Calcolo delle Probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo delle Probabilità"

Transcript

1 à 1. Introduzione Calcolo delle Probabilità Il Calcolo delle Probabilità nasce dagli studi matematici sui giochi d azzardo. Il Calcolo delle Probabilità è lo strumento che permette all uomo di assumere un atteggiamento razionale di fronte all incertezza. L esperienza quotidiana mostra che i fatti osservabili non sono in generale prevedibili, eppure si presenta spesso la necessità di prendere decisioni che riguardano il futuro. Il Calcolo delle Probabilità permette di assumere atteggiamenti coerenti e giustificabili nel caso di eventi futuri non ripetibili, e di effettuare previsioni quantitative attendibili nel caso di eventi ripetibili in condizioni uniformi, e per i quali è quindi possibile effettuare serie di osservazioni. Non sempre il pensiero intuitivo ci porta a valutare la probabilità in modo razionale. Vediamo un esempio divertente. Il gioco di Monty Hall Siamo in un gioco a premi (che prende spunto da un fortunato show della TV americana chiamato Monty Hall), abbiamo davanti a noi tre porte: dietro una di queste c è una Ferrari, dietro alle altre due... una capra. Dobbiamo scegliere una porta, e vinceremo quello che troviamo li dietro. Fatta la scelta, Monty Hall ci dice Ne sei proprio sicuro? Puoi ancora cambiare la scelta: anzi, ti voglio aiutare e riduco le scelte a due. Ecco: dietro questa porta, c è una capra. Così dicendo, apre una delle porte che noi non abbiamo scelto, mostrando una capra. Ammesso che vogliamo vincere l auto, ci conviene cambiare porta, o la cosa è indifferente? La risposta più razionale risulta spesso quella meno intuitiva. Molti sono portati a dire: dato che una porta è stata aperta rimangono due possibilità e quindi la probabilità diventa 1. Continuare nella scelta iniziale o cambiare è indifferente... 2 Ma invece le cose non stanno esattamente così ed andremo a spiegare il perché, ma per farlo abbiamo bosogno di formalizzare l idea di probabilità. 2. Eventi Il primo ente di cui abbiamo bisogno per sviluppare il Calcolo delle Probabilità è la nozione di evento. Esistono enunciati per i quali non è possibile stabilire un immediato valore di verità (Vero o Falso) ma per i quali è solo possibile esprimere una maggiore o minore possibilità che che 1

2 uno dei due valori si realizzi.; in altre parole il loro valore di verità dipende dal caso. Esempi. Il 2 febbraio 2009 ad Assisi piove. Uscita della faccia 3 nel lancio di un dado. Nella formalizzazione matematica gli eventi vengono rappresentati come sottoinsiemi dell insieme Ω dei casi possibili Vediamo come in un esempio. Esempio. Supponiamo di lanciare quattro volte una moneta; quali sono i possibili esiti di questa operazione? Ovvero chi è in questo esperimento l insieme Ω? E l insieme di tutte le possibili stringhe di lunghezza 4 che contengono solo delle T e delle C. Ω = {T T T T, T T T C, T T CT, T CT T, CT T T, CCCT, CCT C,...} Al lettore il compito di completare l insieme Ω. L enunciato esattamente due teste è un evento, ed è rappresentato dal sottoinsieme di Ω fatto con tutte le sequenze che contengono esattamente 2 T, e cioè A = {T T CC, T CT C, T CCT, CT CT, CT T C, CCT T }. Esercizio. Si lanciano due dadi. Esplicitare in termini insiemistici l evento la somma delle due facce è 7. Due eventi si dicono incompatibili se il verificarsi dell uno esclude il verificarsi dell altro. Nella rappresentazione insiemistica significa che i sottoinsiemi di Ω che li rappresentano sono disgiunti. Ad esempio, nel lancio delle 4 monete, gli eventi esattamente due teste e nessuna testa sono incompatibili; insiemisticamente il secondo evento è rappresentato dal singoletto B = {CCCC} ed è chiaro che A e B sono disgiunti. Due eventi si dicono indipendenti se il verificarsi dell uno non influenza il verificarsi dell altro. Esempi. Nel gioco della roulette gli eventi uscita di un numero rosso e uscita di un numero dispari sono indipendenti, invece uscita di un numero rosso e uscita dello 0 non lo sono. Il primo è quindi un esempio di eventi indipendenti che non sono incompatibili (perchè ci sono dei numeri dispari e rossi, la cui uscita quindi rende verificati entrambe), mentre il secondo è un esempio di eventi incompatibili che non sono indipendenti. Bisogna quindi fare attenzione a non confondere queste due nozioni. La collezione degli eventi è quindi una famiglia di sottoinsiemi dell insieme dei casi possibili Ω. Denoteremo con Σ questa famiglia. Assumeremo alcune convenzioni sugli eventi, e cioè supporremo che l insieme degli eventi Σ costituisca un algebra cioè che soddisfi queste ipotesi: (E.1) Ω Σ (Ω è detto l evento certo); (E.2) dati due eventi A, B Σ, anche la loro unione A B Σ; (E.3) dato un evento A Σ anche il suo complementare A c Σ. Intanto osserviamo che grazie all assioma (E.3) anche l evento impossibile rappresentato da Ø è un evento, cioè appartiene a Σ. Allora se A e B sono due eventi anche la loro intersezione A B è un evento: infatti da (E.3) A c, B c Σ e da (E.2) A c B c Σ; ma è facile convincersi che quest ultimo evento è la negazione 2

3 di A B, cioè che (A B) c Σ; un ulteriore applicazione di (E.3), e l osservazione che iterando la negazione si riottiene l evento stesso, ci portano alla conclusione desiderata. Alcune osservazioni importanti. Non tutte le famiglie di sottoinsiemi dell insieme Ω sono delle algebre; ad esempio se l esperimento è il lancio di un dado, l insieme dei casi possibili è Ω = {1, 2, 3, 4, 5, 6}, ma la famiglia Σ = {Ω, {1}, {2}, {3}, {4}, {5}, {6}} non è un algebra (perchè?). Due algebre immediate sono Σ = {Ω, Ø} e Σ = 2 Ω, cioè l insieme di tutti i sottoinsiemi di Ω. Tuttavia questi non sono gli unici esempi possibili! Anzi, poichè la famiglia Σ sarà la classe degli eventi di cui sappiamo valutare la probabilità, è ragionevole aspettarsi che questa famiglia non contenga tutti i possibili eventi, cioè che sia possibili pronunciarsi solo sulla probabilità di verificarsi di alcuni. Esistono inoltre i meccanismi di veto che restringono le classi di eventi possibili. Vediamo un esempio Esercizio. I nonni Alberto e Bruna accompagnano i loro 4 nipotini Carmen, Daniela, Enzo e Filippo al Luna Park; i quattro vogliono andare sull otto volante, ma arrivati alla biglietteria un cartello avverte che I minori di 15 anni possono salire solo se accompagnati da un adulto. I carrellini dell otto volante possono alloggiare solo tre persone per volta. Se Ω = {A, B, C, D, E, F } quali sono i possibili equipaggi che possono salire sull otto volante? La famiglia di tutte le terne possibili (cioè senza tenere conto del divieto) più Ω e Ø è un algebra? E la famiglia dei possibili equipaggi, sempre integrata da Ω e Ø? 3. Probabilità La definizione di probabilità è uno dei fondamenti su cui maggiormente si è discusso e si discute. Qui non riporteremo questa discussione, limitandoci ad adottare la definizione più operativa dal punto di vista della deduzione di risultati, che è la definizione assiomatica di probabilità, come proposta da Kolmogorov. Secondo essa si definisce probabilità su uno spazio Ω una funzione P : Σ R (Σ è l algebra degli eventi) che soddisfi i seguenti tre assiomi: (P.1) P (A) 0 per ogni evento A Σ; (P.2) se A, B Σ sono incompatibili, allora P (A B) = P (A) + P (B) (regola di coerenza); (P.3) P (Ω) = 1. Spesso, negli esempi in cui l insieme dei casi possibili è finito, si attribuisce la medesima probabilità p a ciascuno dei casi possibili, e quindi la regola di coerenza obbliga ad assegnare ad ogni evento A come valore di probabilità P (A) = np dove n è il numero di casi possibili che costituisce A. Proviamo adesso i primi teoremi sulla probabilità. Monotonia della probabilità. Se due eventi A e B sono tali che A B allora P (A) P (B). Dimostrazione. Infatti B \ A è l intersezione tra B e il complementare di A, e quindi è un evento di Σ; ora A e B \ A sono incompatibili, dunque si può applicare la regola di coerenza, ottenendo P (B) = P [A (B \ A)] = P (A) + P (B \ A). (1) 3

4 Ma entrambe gli addendi all ultimo membro sono 0, quindi la somma è di uno qualunque dei due; in particolare perciò P (B) P (A). Osserviamo che come conseguenza della formula (??) se A B risulta anche P (A \ B) = P (A) P (B). Limitatezza della probabilità. Per ogni evento A Σ risulta P (A) 1. Dimostrazione. Discende immediatamente dalla monotonia e dall assioma (P.3) Teorema delle probabilità contrarie. Dato un evento A Σ si ha P (A c ) = 1 P (A). Dimostrazione. Poichè A e A c sono incompatibili, e la loro unione è tutto Ω si ha 1 = P (Ω) = P (A A c ) = P (A) + P (A c ) da cui si ricava la tesi. Teorema. La probabilità dell evento impossibile è 0. Dimostrazione. Infatti si ha Ω = Ω Ø. Pertanto, trattandosi anche in questo caso di eventi incompatibili, si trova P (Ω) = P (Ω Ø) = P (Ω) + P (Ø) e questo è possibile solo se il secondo addendo è nullo, cioè P (Ø) = 0. Il prossimo enunciato serve a calcolare la probabilità dell evento che si ottiene dall unione di due eventi, anche non incompatibili Teorema delle probabilità totali. Dati due eventi A, B Σ si ha P (A B) = P (A) + P (B) P (A B). Dimostrazione. Per provare l uguaglianza bisogna prima provare l iterazione dell assioma (P.2) al caso di 3 eventi 2 a 2 incompatibili. Dati infatti A, B, C Σ due a due disgiunti, tali cioè che A B = B C = A C = Ø 4

5 si ha P (A B C) = P (A) + P (B) + P (C). (2) Per provare questa uguaglianza si osservi che A B e C sono due eventi incompatibili, e quindi la regola di coerenza fornisce P [(A B) C] = P (A B) + P (C). D altronde anche A e B sono incompatibili, quindi si può sostituire P (A B) con la somma P (A) + P (B), ottenendo P [(A B) C] = P (A) + P (B) + P (C) che è la (??) se si ricorda che l unione è associativa. Ora, se A e B sono due eventi, gli eventi A\B, A B, B \A sono incompatibili, e quindi possiamo applicare (??) e ottenere P (A B) = P [(A \ B) (A B) (B \ A)] = P (A \ B) + P (A B) + P (B \ A). (3) Ora osserviamo che A = (A \ B) (A B) e che i due addendi sono incompatibili; quindi di nuovo grazie alla coerenza P (A) = P (A \ B) + P (A B) ovvero P (A \ B) = P (A) P (A B) e analogamente P (B \ A) = P (B) P (A B). Sostituendola nelle (??) si troverà P (A B) = P (A) P (A B) + P (A B) + P (B) P (A B) = P (A) + P (B) P (A B). che è la legge che volevanmo provare. 3. Probabilità condizionata L assegnazione del valore della probabilità ad un evento può essere condizionata dal tipo di informazione di cui si è in possesso. Questa considerazione intuitiva è alla base della definizione di probabilità condizionata. Per chiarirci le idee consideriamo l esempio dell urna in Figura. Essa contiene 11 biglie biancoverdi, 9 biglie bianco-rosse e 10 biglie rosso-verdi. Se consideriamo i tre eventi: B = estrazione di una pallina avente colore bianco; 5

6 R = estrazione di una pallina avente colore rosso; V = estrazione di una pallina avente colore verde; E allora facile calcolarne la probabilità; ad esempio per calcolare quella di B basta considerare che sulle 30 biglie contenute nell urna 11+9 sono quelle che portano il colore bianco. Quindi P (B) = = 2 3. Supponiamo ora di sbirciare l estrazione e di vedere una striscia rossa. L affermazione estrazione di una pallina avente il bianco sotto queste ipotesi assume una probabilità diversa; infatti, sapendo che la biglia estratta porta del rosso sappiamo che si è verificato sicuramente l evento R, e quindi le possibilità favorevoli al verificarsi dell affermazione diventano 9 su 20. Infatti, sapendo che la pallina sorteggiata presenta certamente del rosso, è equivalente a ragionare su un altra urna, in cui non ci sono le biglie bianco-verdi. Quindi in questa nuova situazione i casi possibili sono solo 20, e perchè sia verificata anche estrazione di una pallina avente il bianco l unica possibilità è l estrazione di una pallina bianco-rossa. L evento di cui abbiamo in questo modo calcolato la probabilità non è più B, ma è B condizionato a R; lo denoteremo con B R. E la probabilità l abbiamo calcolata secondo la formula P (B R) = P (B R). P (R) Osserviamo ora che la formula non avrebbe senso se la probabilità a denominatore fosse nulla. Per gli scopi di questa trattazione sarà sufficiente osservare che se l evento condizionante fosse impossibile, non vi sarebbe necessità di modificare la valutazione di probabilità. Ad esempio se anzichè sbirciare noi, un ciarlatano ci comunicasse come informazione riservata che nella pallina estratta c è del blu, la probabilità che la biglia estratta porti del bianco non subirebbe alcuna modificazione. Semplicemente la rivelazione è priva di informazione (tranne quella sulla serietà dell informatore..). In altre parole noi condizioneremo la probabilità solo per eventi a probabilità non nulla e definiremo la probabilità condizionata di un evento A subordinata al verificarsi dell evento B (di probabilità non nulla) tramite la formula P (A B) = P (A B). (4) P (B) 6

7 Dalla (??) facilmente si ricava la formula che permette di calcolare la probabilità di un intersezione. Vale infatti il Teorema della probabilità composta. Se A e B sono due eventi, con P (B) 0, allora P (A B) = P (A B)P (B). Dimostrazione. E un immediata deduzione dalla (??). Ricordiamo come abbiamo definito l indipendenza tra due eventi: due eventi A e B sono indipendenti se il verificarsi dell uno non influenza il verificarsi dell altro. Questo si traduce nell osservazione che la valutazione di probabilità di A o di B non viene modificata dalla conoscenza relativa al verificarsi dell altro; in altre parole se A e B sono indipendenti, P (A B) cioè la probabilità a posteriori successiva all accadere di B lascia intatta l assegnazione di probabilità a A. In formule P (A B) = P (A). Applicando il Teorema della probabilità composta allora troviamo P (A B) = P (A)P (B). (5) Ad esempio, se lanciamo due volte un dado, gli eventi 6 al primo lancio e 5 al secondo lancio sono indipendenti. Dunque la probabilità dell evento congiunto E = 6 al primo lancio e 5 al secondo lancio è data dal prodotto dei due singoletti, cioè P (E) = = Che accade se invece che tra due eventi indipendenti andiamo a considerare le relazioni tra tre eventi indipendenti? Osserviamo innanzitutto che quando parliamo di tre eventi indipendenti intendiamo che nessuno dei tre influenza il verificarsi di nessuno degli altri due, ovvero che i tre eventi sono due a due indipendenti. Ora, se denotiamo con A, B, C i tre eventi, il fatto che A è indipendente sia da B che da C comporta automaticamente che A è indipendente da B C, cioè il verificarsi di A non influenza il verificarsi di B e C simultaneamente. Quindi applicando la (??) alla coppia di eventi A e B C si ottiene intanto P (A B C) = P [A (B C)] = P (A)P (B C). D altra parte anche B e C sono indipendenti, e quindi anche nel loro caso si può applicare la (??), cioè P (B C) = P (B)P (C), e sostituendola si perviene alla P (A B C) = P (A)P (B)P (C). (6) Dunque perchè tre eventi siano indipendenti occorre che siano due a due indipendenti e ù+che si verifichi la (??). Notiamo che le due condizioni, indipendenza due a due e (??) possono essere verificate singolarmente può cioè accadere che tre eventi verifichino la (??) senza essere indipendenti (cioè senza che necessariamente la (??) valga per tutte le possibili coppie), e al contrario che tre eventi siano due a due indipendenti ma non lo siano come terna, cioè non sussita la (??). Per convincercene consideriamo i seguenti esempi. Esempio. Consideriamo il lancio di un dado, e prendiamo in esame i tre eventi A uscita di un numero pari ; 7

8 B uscita di un numero 3 ; C uscita di un numero centrale (cioè 2,3,4,5) Ora se si rappresentano insiemisticamente, si trova A = {2, 4, 6}, B = {1, 2, 3} e C = {2, 3, 4, 5}. Pertanto A B C = {2}. Così si trovano le probabilità P (A B C) = 1 6, mentre P (A) = 1 2, P (B) = 1 2, P (C) = 4 6 = 2 3. Quindi 1 6 = P (A B C) = = P (A)P (B)P (C) 3 cioè vale la (??). Tuttavia ad esempio A e B non sono indipendenti, cioè la probabilità di avere un numero pari, sapendo che il numero uscito è minore o uguale a 3 non è più 1 in quanto sotto 2 a 3 c è un solo numero pari; in altre parole, poichè A B = {2} P (A B) = = P (A)P (B). 2 Invitiamo il lettore a calcolare tutte le possibili probabilità condizionate P (A B), P (B A), P (B C),... Esempio. Un paziente con crisi di cefalea ricorrente ha osservato la frequenza dell incorrere dell episodio patologico nei diversi giorni della settimana, pervenendo alla tabella seguente Nella routine settimanale il paziente esegue lunghi spostamenti in auto nei giorni di Lunedì, Martedì, Giovedì e Venerdì, svolge attività fisica nei giorni di Martedì, Mercoledì, Giovedì e Sabato, e si trova a lungo contatto con forti fumatori nei giorni di Giovedì, Venerdì, Sabato e Domenica. Le cause di insorgenza della cefalea stress da guida prolungata, attività fisica (= vasodilatazione) e fumo passivo sono due a due indipendenti, ma non lo è la terna nel complesso. Infatti, detti A, B, C gli eventi determinati dalle tre possibili cause elencate, la loro rappresentazione insiemistica è A = {L, Ma, G, V}, B = {Ma, Me, G, S}, C = { G, V, S, D}. Dunque, per il Teorema delle Probabilità totali si ha P (A) = = 1 10 P (B) = = P (C) = =

9 Ora risulta A B = {Ma, G}, A C = {G, V}, B C = {G, S} e quindi, sempre grazie al Teorema delle Probabilità totali P (A B) = = 1 = P (A)P (B) 50 P (B C) = = 3 = P (B)P (C) 50 P (A C) = = 3 = P (A)P (C) 100 ovvero i tre eventi sono due a due indipendenti. Tuttavia, poichè A B C = {G} risulta P (A B C) = mentre P (A)P (B)P (C) = = 3 e quindi non sussiste la (??) Il Teorema di Bayes Nella pratica quotidiana, la scelta o decisione dipende da una valutazione di probabilità. In questo contesto il quesito cruciale cui si vuole dare risposta è Se si è verificato l effetto E qual è la probabilità che a causarlo sia stato C? In altri termini ciò equivale a valutare una probabilità condizionata, e cioè P (C E). Se sappiamo valutare a priori la probabilità che l effetto E si realizzi in presenza della causa C, cioè conosciamo P (E C) oltre che la probabilità degli eventi P (E) e P (C), allora dalla definizione sappiamo che P (C E) P (C E) = P (E) e dal Teorema delle Probabilità composte si ricava P (C E) = P (E C)P (C). (7) P (E) Lo scopo di questo paragrafo e del Teorema di Bayes è estendere la formula (??) al caso di più cause mutuamente escludentisi. Avremo quindi una decomposizione dello spazio Ω in un numero finito di eventi C 1, C 2,..., C n due a due disgiunti, che rapresentano appunto le n cause che si escludono due a due, e avremo un evento E che rappresenta l esito di un esperimento, ovvero l effetto che osserviamo. Il Teorema di Bayes ci permetterà di valutare la plausibilità di una causa se si conoscono le singole probabilità P (E C 1 ),..., P (E C n ) oltre che P (C 1 ),..., P (C n ). Teorema di Bayes. Dati n eventi C 1, C 2,..., C n due a due disgiunti, e tali che ed un evento E, vale la formula C 1 C 2... C n = Ω P (C k E) = P (E C k )P (C k ) P (C 1 )P (E C 1 ) + P (C 2 )P (E C 2 ) P (C n )P (E C n ) (8) Dimostrazione. Fissato k tra i possibili valori 1, 2,..., n la (??) in questo caso è P (C k E) = P (E C k)p (C k ). (9) P (E) Vogliamo provare che i denominatori nei membri di destra delle (??) e (??) coincidono, vogliamo cioè provare che P (E) = P (C 1 )P (E C 1 ) + P (C 2 )P (E C 2 ) P (C n )P (E C n ). (10) 9

10 Osserviamo che dalle ipotesi utilizzando la proprietà distributiva dell intersezione, si ha E = E Ω = E (C 1 C 2... C n )(E C 1 ) (E C 2 )... (E C n ). (11) D altra parte gli n eventi E C 1,..., E C n sono due a due disgiunti, quindi si può fare uso del Teorema delle Probabilità totali, cioè P (E) = P (E C 1 ) + P (E C 2 ) P (E C n ). (12) Ora possiamo applicare il Teorema delle Probabilità composte a ciascuno degli addendi nella (??) cioè l uguaglianza P (E C k ) = P (E C k )P (C k ) per k = 1, 2,..., n e sostituendole nella (??) si ottiene la (??) e quindi si conclude la dimostrazione Vediamo ora due applicazioni Esempio. Un azienda produce pezzi di ricambio con due macchinari C 1 e C 2 : di essi C 1 produce il 60% del totale, mentre da C 2 proviene il restante 40%. L incidenza di pezzi difettosi è del 10 % dal primo macchinario e del 20% nel caso del secondo. Se un pezzo scelto a caso è privo di difetti, qual è la probabilità che provenga dal primo macchinario? Si tratta quindi di calcolare, detto E = pezzo privo di difetti, la probabilità condizionata P (C 1 E). Per applicare la formula di Bayes (in questo caso con n = 2) occorre osservare che P (C 1 ) = = 3 5 e P (C 2 ) = 2 5 mentre P (E C 1) è la probabilità di avere un pezzo non difettoso sapendo che il pezzo proviene dal primo macchinario; ora la probabilità che il pezzo sia difettoso nella stessa ipotesi è del 10%, quindi P (E C 1 ) = 9 10 e analogamente P (E C 2) = 4 5. Applicando ora la (??) troviamo P (C 1 E) = P (E C 1 )P (C 1 ) P (E C 1 )P (C 1 ) + P (E C 2 )P (C 2 ) = = Torniamo adesso ad occuparci del gioco di Monty Hall. Quando il conduttore apre una porta, non la apre a caso ma apre una porta sicuramente perdente. Questo dettaglio è fondamentale! (Anche se nella realtà è capitato più di una volta che Monty 10

11 Hall si sia sbagliato e abbia aperto la porta dietro cui si nascondeva la Ferrari!) Infatti è certo che almeno una delle due porte che non abbiamo scelto sia perdente, il fatto che questa ci venga mostrata è del tutto ininfluente...infatti, quando Monty Hall propone di cambiare la scelta ci sta di fatto proponendo di scambiare la porta che avevamo scelto con le DUE non scelte (con dietro ovviamente almeno una capra). E quindi strategicamente conveniente CAMBIARE! Proprio il Teorema di Bayes ci fornisce la risposta razionale del perché convenga cambiare. Supponiamo infatti di aver scelto la porta n. 1 e che Monty Hall ci mostri una capra dietro quella n. 2 (evento che denoteremo con C 2 ). Se denotiamo con F 1 l evento Ferrari dietro la porta 1 e con F 3 l evento Ferrari dietro la porta 3 quello che vogliamo calcolare sono le probabilità condizionate P (F 1 C 2 ) e P (F 3 C 2 ) ed effettuare la nostra decisione di conseguenza. Noi conosciamo Le singole probabilità dato che le tre porte sono equivalenti, quindi P (F 1 ) = P (F 3 ) = 1 3. Ragioniamo ora sulle probabilità condizionate P (C 2 F 1 ) e P (C 2 F 3 ). Per valutarle seguiamo il ragionamento di Monty Hall. Se dietro la porta che abbiamo scelto,la 1, c è la Perrari, per Monty Hall mostrarci la capra dietro la 2 o dietro la 3 è indifferente, quindi la probabilità in questo caso è P (C 2 F 1 ) = 1 2 mentre se la Ferrari sta dietro la porta n.3, una di quelle che non abbiamo scelto, certamente Monty Hall ci mostrerà la porta perdente, quindi P (C 2 F 3 ) = 1. Dunque se applichiamo la formula di Bayes alle due strategie, se manteniamo la scelta fatta avremo P (F 1 C 2 ) = mentre se cambiamo troveremo P (F 3 C 2 ) = P (C 2 F 1 )P (F 1 ) P (C 2 F 1 )P (F 1 ) + P (C 2 F 3 )P (F 3 ) = P (C 2 F 3 )P (F 3 ) P (C 2 F 1 )P (F 1 ) + P (C 2 F 3 )P (F 3 ) = = =

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO 9 PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO Il capitolo che sta per iniziare presenta alcuni argomenti dall aspetto un po arido. Tuttavia, nelle facoltà

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Rita Giuliano (Pisa) 0. Introduzione. È ormai acquisizione comune il fatto che uno

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

C.L. Tecniche della prevenzione nell ambiente e nei luoghi di lavoro Polo di Rieti. Calendario Lezioni 3 anno 2 Semestre - A.A.

C.L. Tecniche della prevenzione nell ambiente e nei luoghi di lavoro Polo di Rieti. Calendario Lezioni 3 anno 2 Semestre - A.A. I Settiman 2-6 Ore Lunedi 2 Martedi 3 Mercoledi 4 Giovedì 5 Venerdì 6 II 09-13 Ore Lunedì 9 Martedì 10 Mercoledì 11 Giovedì 12 Venerdì 13 III 16-20 Ore Lunedì 16 Martedì 17 Mercoledì 18 Giovedì 19 Venerdì

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi ommario Corso di tatistica Facoltà di Economia a.a. 2006-2007 2007 francesco mola L algebra degli eventi Diagrammi di Venn Teoremi fondamentali Probabilità Condizionata ed Indipendenza tocastica Lezione

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

2 Rappresentazioni grafiche

2 Rappresentazioni grafiche asi di matematica per la MPT 2 Rappresentazioni grafiche I numeri possono essere rappresentati utilizzando i seguenti metodi: la retta dei numeri; gli insiemi. 2.1 La retta numerica Domanda introduttiva

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Seconda Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

CALCOLO COMBINATORIO E PROBABILITA

CALCOLO COMBINATORIO E PROBABILITA CALCOLO COMBINATORIO E PROBABILITA Con calcolo combinatorio si indica quel settore della matematica che studia i possibili modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l obiettivo

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

SAMEV 24/10/2013 08.57 - Pagina 1. Lunedì 30/09 Martedì 01/10 Mercoledì 02/10 Giovedì 03/10 Venerdì 04/10 8h00

SAMEV 24/10/2013 08.57 - Pagina 1. Lunedì 30/09 Martedì 01/10 Mercoledì 02/10 Giovedì 03/10 Venerdì 04/10 8h00 SAMEV 24/10/2013 08.57 - Pagina 1 Scienze Forestali e Ambientali I liv. - 3 anno - dal 30 settembre al 04 ottobre 2013 Lunedì 30/09 Martedì 01/10 Mercoledì 02/10 Giovedì 03/10 Venerdì 04/10 Aula 9 Aula

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Norme per la preparazione di sentenze da pubblicarsi ne «IL FORO ITALIANO»

Norme per la preparazione di sentenze da pubblicarsi ne «IL FORO ITALIANO» Norme per la preparazione di sentenze da pubblicarsi ne «IL FORO ITALIANO» ROMA SOCIETÀ EDITRICE DEL «FORO ITALIANO» 1969 (2014) Norme per la preparazione di sentenze da pubblicarsi ne «IL FORO ITALIANO»

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli