie La registrazione alle Iscrizioni on-line è necessaria per ottenere le credenziali di accesso al servizio. La registrazione

Dettagli

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07 GRUPPO ANNI 3 Novembre- maggio Documentazione a cura di Quaglietta Marica Per sviluppare Pensiero creativo e divergente Per divenire

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

ISCRIZIONI ON LINE Registrazione delle famiglie. Direzione Generale per i contratti, gli acquisti e per i sistemi informativi e la statistica

ISCRIZIONI ON LINE Registrazione delle famiglie. Direzione Generale per i contratti, gli acquisti e per i sistemi informativi e la statistica Registrazione delle famiglie Come avviene la registrazione da parte delle famiglie La registrazione alle Iscrizioni on-line è necessaria per ottenere le credenziali di accesso al servizio. La registrazione

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Guida all uso. Come ricevere ed inviare Fax ed Sms tramite E-mail in 3 semplici passi.

Guida all uso. Come ricevere ed inviare Fax ed Sms tramite E-mail in 3 semplici passi. Guida all uso Come ricevere ed inviare Fax ed Sms tramite E-mail in 3 semplici passi. Legenda Singolo = Fax o SMS da inviare ad un singolo destinatario Multiplo = Fax o SMS da inviare a tanti destinatari

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

2 Rappresentazioni grafiche

2 Rappresentazioni grafiche asi di matematica per la MPT 2 Rappresentazioni grafiche I numeri possono essere rappresentati utilizzando i seguenti metodi: la retta dei numeri; gli insiemi. 2.1 La retta numerica Domanda introduttiva

Dettagli

COMUNE DI CAMPIONE D ITALIA

COMUNE DI CAMPIONE D ITALIA COMUNE DI CAMPIONE D ITALIA REGOLAMENTO DI GIOCO DELLA ROULETTE (al Casino Municipale di Campione d Italia) adottato con delib. C.C. n. 83 del 2.12.1993 approvata dal CRC con atto n. 13 in data 4.1.1994

Dettagli

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO 9 PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO Il capitolo che sta per iniziare presenta alcuni argomenti dall aspetto un po arido. Tuttavia, nelle facoltà

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

TELEFONO AZZURRO. dedicato ai bambini COS E IL BULLISMO? IL BULLISMO?

TELEFONO AZZURRO. dedicato ai bambini COS E IL BULLISMO? IL BULLISMO? COS E IL BULLISMO? IL BULLISMO? 1 Ehi, ti e mai capitato di assistere o essere coinvolto in situazioni di prepotenza?... lo sai cos e il bullismo? Prova a leggere queste pagine. Ti potranno essere utili.

Dettagli

conquista il mondo in pochi minuti!

conquista il mondo in pochi minuti! conquista il mondo in pochi minuti! Il gioco di conquista e sviluppo più veloce che c è! Il gioco si spiega in meno di 1 minuto e dura, per le prime partite, non più di quindici minuti. Mai nessuno ha

Dettagli

A tu per tu con il Mister del Pavia Massimo Morgia: l allenamento di rifinitura del sabato pomeriggio.

A tu per tu con il Mister del Pavia Massimo Morgia: l allenamento di rifinitura del sabato pomeriggio. articolo N.40 MARZO 2007 RIVISTA ELETTRONICA DELLA CASA EDITRICE WWW.ALLENATORE.NET REG. TRIBUNALE DI LUCCA N 785 DEL 15/07/03 DIRETTORE RESPONSABILE: FERRARI FABRIZIO COORDINATORE TECNICO: LUCCHESI MASSIMO

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Cenni su Preamplificatori, mixer e segnali

Cenni su Preamplificatori, mixer e segnali Cenni su Preamplificatori, mixer e segnali Preamplificazione: spalanca le porte al suono! Tra mixer, scheda audio, amplificazione, registrazione, il segnale audio compie un viaggio complicato, fatto a

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Equilibrio Termico tra Due Corpi

Equilibrio Termico tra Due Corpi Equilibrio Termico tra Due Corpi www.lepla.eu OBIETTIVO L attività ha l obiettivo di fare acquisire allo sperimentatore la consapevolezza che: 1 il raggiungimento dell'equilibrio termico non è istantaneo

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

INDICE Informazioni Generali... 4. Comprare ebook con Kobo Desktop... 8. Usare la Libreria di Kobo Desktop... 10. Leggere su Kobo Desktop...

INDICE Informazioni Generali... 4. Comprare ebook con Kobo Desktop... 8. Usare la Libreria di Kobo Desktop... 10. Leggere su Kobo Desktop... Kobo Desktop Manuale Utente INDICE Informazioni Generali... 4 Installare Kobo Desktop su Windows... 5 Installare Kobo Desktop su Mac... 6 Comprare ebook con Kobo Desktop... 8 Usare la Libreria di Kobo

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

2. Limite infinito di una funzione in un punto

2. Limite infinito di una funzione in un punto . Limite infinito di una funzione in un punto Consideriamo la funzione: fx ( ) = ( x ) definita in R {}, e quindi il valore di non è calcolabile in x=, che è comunque un punto di accumulazione per il dominio

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Q84 A1073 K92 J65 VALENTINO DOMINI

Q84 A1073 K92 J65 VALENTINO DOMINI VALENTINO DOMINI L attacco iniziale, prima azione di affrancamento della coppia controgiocante, è un privilegio e una responsabilità: molti contratti vengono battuti o realizzati proprio in rapporto a

Dettagli

TEST D INGRESSO DI ITALIANO. Cognome...Nome...Classe IV...

TEST D INGRESSO DI ITALIANO. Cognome...Nome...Classe IV... TEST D INGRESSO DI ITALIANO Cognome...Nome...Classe IV... PUNTEGGIO FINALE.../50 VOTO ORTOGRAFIA Scegli l'alternativa corretta tra quelle proposte, barrando la lettera corrispondente. (1 punto in meno

Dettagli

LIBRO DELLE REGOLE UFFICIALI Versione 8.0

LIBRO DELLE REGOLE UFFICIALI Versione 8.0 EDIZIONE IN ITALIANO LIBRO DELLE REGOLE UFFICIALI Versione 8.0 Indice Informazioni sul gioco... 1 1 2 3 Come Iniziare Per duellare hai bisogno delle seguenti cose... 2 Carte del Gioco Carte Mostro... 6

Dettagli

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile)

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D1. COSA SONO LE ALTRE ATTIVITÀ FORMATIVE? D2. COME SI OTTENGONO

Dettagli

IO NE PARLO. DIARIO DELLA TERAPIA per annotare i farmaci e i progressi

IO NE PARLO. DIARIO DELLA TERAPIA per annotare i farmaci e i progressi AR IO NE PARLO DIARIO DELLA TERAPIA per annotare i farmaci e i progressi Ti aiuta a tenere sotto controllo la tua artrite reumatoide e a trarre il massimo beneficio dalla terapia Visita www.arioneparlo.it

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

LA STRONG AUTHENTICATION per la sicurezza dei pagamenti

LA STRONG AUTHENTICATION per la sicurezza dei pagamenti LA STRONG AUTHENTICATION per la sicurezza dei pagamenti 5 I TUOI CODICI DA COSA E COMPOSTO DOVE SI TROVA A COSA SERVE CODICE CLIENTE 9 cifre Sui contratti e sulla matrice dispositiva Accesso all area Clienti

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

E cambiata la procedura di primo accesso al portale NoiPA, più facile e sicura!

E cambiata la procedura di primo accesso al portale NoiPA, più facile e sicura! E cambiata la procedura di primo accesso al portale NoiPA, più facile e sicura! E cambiata la procedura di primo accesso al portale NoiPA, più facile e sicura! Sei un nuovo amministrato? NoiPA - Servizi

Dettagli

Bambini oppositivi e provocatori 9 regole per sopravvivere!

Bambini oppositivi e provocatori 9 regole per sopravvivere! Anna La Prova Bambini oppositivi e provocatori 9 regole per sopravvivere! Chi sono i bambini Oppositivi e Provocatori? Sono bambini o ragazzi che sfidano l autorità, che sembrano provare piacere nel far

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN)

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) System Overview di Mattia Bargellini 1 CAPITOLO 1 1.1 Introduzione Il seguente progetto intende estendere

Dettagli

4. Conoscere il proprio corpo

4. Conoscere il proprio corpo 4. Conoscere il proprio corpo Gli esseri viventi sono fatti di parti che funzionano assieme in modo diverso. Hanno parti diverse che fanno cose diverse. Il tuo corpo è fatto di molte parti diverse. Alcune

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Circolare 26 MARZO 1966 N. 12480

Circolare 26 MARZO 1966 N. 12480 Circolare 26 MARZO 1966 N. 12480 Ministero dei lavori pubblici Direzione generale edilizia statale e sovvenzionata div. XVI-bis: Norme per i collaudi dei fabbricati costruiti da cooperative edilizie fruenti

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

SETTE MOSSE PER LIBERARSI DALL ANSIA

SETTE MOSSE PER LIBERARSI DALL ANSIA LIBRO IN ASSAGGIO SETTE MOSSE PER LIBERARSI DALL ANSIA DI ROBERT L. LEAHY INTRODUZIONE Le sette regole delle persone molto inquiete Arrovellarvi in continuazione, pensando e ripensando al peggio, è la

Dettagli

A queste rispondo cosi:

A queste rispondo cosi: La presente traduzione non sostituisce in alcun modo il regolamento originale del gioco. Il presente documento è da intendersi come un aiuto per i giocatori di lingua italiana per comprendere le regole

Dettagli

O r a r e, e s s e r e a m i c i di c h i d a v v e r o c i a m a

O r a r e, e s s e r e a m i c i di c h i d a v v e r o c i a m a O r a r e, e s s e r e a m i c i di c h i d a v v e r o c i a m a Ci situiamo Probabilmente alla tua età inizi ad avere chiaro chi sono i tuoi amici, non sempre è facile da discernere. Però una volta chiaro,

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

Come trovare clienti e ottenere contatti profilati e ordini in 24 ore!

Come trovare clienti e ottenere contatti profilati e ordini in 24 ore! Come trovare clienti e ottenere contatti profilati e ordini in 24 ore! oppure La Pubblicità su Google Come funziona? Sergio Minozzi Imprenditore di informatica da più di 20 anni. Per 12 anni ha lavorato

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Benvenuto nello straordinario mondo del Trading in opzioni!

Benvenuto nello straordinario mondo del Trading in opzioni! TRADING in OPZIONI Benvenuto nello straordinario mondo del Trading in opzioni! Justagoodtrade è il nome di uno yacht che ho visto durante uno dei miei viaggi di formazione sul trading negli USA. Il milionario

Dettagli

E SE IL TUO SMARTPHONE INDOSSASSE GLI OCCHIALI?

E SE IL TUO SMARTPHONE INDOSSASSE GLI OCCHIALI? E SE IL TUO SMARTPHONE INDOSSASSE GLI OCCHIALI? Buona Caccia e Buon Volo, giovani amici di Eureka! Siete tra gli eletti che hanno deciso di passare al livello successivo: site pronti? Questo mese vi proponiamo

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org.

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Nuovo documento Anteprima di stampa Annulla Galleria Apri Controllo ortografico Ripristina Sorgente dati Salva Controllo

Dettagli

Mario Polito IARE: Press - ROMA

Mario Polito IARE: Press - ROMA Mario Polito info@mariopolito.it www.mariopolito.it IMPARARE A STUD IARE: LE TECNICHE DI STUDIO Come sottolineare, prendere appunti, creare schemi e mappe, archiviare Pubblicato dagli Editori Riuniti University

Dettagli

Chi può prendere decisioni riguardo alla salute di un altra persona?

Chi può prendere decisioni riguardo alla salute di un altra persona? Chi può prendere decisioni riguardo alla salute di un altra persona? Nel Western Australia, la legge permette di redigere una dichiarazione anticipata di trattamento per stabilire quali cure si vogliono

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli