Grandezze cinematiche angolari (1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Grandezze cinematiche angolari (1)"

Transcript

1 Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza (o un aco di ciconfeenza) di aggio a elocità costante (in modulo). y Si può osseae che: Il ettoe elocità istantanea, come detto pecedentemente, è tangente alla ciconfeenza (taiettoia pecosa dal punto). x Il ettoe posizione ha modulo sempe costante pai al aggio della ciconfeenza. FISICA CdL Tecnologie Agoalimentai

2 Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza (o un aco di ciconfeenza) di aggio a elocità costante (in modulo). y t 0 t t x Si può osseae che: Il ettoe elocità istantanea, come detto pecedentemente, è tangente alla ciconfeenza (taiettoia pecosa dal punto). Il ettoe posizione ha modulo sempe e costante pai al aggio della ciconfeenza. Il ettoe posizione uota anch esso alla medesima elocità del punto, aia la sua diezione (è otogonale alla elocotà). FISICA CdL Tecnologie Agoalimentai 3 Uniesità degli Studi di Toino D.E.I.A.F.A. Gandezze cinematiche angolai () Dal momento che il ettoe posizione imane sempe costante nel tempo mente aia la sua diezione, cioè l angolo ispetto all asse x, alloa è coneniente studiae il moto cicolae ifeendosi alla aiazione nel tempo di tale angolo. Siconsideiilmotodiunpuntomateialesu un aco di ciconfeenza ta i punti P e Q duante un ceto inteallo di tempo Δt. Duante questo moto il punto pecoe una P s distanza s pai alla lunghezza dell aco descitto, mente il ettoe spostamento uota di un angolo θ. Q La lunghezza s dell aco da P a Q ale: θ s ϑ con θ espesso in adianti. FISICA CdL Tecnologie Agoalimentai 4

3 Uniesità degli Studi di Toino D.E.I.A.F.A. Gandezze cinematiche angolai () Distanza angolae ta P e Q è l ampiezza dell angolo θ in adianti. ϑ Se si considea uno spostamento del punto mateiale su un aco di ciconfeenza molto piccolo, ossia il moto aiene in un inteallo di tempo Δt 0, alloa la distanza angolae si può sciee come: d ϑ s d s Velocità angolae è la aiazione della distanza angolae (ossia l angolo pecoso dal aggio ettoe) nel tempo. dϑ ad FISICA CdL Tecnologie Agoalimentai dt s P θ s Q 5 Uniesità degli Studi di Toino D.E.I.A.F.A. Gandezze cinematiche angolai (3) Le elazioni sino ad oa pesentate sono elatie al modulo della elocità angolae. Tattandosi di una elocità anche la elocità angolae è un ettoe occoe dunque definine la diezione ed il eso. La elocità angolae è un ettoe che ha diezione pependicolae al piano della ciconfeenza e eso dipendente dal senso di otazione. Rotazione in senso antioaio. Rotazione in senso oaio. FISICA CdL Tecnologie Agoalimentai 6 3

4 Uniesità degli Studi di Toino D.E.I.A.F.A. Gandezze cinematiche angolai (4) La elocità istantanea del punto duante moto lungo l aco di ciconfeenza (detta elocità tangenziale o peifeica) può essee scitta come: Siccome d ϑ d s d s dt alloa: P s dϑ dt ds dt θ Q FISICA CdL Tecnologie Agoalimentai 7 Uniesità degli Studi di Toino D.E.I.A.F.A. Acceleazione centipeta () Nel moto cicolae unifome il ettoe elocità pu aendo modulo costante cambia continuamente diezione duante il moto, dunque i è una aiazione di elocità nel tempo che implica l instauasi di una acceleazione. Pe definizione l acceleazione è espessa come: Δ f a Δ t Δ t 0 0 Quindi il ettoe acceleazione aà la stessa diezionei e lo stesso eso del ettoe Δ f 0 0 Δ 0 f P θ Q f FISICA CdL Tecnologie Agoalimentai 8 4

5 Uniesità degli Studi di Toino D.E.I.A.F.A. Acceleazione centipeta () Nel moto cicolae unifome il punto mateiale è soggetto ad una acceleazione (detta acceleazione centipeta) con modulo costante dietta eso il cento della ciconfeenza che definisce la taiettoia. Il modulo dell acceleazione centipeta ale: 0 a c P a c θ a c Q f FISICA CdL Tecnologie Agoalimentai 9 Uniesità degli Studi di Toino D.E.I.A.F.A. Legge oaia moto cicolae unifome Le gandezze cinematiche angolai sono state intodotte pe semplificae lo studio del moto cicolae: aiazione nel tempo della posizione angolae del aggio ettoe che indiidua il punto sulla ciconfeenza anziché aiazione nel tempo delle coodinate x ed y del medesimo. Lo studio del moto cicolae unifome aiene ifeendosi alle gandezze angolai. Nel moto cicolae unifome la elocità angolae è costante in modulo diezione e eso. Dunque la posizione angolae del punto mateiale aia lineamente nel tempo. ϑ ϑ 0 + t FISICA CdL Tecnologie Agoalimentai 0 5

6 Uniesità degli Studi di Toino D.E.I.A.F.A. Moto peiodico () Si dice che un punto mateiale pocede con moto peiodico se, pecoendo una ceta taiettoia, ad intealli di tempo egolai (T) si toa nella medesima posizione con la stessa elocità e la stessa acceleazione. Il moto cicolae unifome è un moto peiodico in quanto, pecoendo con elocità costante una ciconfeenza, ad intealli egolai di tempo (ossia ad ogni gio) il punto tona nella posizione iniziale. Peiodo è il tempo che intecoe ta due successii passaggi nella stessa posizione, ii ossia a pecoee un gio (essendo un tempo si misua in secondi). Siccome: π ϑ t π T T π FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Moto peiodico () Fequenza è l ineso del peiodo ed indica il numeo di peiodi nell unità di tempo (un secondo), ossia il numeo di gii al secondo. Da cui [ s ] [ Hz ] f T π π π f NB. Le definizioni di peiodo e fequenza sono alide pe qualunque moto peiodico (es. il moto di un pendolo) e non solo quello cicolae unifome. In un moto peiodico qualunque è detta fequenza angolae. FISICA CdL Tecnologie Agoalimentai 6

7 Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORMEMENTE ACCELERATO (UNIFORMEMENTE VARIO) FISICA CdL Tecnologie Agoalimentai 3 Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità Moto di un punto mateiale lungo una ciconfeenza (o un aco di ciconfeenza) di aggio con acceleazione tangenziale costante (in modulo). y Si può osseae che: a c Il ettoe elocità tangenziale, tangente a alla ciconfeenza (taiettoia pecosa t dal punto), aia in modulo. Se aia la elocità tangenziale aia x anchelaelocitàangolae. Si ha un acceleazione angolae legata all acceleazione tangenziale e iceesa. Seaialaelocitàangolaeaiaanche il modulo dell acceleazione centipeta FISICA CdL Tecnologie Agoalimentai 4 7

8 Uniesità degli Studi di Toino D.E.I.A.F.A. Acceleazione angolae () In modo del tutto analogo a quanto isto pe il moto ettilineo si definiscono: Acceleazione angolae media: Acceleazione angolae istantanea: Δ γ m Δt t f 0 f t 0 Δ d γ lim Δ t 0 Δt dt Legame ta acceleazione (istantanea) angolae e peifeica: d at d ( ) dt at dt d γ a dt t γ FISICA CdL Tecnologie Agoalimentai 5 Uniesità degli Studi di Toino D.E.I.A.F.A. Acceleazione angolae () Il ettoe acceleazione angolae aà la stessa diezione del ettoe elocità angolae, mente il suo eso detemineà se i è una acceleazione o una deceleazione: Vesi concodi aumento di elocità angolae (acceleazione) Vesi opposti diminuzione di elocità angolae (deceleazione) Esempio: Rotazione in senso antioaio. γ a c a t γ a c a t FISICA CdL Tecnologie Agoalimentai 6 8

9 Uniesità degli Studi di Toino D.E.I.A.F.A. Equazioni cinematiche del moto cicolae unifomemente acceleato ϑ ϑ γ t t + γ γ t ( ϑ ϑ ) 0 Velocità angolae in funzione del tempo Legge oaia (angolo funz. del tempo) Velocità angolae in funzione dello spostamento angolae ATTENZIONE!!! Se l acceleazione è opposta al ettoe elocità angolae, isulta essee negatia. FISICA CdL Tecnologie Agoalimentai 7 Uniesità degli Studi di Toino D.E.I.A.F.A. SISTEMI DI TRASMISSIONE DEL MOTO (Cicolae) FISICA CdL Tecnologie Agoalimentai 8 9

10 Uniesità degli Studi di Toino D.E.I.A.F.A. Sistemi di tasmissione del moto Una pate consistente di sistemi di tasmissione del moto si basano sul moto cicolae, i più comuni sono: Cinghie e pulegge Ruote dentate Albei Catene Sistemi a fluido (pompe e motoi idaulici) I pimi due sistemi isultano essee i più semplici dal punto di ista dello studio fisico. FISICA CdL Tecnologie Agoalimentai 9 Uniesità degli Studi di Toino D.E.I.A.F.A. Sistemi a cinghia () Puleggia motice Cinghia ideale: inestensibile (non c è slittamento ta le pulegge) e pia di massa. Le due elocità peifeiche sono uguali: t t FISICA CdL Tecnologie Agoalimentai 0 0

11 Uniesità degli Studi di Toino D.E.I.A.F.A. Sistemi a cinghia (3) Puleggia motice Calcolo di : t t La elocità peifeica della puleggia motice ale: t t t FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Sistemi a cinghia (3) Puleggia motice Quindi: Se > Se < < < FISICA CdL Tecnologie Agoalimentai > > Rappoto di iduzione

12 Uniesità degli Studi di Toino D.E.I.A.F.A. Sistemi a uote dentate Ruota motice t t Anche in questo caso t t Peò il senso di otazione delle due uote è opposto FISICA CdL Tecnologie Agoalimentai 3 Uniesità degli Studi di Toino D.E.I.A.F.A. Esempio: laatice Il cestello di una laatice, duante la fase di centifuga, uota ad una elocità di 600 min -, deteminae la elocità angolae del motoe sapendo che la puleggia del cestello ha diameto 30 cm, mente quella del motoe 5 mm. Deteminae, inolte, l acceleazione centipeta a cui è soggetto un paio di calzini adagiato nel cestello sapendo che il diameto è di 70 cm. FISICA CdL Tecnologie Agoalimentai 4

Il moto circolare uniforme

Il moto circolare uniforme Il moto cicolae unifome Il moto cicolae unifome: peiodo e fequenza Un copo che i muoe lungo una taiettoia cicolae con elocità calae cotante ipaa pe la poizione iniziale a intealli fii di tempo. Definiamo

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione Biomeccanica Cinematica Dinamica Statica dei copi igidi Enegia e pincipi di consevazione Posizione: definita da : z modulo, diezione, veso vettoe s s z s s y unità di misua (S.I.) : meto x s x y Taiettoia:

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

5. CAMBIO. 5.1. descrizione

5. CAMBIO. 5.1. descrizione ambio powe - shift 5. AMBIO 5.. descizione Tattasi di cambio meccanico a te velocità avanti e te velocità indieto, ealizzate mediante cinque iduttoi epicicloidali vaiamente collegati ta loo. Tutte le cinque

Dettagli

Gravitazione Universale

Gravitazione Universale Gavitazione Univesale Liceo Ginnasio Statale S.M. Legnani Anno Scolastico 2007/08 Classe 3B IndiizzoClassico Pof.Robeto Squellati 1 Le leggi di Kepleo Ossevando la posizione di Mate ispetto alle alte stelle,

Dettagli

Il formalismo vettoriale della cinematica rotazionale

Il formalismo vettoriale della cinematica rotazionale Il fomalismo ettoiale della cinematica otaionale Le elaioni della cinematica otaionale assumono una foma semplice ed elegante, se sono iscitte in foma ettoiale. E questo l agomento dei paagafi che seguono.

Dettagli

Le Trasmissioni Meccaniche

Le Trasmissioni Meccaniche Le Tasmissioni Meccaniche Gli inganaggi sono componenti meccanici utilizzati nelle tasmissioni. Una tasmissione meccanica è un meccanismo destinato a tasmettee potenza da un motoe pimo ad una macchina

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE Teoia delle onde EM e popagazione (B. Peite) mecoledì 8 febbaio 1 Coso di Compatibilità Elettomagnetica 1 Indice degli agomenti Fenomeni ondulatoi La matematica dell onda La legge

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Politecnico di Milano. Dipartimento di Fisica. G. Valentini. Meccanica

Politecnico di Milano. Dipartimento di Fisica. G. Valentini. Meccanica Politecnico di Milano Dipatimento di Fisica G. Valentini Meccanica I INDICE LA FISICA ED IL METODO SPERIMENTALE. INTRODUZIONE. IL METODO SPERIMENTALE GRANDEZZE FISICHE ED INDICI DI STATO 4. DEFINIZIONE

Dettagli

Cariche in campo magnetico: Forza magnetica

Cariche in campo magnetico: Forza magnetica Lezione 18 Campo magnetico I Stoicamente, i geci sapevano che avvicinando un pezzo di magnetite a della limatua di feo questa lo attaeva. La magnetite ea il pimo esempio noto di magnete pemanente. Come

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

Polo Universitario della Spezia G. Marconi

Polo Universitario della Spezia G. Marconi Nicolò Beveini Appunti di Fisica pe il Coso di lauea in Infomatica Applicata Polo Univesitaio della Spezia G. Maconi Nicolò Beveini Appunti di fisica Indice 1. La misua delle gandezze fisiche... 4 1.1

Dettagli

Potenziale elettrico per una carica puntiforme isolata

Potenziale elettrico per una carica puntiforme isolata Potenziale elettico pe una caica puntifome isolata Consideiamo una caica puntifome positiva. Il campo elettico geneato da uesta caica è: Diffeenza di potenziale elettico ta il punto ed il punto B: B ds

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

FISICA DELLA BICICLETTA

FISICA DELLA BICICLETTA FISICA DELLA BICICLETTA Con immagini scelte dalla 3 SB PREMESSA: LEGGI FISICHE Velocità periferica (tangenziale) del moto circolare uniforme : v = 2πr / T = 2πrf Velocità angolare: ω = θ / t ; per un giro

Dettagli

CAPITOLO 10 La domanda aggregata I: il modello IS-LM

CAPITOLO 10 La domanda aggregata I: il modello IS-LM CAPITOLO 10 La domanda aggegata I: il modello IS-LM Domande di ipasso 1. La coce keynesiana ci dice che la politica fiscale ha un effetto moltiplicato sul eddito. Infatti, secondo la funzione di consumo,

Dettagli

Legge di Coulomb e campo elettrostatico

Legge di Coulomb e campo elettrostatico A. hiodoni esecizi di Fisica II Legge di oulomb e campo elettostatico Esecizio Te caiche positive uguali sono fisse nei vetici di un tiangolo euilateo di lato l. alcolae (a) la foza elettica agente su

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

4 IL CAMPO MAGNETICO STATICO

4 IL CAMPO MAGNETICO STATICO 4 IL CAMPO MAGNETICO STATICO Analogamente al caso dei fenomeni elettici anche i fenomeni magnetici eano noti sin dagli antichi geci i quali denominaono il mineale poveniente dalla egione di in Macedonia

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

C.I. FISICA APPLICATA Modulo di FISICA MEDICA

C.I. FISICA APPLICATA Modulo di FISICA MEDICA UNIVERSITÀ POLITECNICA DELLE MARCHE FACOLTÀDI DI MEDICINA E CHIRURGIA C.L.S. Odontoiatia e Potesi Dentaia C.I. FISICA APPLICATA Modulo di FISICA MEDICA A.A. 006/07 D. Fabizio Fioi D. Fabizio FIORI Dipatimento

Dettagli

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al

Dettagli

V. SEPARAZIONE DELLE VARIABILI

V. SEPARAZIONE DELLE VARIABILI V SEPARAZIONE DEE VARIABII 1 Tasfomazioni Otogonali Sia u = u 1, u 2, u 3 una tasfomazione delle vaiabili in R 3, dove x = x 1, x 2, x 3 sono le coodinate catesiane, u j = u j x 1, x 2, x 3 j = 1, 2, 3

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA CINEMAICA DEL MOO OAOIO DI UNA PAICELLA MOO CICOLAE: VELOCIA ANGOLAE ED ACCELEAZIONE ANGOLAE Si considei un pticell P in moto cicole che descive un co di ciconfeenz s. L ngolo di otzione ispetto d un sse

Dettagli

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ingegneia Poa in Itinee di Fisica I (a. a. 004-005) 6 Noebe 004 COPITO C Esecizio n. 1 Un copo di assa è appoggiato su di un piano oizzontale scabo, con coefficiente di attito dinaico µ d. Coe

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

GEOMETRIA 3D MODELLO PINHOLE

GEOMETRIA 3D MODELLO PINHOLE http://imagelab.ing.unimo.it Dispense del coso di Elaboazione di Immagini e Audio Digitali GEOMETRIA 3D MODELLO PINHOLE Pof. Robeto Vezzani Calibazione della telecamea: a cosa seve? Obiettivo: pote calcolae

Dettagli

6 INDUZIONE ELETTROMAGNETICA

6 INDUZIONE ELETTROMAGNETICA 6 INDUZIONE ELETTOMAGNETIA Patendo dall ipotesi di simmetia dei fenomeni natuali pe cui se una coente esecita un influenza su di una calamita così una calamita deve pote modificae lo stato di una coente

Dettagli

III. INTRODUZIONE ALL'ASTRODINAMICA

III. INTRODUZIONE ALL'ASTRODINAMICA III. INTRODUZIONE ALL'ASTRODINAMICA III.1. Obite kepleiane III.1.1. Equazioni del moto La Tabella III.1.1 elenca e definisce i paameti fondamentali dell'obita ellittica schematizzata in Figua III.1.1.

Dettagli

Gravitazione universale

Gravitazione universale INGEGNERIA GESTIONALE coso di Fisica Geneale Pof. E. Puddu LEZIONE DEL 22 OTTOBRE 2008 Gavitazione univesale 1 Legge della gavitazione univesale di Newton Ogni paticella attae ogni alta paticella con una

Dettagli

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi FI.CO. 2 ( Fisica Compensibile pe geologi) Pogamma di Fisica 2 - (v 5.0-2002)...sempe più fico! A.J. 2000 Adiano Nadi La fisica dovebbe essee una scienza esatta. Questo papio non può gaantie la totale

Dettagli

Sorgenti del campo magnetico.

Sorgenti del campo magnetico. Sogenti del campo magnetico. n Campo magnetico podotto da una coente n ima legge elementae di Laplace n Legame campo elettico e magnetico Campo magnetico podotto da una coente n ima legge elementae di

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II)

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II) isica Geneale A 9. oze Ineziali http://campus.cib.unibo.it/2429/ ctobe 21, 2010 ambiamento di istema di ifeimento ome cambia la descizione del moto passando da un d a un alto? In paticolae, come cambia

Dettagli

OP = OP(t) =x(t)^i+y(t)^j. : v =_s^t r ^n

OP = OP(t) =x(t)^i+y(t)^j. : v =_s^t r ^n MOTI PIANI Per moto piano si intende un moto la cui traiettoria e contenuta in un piano detto piano del moto. Se si sceglie un sistema di riferimento con due assi sul piano del moto, le equazioni del moto

Dettagli

v t V o cos t Re r v t

v t V o cos t Re r v t Metodo Simbolico, o metodo dei Fasoi Questo metodo applicato a eti lineai pemanenti consente di deteminae la soluzione in egime sinusoidale solamente pe quanto attiene il egime stazionaio. idea di appesentae

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE PTNZIL LTTRIC D NRGI PTNZIL Ba. Una caica elettica q mc si tova nell oigine di un asse mente una caica negativa q 4 mc si tova nel punto di ascissa m. Sia Q il punto dell asse dove il campo elettico si

Dettagli

Esame di COSTRUZIONE DI MACCHINE L5 PROGETTAZIONE MECCANICA I L3. Appello del 04.03.2004

Esame di COSTRUZIONE DI MACCHINE L5 PROGETTAZIONE MECCANICA I L3. Appello del 04.03.2004 Esame di COSTRUZOE D MACCHE L5 PROGETTAZOE MECCACA L Appello del 0.0.00 La figua mosta le uote dentate e gli albei di un iduttoe. Dati: Coppia in ingesso C 60 m Velocità albeo di ingesso n 50 pm Mateiale

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio Come possiamo deteminae la lunghezza di una ciconfeenza di aggio? Poviamo a consideae i poligoni egolai inscitti e cicoscitti alla ciconfeenza: è chiao che la lunghezza della ciconfeenza è maggioe del

Dettagli

Francesca Sanna-Randaccio Lezione 8. SCELTA INTERTEMPORALE (continua)

Francesca Sanna-Randaccio Lezione 8. SCELTA INTERTEMPORALE (continua) Fancesca Sanna-Randaccio Lezione 8 SELTA INTERTEMPORALE (continua Valoe attuale nel caso di più peiodi Valoe di un titolo di cedito Obbligazioni Obbligazioni emesse dalla Stato. Relazione ta deficit e

Dettagli

5.1 Determinazione delle distanze dei corpi del Sistema Solare

5.1 Determinazione delle distanze dei corpi del Sistema Solare 5.1 Deteminazione delle distanze dei copi del istema olae 5.1.1 Distanza ea-pianeti aallassi equatoiali Questo è il metodo più peciso ma anche quello più delicato da eseguie. Esso si basa sul fatto che

Dettagli

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini A.A. 015 016 Mauizio Piccinini Fisica Geneale A Gavitazione univesale Scuola di Ineneia e Achitettua UNIBO Cesena Anno Accademico 015 016 A.A. 015 016 Mauizio Piccinini Gavitazione Univesale 1500 10 0

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio. LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec

Dettagli

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica IL CALCOLO FINANZIARIARIO You do not eally undestand something unless you can explain it to you gandmothe (A.Einstein) Calcolo finanziaio Intoduzione Economia dell impesa foestale: Bilancio Pianificazione

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

E1.2 Velocità della luce in un cavo coassiale

E1.2 Velocità della luce in un cavo coassiale E1.2 Velocità della luce in un cavo coassiale Obiettivo Misuae la velocità di popagazione di un segnale elettomagnetico (velocità della luce) in un cavo coassiale. Mateiali e stumenti Un cavo coassiale

Dettagli

Campo magnetico: fatti sperimentali

Campo magnetico: fatti sperimentali Campo magnetico: fatti speimentali Le popietà qualitative dei magneti e la pesenza di un campo magnetico teeste eano conosciute da tempo, ma le pime misue quantitative e le teoie e gli espeimenti pe deteminane

Dettagli

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale:

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale: Facoltà di Ingegneia Pova Scitta di Fisica I - Luglio 005 Quesito n. Dalla soità di uno scivolo, liscio, descitto in figua, viene fatto patie, a quota e da feo, un copo puntifoe di assa. aggiunto il fondo

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

Fig. 1. ove v è la velocità raggiunta dal punto alla quota h e g è l accelerazione di gravità:

Fig. 1. ove v è la velocità raggiunta dal punto alla quota h e g è l accelerazione di gravità: PECHE, DI DUE CICLISTI CHE PECOONO LA MEDESIMA DISCESA SENZA PEDALAE E CON BICICLETTE UGUALI, E PIU VELOCE QUELLO CHE PESA DI PIU, IN APPAENTE CONTADDIZIONE COL FATTO CHE L ACCELEAZIONE DI GAVITA E UGUALE

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

FAST FOURIER TRASFORM-FFT

FAST FOURIER TRASFORM-FFT A p p e n d i c e B FAST FOURIER TRASFORM-FFT La tasfomata disceta di Fouie svolge un uolo molto impotante nello studio, nell analisi e nell implementazione di algoitmi dei segnali in tempo disceto. Come

Dettagli

Capitolo I La radiazione solare

Capitolo I La radiazione solare W. Gassi Temoenegetica e Rispamio Enegetico in Edilizia Cap. La adiazione solae - Capitolo La adiazione solae - Genealità Lo spetto di emissione solae (exta atmosfeico) è itenuto equivalente a quello di

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO DI COPPIA PER MOTORI ASINCRONI

REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO DI COPPIA PER MOTORI ASINCRONI UNIVERSITÀ DEGLI STUDI DI PARMA DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Dottoato di Riceca in Tecnologie dell Infomazione XXIV Ciclo Andea Rossi REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

Classificazione delle linee di trasmissione

Classificazione delle linee di trasmissione Classificazione delle linee di tasmissione Linee TEM (Tansvese Electic Magnetic) Coassiale Bifilae (doppino) Stipline Linee quasi_tem Micostip Linee a due conduttoi con mezzo non unifome Linee non-tem

Dettagli

Il Problema di Keplero

Il Problema di Keplero Il Poblema di Kepleo Il poblema di Kepleo nel campo gavitazionale Intoduzione Con Poblema di Kepleo viene indicato il poblema del moto di un copo in un campo di foze centali. Nel caso specifico gavitazionale

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

Valore finanziario del tempo

Valore finanziario del tempo Finanza Aziendale Analisi e valutazioni pe le decisioni aziendali Valoe finanziaio del tempo Capitolo 3 Indice degli agomenti. Concetto di valoe finanziaio del tempo 2. Attualizzazione di flussi futui

Dettagli

Università degli Studi della Tuscia di Viterbo Dipartimento di ecologia e sviluppo economico sostenibile Facoltà di Agraria

Università degli Studi della Tuscia di Viterbo Dipartimento di ecologia e sviluppo economico sostenibile Facoltà di Agraria Univesità degli Studi della Tuscia di Vitebo Dipatimento di ecologia e sviluppo economico sostenibile Facoltà di Agaia Univesità degli Studi della Tuscia Dottoato di Riceca in Scienze Ambientali XIX Ciclo

Dettagli

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli