Elementi di calcolo delle probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi di calcolo delle probabilità"

Transcript

1 Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo una pallina. E più probabile pescare una pallina bianca o una nera?... E se nell urna ci fossero 400 palline bianche e 600 nere?... B) In un urna voglio introdurre 1000 palline. Quante bianche e quante nere dovrò mettere nell urna se voglio che sia uguale la probabilità di estrarre una bianca o una nera?... Osserva che ai quesiti proposti hai risposto facilmente e senza esitazioni. E non c è stato disaccordo nelle risposte fra te e i tuoi compagni. Eppure non abbiamo iniziato il discorso spiegando cosa si debba intendere per "probabilità". Esempio 1 Immagina di occuparti delle vendite in una fabbrica di provette di vetro. Il docente di laboratorio di scienze della SSPSS vorrebbe acquistare una partita di tali contenitori per il nuovo laboratorio e ti chiede di esaminare un campione della merce in vendita. Da tale esame dipenderà l acquisto delle provette. Immagina di aver a disposizione in magazzino 12 recipienti già imballati, dei quali però uno è crepato (mentre i rimanenti 11 sono perfetti). Il tuo capo ti aveva raccomandato di metterlo da parte, ma tu te ne eri dimenticato e ora ti trovi piuttosto in imbarazzo. Posto di fronte ai 12 pacchi, il possibile compratore ne indica uno perché sia aperto: c è 1 possibilità su 12 che la provetta scelta sia quella crepata? Speriamo che tu non sia così sfortunato! Esempio 2 Il lancio di un dado da gioco: il numero "6" ha 1 su 6 possibilità di uscire nel lancio. Le situazioni descritte sono esempi di prova aleatoria (aleatoria deriva dalla parola latina "alea" che significa proprio "dado da gioco" ) cioè una prova della quale non si sa con certezza il risultato che uscirà. Nella prova dell esempio 1 può succedere uno dei seguente eventi: "il pacco scelto contiene una provetta crepata" (e questo può succedere in 1 caso su 12); "il pacco scelto contiene una provetta intatta" (e questo può succedere in 11 casi su 12). L evento "il pacco scelto contiene la provetta crepata" ha probabilità di accadere 12<0, mentre l evento "il pacco scelto contiene una provetta intatta" ha probabilità 11 12< Infatti la probabilità p di un evento e (quando tutti i casi sono egualmente possibili quindi equiprobabili) è definita dal rapporto p(e) = numero dei casi favorevoli numero dei casi possibili Da questa definizione si deduce la seguente condizione: 1

2 0 p(e) 1 Analogamente nell esempio 2 l evento "esce il numero 6" ha probabilità 1 6 evento contrario "esce un numero diverso da 6" ha probabilità 5 (5 su 6). 6 (1 su 6), mentre il suo Quindi la somma delle probabilità di un evento e e del suo evento contrario c vale sempre 1. Dunque: p(e)+ p(c)=1 p(e)=1 p(c) Un evento si dice evento certo quando ha probabilità 1, cioè quando i casi favorevoli sono tutti quelli possibili. Esempio 1 La probabilità che dal lancio di un dado esca un numero più piccolo di 10 è ovviamente 1. Riassumendo: Teoria Esempio: lancio di un dado SiaS lo spazio campionario, cioél insieme S = {1, 2, 3, 4, 5, 6} di tutti gli esiti possibili. Siaeun evento dell insieme S Per esempioe 1 = esce 1, e 2 = esce 2. 0 p(e) 1 p(e 1 )= 1 6 In particolare p(e) =1se l evento è certo e = esce un numero tra1e6 p(e)=1 p(e) =0se l evento è impossibile e=esce un numero più grande di 7 p(e) =0 Siaeun evento ec il suo evento contrario e = esce1; c = esce un numero diverso da 1 p(e) + p(c)=1 p(e)= 1 6 p(c) = =1 Notazione insiemistica e somma di probabilità Esempio 2 Visualizziamo la prova aleatoria con i diagrammi di Venn. L insieme di tutti i casi possibili è detto spazio campione S mentre gli eventi "esce il numero 1" E 1 = {1} oppure "esce il numero 2"E 2 = {2}, oppure... "esce il numero 6"E 6 = {6} sono dei sottoinsiemi di S. 2

3 Nel diagramma di Venn qui sopra, prova tu a disegnare l evento "esce un numero pari" E = {numero pari}, come sottoinsieme di S. Esempio 1 L evento "la provetta è crepata" e l evento "la provetta è intatta" sono eventi che non si possono verificare simultaneamente, e si dicono incompatibili o disgiunti. In questo caso sono anche contrari o complementari, perché o accade l uno oppure l altro, cioè insieme esauriscono le possibilità. Esempio 2 Gli eventi E p = {pari} (tirando il dado, esce un numero pari) e E 1 = {1} (esce il numero 1) sono incompatibili ma non contrari. Gli eventi E p = {pari} (tirando il dado, esce un numero pari) e E d = {dispari} (esce un numero dispari) sono contrari (e quindi incompatibili). L evento E p = {pari} (tirando il dado, esce un numero pari) e l evento E 2 = {2} (esce il numero 2) invece non sono incompatibili. In generale: due eventi E 1, E 2 sono incompatibili o disgiunti se la loro intersezione E 1 E 2 = due eventi E 1, E 2 sono contrari o complementari se la loro intersezione E 1 E 2 = e se la somma delle loro probabilità è p(e 1 )+ p(e 2 )=1 Esempio 2.1 Qual è la probabilità che lanciando un dado "esca un numero pari" oppure "il numero 3"? Visualizza nel diagramma di Venn il sottoinsieme che ci interessa. Tra tutte le 6 possibilità, i casi favorevoli sono "esce 2, 4, 6" e "esce 3": in tutto 4 casi, dunque la probabilità è = 4 6<0, 667. Dal punto di vista insiemistico, la congiunzione "o", "oppure" si traduce con il simbolo di unione. Dunque se E p = {2, 4, 6}, E 3 = {3}, il quesito posto sopra chiede la probabilità di E E 3. In questo caso p(e E 3 )= p(e)+ p(e 3 ), cioè la probabilità di due eventi incompatibili è la somma delle probabilità dei singoli eventi! Esempio 2.2 Qual è la probabilità che "esca un numero pari" oppure "esca un numero multiplo di 3"? 3

4 Qui la questione è più complicata perché il 6 è sia pari sia multiplo di 3, e non dobbiamo contarlo come caso favorevole due volte. Se E p = {2, 4, 6} e F = {3, 6}, allora p(e p F)= p(e p )+ p(f) p(e p F)= = 4 6<0, 667. La differenza fra i due esempi è che nell esempio 2.1 gli eventi erano incompatibili, mentre nell esempio 2.2 non lo sono. In generale la probabilità di un evento A o di un evento B è: ESEMPIO 3 se A B = p(a B)= p(a)+ p(b) se A B p(a B) = p(a) + p(b) p(a B) Nel gioco della roulette è previsto di poter puntare su uno o su due numeri (tale puntata si chiama "cavallo") compresi tra lo 0 e il 36 (in tutto sono 37 numeri), oppure sui numeri pari (sono 18) o sui dispari (sono 18), oppure sui numeri rossi (sono 18) o su quelli neri (sono 18). Osserva che lo 0 è verde. La probabilità che esca lo 0 è 1/37; la probabilità che esca un numero nero è 18/37; la probabilità che esca un numero pari è 18/37; la probabilità che esca un numero nero e pari è ; la probabilità che esca un numero nero o un numero pari é

5 Riassumendo P(A B)=P(A)+P(B) P(A B)=P(A)+P(B) P(A B) Probabilità composta Analizziamo in questo paragrafo il caso in cui le prove aleatorie sono più d una. Le due prove possono essere indipendenti l una dall altra oppure il risultato della prima prova può influire sul risultato della seconda. Abbiamo la seguente regola Regola della moltiplicazione Se A e B sono eventi indipendenti (cioè se il verificarsi di A non è influenzata dal verificarsi di B) abbiamo p(a B)= p(a) p(b) Nel caso di eventi dipendenti vedremo come risolvere il problema mediante un esempio. Il diagramma ad albero Se un esperimento è a più stadi il problema di descrivere i possibili risultati può essere semplificato mediante l uso dei diagrammi ad albero: - per ogni stadio ci sono tanti rami quante sono le possibilità - il numero totale dei percorsi rappresenta il numero totale di eventi possibili - ad ogni percorso è associata la probabilità corrispondente all evento 5

6 Ecco la regola generale per "muoversi" su un diagramma ad albero Esempio 0 Da un urna contenente 6 palline bianche (B) e 4 nere (N) se ne estraggono due a caso, una di seguito all altra senza reimbussolamento. Si vuole determinare qual è la probabilità: p(b 1 B 2 )=che la prima pallina sia bianca e la seconda bianca p(b 1 N 2 ) = che la prima pallina sia bianca e la seconda nera p(n 1 B 2 ) = che la prima pallina sia nera e la seconda bianca p(n 1 N 2 )=che la prima pallina sia nera e la seconda nera Questo esempio di probabilità composta di eventi non indipendenti può venir visualizzata mediante il seguente diagramma ad albero: 6

7 Supponiamo di voler determinare, ad esempio, la probabilità che la seconda pallina estratta sia nera. Risulterà: Esempio 1 p(n 2 ) = p(b 1 N 2 )+ p(n 1 N 2 )= = 7 15 Torniamo all esempio della fabbrica di provette di cui tu sei il magazziniere. Finora ti è andata bene: la provetta che il docente della SSPSS ha scelto è intatta, tuttavia non è del modello che desidera acquistare. Tu, pronto, gli proponi l acquisto di provette di un altro tipo che si trovano nel locale adiacente su una scaffalatura a tre ripiani. Su ciascun ripiano sono poste 12 scatole contenenti una provetta, ma anche questa volta qualcuno di tali recipienti vitrei è difettoso: sul primo ripiano 2 provette su 12 sono crepate; sul secondo ben 3 su 12 sono rovinate; sull ultimo ripiano tutte le 12 provette sono perfette. Il docente compratore decide di controllare 1 recipiente imballato fra tutti i 36 che gli hai mostrato, per vedere se fa al caso suo. Procederà nel seguente modo: prima sceglierà uno dei 3 ripiani, estraendo a sorte un biglietto fra tre biglietti numerati da 1 a 3, poi sceglierà una delle 12 provette su quel dato ripiano, pescando un biglietto tra 12 biglietti numerati da 1 a 12. Se la provetta così designata andrà bene, il docente stipulerà con te un contratto per l acquisto di un intera partita di recipienti, altrimenti? la tua ditta ha perso un cliente. Qual è la probabilità che il contratto venga stipulato? Chiaramente il problema è formato da due prove aleatorie consecutive: la scelta del ripiano (1 su 3) e la scelta della provetta su un ripiano (a seconda della prima scelta, hai 10 su 12 possibilità che il recipiente estratto vada bene, oppure 9 su 12 possibilità che vada bene, oppure 12 su 12). Il complesso di tale prova si chiama prova composta. Schematizziamo la procedura di sorteggio con un diagramma ad albero formato da due strati di ramificazione e da 36 rami. La prima prova aleatoria è costituita da 3 eventi "è stato scelto il primo ripiano r 1 ", "è stato scelto il secondo ripiano r 2 " oppure "è stato scelto il terzo ripiano r 3 "; il totale dei casi possibili o spazio campione è: S prima prova = {r 1, r 2, r 3 }. 7

8 Ognuno dei 3 eventi ha la stessa probabilità di accadere: p(r 1 )= p(r 2 )= p(r 3 ) = 1 3 e p(r 1 )+ p(r 2 )+ p(r 3 )=1 La seconda prova aleatoria dipende dalla prima: se è stato scelto il primo ripiano r 1, gli eventi possibili sono: e 1 = è stata estratta una provetta crepata la cui probabilità è p(e 1 )= 2 12 = 1 6 e 2 = è stata estratta una provetta perfetta la cui probabilità è p(e 2 )= = 5 6 se è stato scelto il secondo ripiano r 2, gli eventi possibili sono: e 1 = è stata estratta una provetta crepata la cui probabilità è p(e 2 )= 3 12 = 1 4 e 2 = è stata estratta una provetta perfetta la cui probabilità è p(e 2 )= 9 12 = 3 4 se è stato scelto il terzo ripiano r 3, gli eventi possibili sono: e 2 = è stata estratta una provetta perfetta la cui probabilità è p(e 2 )= = 1 (e 1 = è stata estratta una provetta perfetta la cui probabilità è p(e 1 )= 0 12 = 0) La probabilità di uno dei 36 eventi della prova composta (ad esempio che venga scelto il primo ripiano e che la provetta estratta sia crepata) si calcola "percorrendo" il ramo dell albero probabilistico descritto (il primo ramo) e moltiplicando i valori della probabilità dei singoli eventi lungo il ramo. La prova aleatoria composta è data dai seguenti eventi: se è stato scelto il primo ripiano r 1, gli eventi possibili sono: E 11 = è stata estratta una provetta crepata sul primo ripiano la cui probabilità è: p(e 11 ) = 1 1 =

9 E 12 = è stata estratta una provetta perfetta sul primo ripiano la cui probabilità è: p(e 12 ) = 1 5 = se è stato scelto il secondo ripiano r 2, gli eventi possibili sono: E 21 = è stata estratta una proveta crepata sul secondo ripiano la cui probabilità è: p(e 21 ) = 1 1 = E 22 = è stata estratta una provetta perfetta sul secondo ripiano la cui probabilità è: p(e 22 ) = = 1 4 se è stato scelto il terzo ripiano r 3, gli eventi possibili sono: E 32 = è stata estratta una provetta perfetta sul terzo ripiano la cui probabilità è: p(e 32 ) = = 1 3 (E 31 = è stata estratta una provetta crepata sul terzo ripiano la cui probabilità è: p(e 31 ) = =0) Verifica che la somma di tutte le probabilità è 1. La risposta al quesito iniziale "qual è la probabilità che il contratto venga stipulato" è dato dalla probabilità degli eventi E 12 E 22 E 32. Dunque: p= p(e 12 ) + p(e 22 )+ p(e 32 )= = = Verifica che la probabilità che il contratto non venga stipulato è: q = p(e 11 )+ p(e 21 ) + p(e 31 )= 5 36 Dato un evento E, il suo evento contrario è quell evento che si verifica quando e sono quando non si verifica E: lo indichiamo con il simbolo Ē. Es.: nel lancio di una moneta, l evento contrario dell uscita "testa" è l uscita "croce". Dato un evento E e il suo contrario Ē, si ha che p(ē)=1 p(e). Esempio 2 Lanciando due dadi qual è la probabilità che escano due 6 (per un totale di 12 punti)? Costruisci un diagramma ad albero e verifica che la probabilità di questo evento è: 1 1 = <2, 78% E qual è la probabilità che esca un totale di 11 punti (con un dado 5 e con l altro dado 6, oppure con il primo dado 6 e con il secondo 5)? Sullo stesso diagramma ad albero verifica che la probabilità è: = = 1 18<5, 56% 9

10 Glossario dei termini più utilizzati e riassunto 10

11 Problemi vari 11

12 12

13 13

14 14

15 15

16 16

17 17

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Somma logica di eventi

Somma logica di eventi Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

1 Probabilità condizionata

1 Probabilità condizionata 1 Probabilità condizionata Accade spesso di voler calcolare delle probabilità quando si è in possesso di informazioni parziali sull esito di un esperimento, o di voler calcolare la probabilità di un evento

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott.

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Modello probabilistico di un esperimento aleatorio Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Un esperimento è il processo attraverso il quale un osservazione

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 Calcolo delle Probabilità Teoria & Pratica La probabilità di un evento è

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità CAPITOLO 12 Calcolo delle Probabilità 12.1 Introduzione al Calcolo delle Probabilità Una storia d amore Luca abita a Lecco, Bianca a Brindisi. Lui è innamorato perso. Anche lei ama lui, ma, ultimamente,

Dettagli

in numeri decimali e in frazioni.

in numeri decimali e in frazioni. H1 Probabilità Questo capitolo è organizzato soprattutto per esempi Non ci sarà teoria né procedimenti se non il minimo indispensabile L obiettivo è imparare a risolvere i problemi che si presenteranno

Dettagli

Probabilità. Esperimento, risultati e spazio campionario

Probabilità. Esperimento, risultati e spazio campionario Probabilità La probabilità è usata nel linguaggio comune per dare indicazioni quantitative sul verificarsi di certi eventi: i) probabilità di incorre in un data patologia causa l abuso di alcol, fumo,

Dettagli

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006 Calcolo delle probabilità riassunto veloce Laboratorio di Bioinformatica Corso aa 2005-2006 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011 Metodi quantitativi per il trade marketing Modulo Valutazione dei rischi per il marketing a.a. 200/20 Problemi per esercitazione individuale (non svolti in aula NB: i problemi assegnati per esercitazione

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini 1 Elementi di calcolo delle probabilitá, teorema di Bayes e applicazioni 1.1 Definizione di probabilitá

Dettagli

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente COMPITO n. 1 a) Nel gioco del poker ad ogni giocatore vengono distribuite cinque carte da un normale mazzo di 52. Quant è la probabilità che un giocatore riceva una scala di re (ovvero 9, 10, J, Q, K anche

Dettagli

La distribuzione binomiale

La distribuzione binomiale La distribuzione binomiale 1. Che cos'è un numero casuale Stiamo per lanciare un dado. Fermiamo la situazione un attimo prima che il dado cada e mostri la faccia superiore. Finché è in aria esso costituisce

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

ESERCIZI EVENTI E VARIABILI ALEATORIE

ESERCIZI EVENTI E VARIABILI ALEATORIE ESERCIZI EVENTI E VARIABILI ALEATORIE 1) Considera la tabella seguente, che descrive la situazione occupazionale di 63 persone in relazione al titolo di studio. Occupazione SI NO Titolo Licenza media 5%

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio Indice 1 Probabilità 1 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio.. 1 1.2 Probabilità condizionata, indipendenza e teorema di Bayes.... 2 1 Probabilità 1.1 Primi esercizi di probabilità

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI STATISTICA E PROBABILITA Nel sacchetto A ci sono 4 palline rosse e 8 nere mentre nel sacchetto B ci sono 4 palline rosse e 6 nere. a. Completa correttamente la seguente frase inserendo

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Problemi e formula di Bayes. Daniela Valen), Treccani Scuola

Problemi e formula di Bayes. Daniela Valen), Treccani Scuola Problemi e formula di Bayes Daniela Valen), Treccani Scuola 1 Problemi antichi 1. Lancio una volta un dado A 1 : Esce 6 P( A 1 ) = 1 6 B 1 : NON esce 6 2. Lancio più volte un dado P( B 1 ) = 5 6 Sapere

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a: TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

1 Breve introduzione alla probabilità elementare: approccio intuitivo

1 Breve introduzione alla probabilità elementare: approccio intuitivo Breve introduzione alla probabilità elementare: approccio intuitivo. È usuale che in molte situazioni che si presentano concretamente ci sia a priori incertezza su ciò che accadrà nel futuro: il calcolo

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

Capitolo 4 PROBABILITÀ. Thursday, 5 April 12

Capitolo 4 PROBABILITÀ. Thursday, 5 April 12 Capitolo 4 PROBABILITÀ Cosa imparerete Idea di esperimento aleatorio Idea di evento Come si definisce una probabilità Idea di probabilità condizionata Determinare se gli eventi sono indipendenti Usare

Dettagli

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva Calcolo delle probabilità. Gli eventi - definizioni propedeutiche 2. La probabiltà nella concezione classica. La probabiltà nella concezione frequentista 4. La probabiltà nella concezione soggettiva. La

Dettagli

21.05.08 Prima prova parziale di Calcolo delle probabilità I C.L. in Matematica

21.05.08 Prima prova parziale di Calcolo delle probabilità I C.L. in Matematica 21.05.08 Prima prova parziale di Calcolo delle probabilità I Ogni esercizio vale 5 punti. 1. Si gioca a nascondino in una casa di quattro stanze: cucina, salotto, bagno e camera da letto. Otto bambini

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il problema di Monty Hill nel film 21 Elementare!! Statistiche, cambio di variabili. 1 Il coefficiente di correlazione tra Indicee Stipendio vale 0,94. E possibile asserire che

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità: indicazioni quantitative sul verificarsi di certi eventi (linguaggio comune), ad es. P di superare o

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Analisi di situazioni casuali: apparenti paradossi e auto-inganni

Analisi di situazioni casuali: apparenti paradossi e auto-inganni Analisi di situazioni casuali: apparenti paradossi e auto-inganni Fabio Spizzichino Associazione Civica XIX Libreria Passaparola, Roma Roma, 11 Aprile 2014 1 Ci sono tre tipi di bugie: le bugie normali,

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Calcolo delle probabilità Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si vuole studiare la distribuzione del sesso dei figli nelle famiglie aventi due figli

Dettagli

Testa o croce: quando conviene scegliere a caso

Testa o croce: quando conviene scegliere a caso Testa o croce: quando conviene scegliere a caso Fabio Fagnani fabio.fagnani@polito.it http://calvino.polito.it/ fagnani/ Dipartimento di Matematica Politecnico di Torino p. Quale ricerca? p. Quale ricerca?

Dettagli

Marco Di Marzio. Primi elementi di inferenza statistica

Marco Di Marzio. Primi elementi di inferenza statistica Marco Di Marzio Primi elementi di inferenza statistica Ringraziamenti Un sentito ringraziamento a Fabiola Del Greco e Agnese Panzera per la preziosa collaborazione. Indice Probabilità. Esperimenti casuali...........................................2

Dettagli

Pillole di Probabilitá

Pillole di Probabilitá Pillole di Probabilitá Roberto Paoletti Supponiamo di dover fare una previsione su un esito che puó avvenire all interno di un certo insieme di eventi. Ad esempio, viene lanciato un dado e si vuole fare

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica MARIA GARETTO STATISTICA Lezioni ed esercizi Corso di Laurea in Biotecnologie A.A. 00/00 Quaderno # Novembre 00 M. Garetto - Statistica

Dettagli

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Ilenia Epifani 1 Il contenuto di queste dispense è protetto dalle leggi

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

1 Calcolo delle probabilità

1 Calcolo delle probabilità 1 Calcolo delle probabilità Lo studio delle leggi del caso va sotto il nome di calcolo delle probabilità. Ci fu un vigoroso sviluppo di questa disciplina a cavallo tra il cinquecento e il seicento e lo

Dettagli

E LE M E N T I D I P R O B A B I L I T A

E LE M E N T I D I P R O B A B I L I T A L M T I D I P R O B A B I L I T A CI STORICI Il calcolo delle probabilità si è andato sviluppando piuttosto di recente, intorno al 500 e per lungo tempo solo come una branca della matematica Solo dal secolo

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici

Dettagli

1. Cosa si intende dicendo che A e B sono eventi indipendenti.;

1. Cosa si intende dicendo che A e B sono eventi indipendenti.; Laurea in Chimica e Tecnologia Farmaceutiche Corso di Matematica e Statistica esercizi di calcolo delle probabilità BASI. Esercizio 1 Siamo alle battute conclusive di una partita al Gioco dell Oca; al

Dettagli

UNA STORIA PROBABILE di Francesca D Iapico

UNA STORIA PROBABILE di Francesca D Iapico UNA STORIA PROBABILE di Francesca D Iapico Si mostrano qui alcune delle tappe attraverso le quali si è compiuto il cammino che ha portato al calcolo delle probabilità come lo usiamo oggi Un racconto pensato

Dettagli

PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ

PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ 1. Che cos è la probabilità? «La teoria delle probabilità non è altro che il tentativo del genere umano di comprendere l incertezza dell universo,

Dettagli

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R.

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R. 6. I numeri reali e complessi ( R e C ). 6.1 I numeri reali R. Non tratteremo in modo molto approfondito gli ulteriori ampliamenti che dai numeri razionali ci portano a quelli reali, all insieme, e R d

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio»

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014 Problemi di Matematica Giovanni Romano Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014: ciclo formativo di orientamento alle prove di ammissione ai

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

TEOREMI SULLA PROBABILITÀ

TEOREMI SULLA PROBABILITÀ TEOREMI SULLA PROBABILITÀ o Probabilità totale oprobabilità contraria oprobabilità condizionata odipendenza stocastica oprobabilità composta oformula di Bayes oproblemi di riepilogo Probabilità di eventi

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Distribuzioni discrete

Distribuzioni discrete Distribuzioni discrete Esercitazione 4 novembre 003 Distribuzione binomiale Si fa un esperimento (o prova): può manifestarsi un certo evento A con probabilità p oppure no (con probabilità q = p). La distribuzione

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Riepilogo: Postulati del calcolo della probabilità (Kolmogorov): Dato un evento A Ω, dove è lo spazio degli

Dettagli

Il problema delle parti

Il problema delle parti Il problema delle parti Livello scolare: 1 biennio. Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi dipendenti e indipendenti. Conoscenze Eventi e operazioni

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli