Teoria dei Giochi. Anna Torre
|
|
- Annibale Paoli
- 2 anni fa
- Visualizzazioni
Transcript
1 Teoria dei Giochi Anna Torre Almo Collegio Borromeo 3 marzo sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html
2 MODALITÀ DI ESAME È previsto un appello alla fine del corso: scritto per chi ha diritto a 3 crediti, scritto e orale chi ha diritto a più crediti; Un altro appello in giugno; In seguito mi dovete contattare per
3 UN PO DI STORIA Von Neumann, Morgenstern Theory of Games and Economic Behavior (Princeton, 1944); Ernst Zermelo (1912 congresso di Cambridge),
4 UN PO DI STORIA Dalla fine del settecento c era il progetto di estendere ad altri campi del sapere il metodo matematico che aveva rivoluzionato lo studio della fisica usando un modello molto simile a quello della fisica matematica (vedi Elements of Pure Economics di Walras 1874); von Neumann e Morgenstern (1944) presentano una critica radicale alla teoria walrasiana dell equilibrio economico generale, rea, secondo gli autori, di non tenere in considerazione l influsso che le interazioni con gli altri individui hanno sulle decisioni di ogni singolo individuo.
5 UN PO DI STORIA Il libro di von Neumann e Morgenstern è il primo a proporre questo programma in maniera sistematica e in relazione allo studio delle scienze sociali; La vera rivoluzione non è usare i metodi matematici utili per lo studio della fisica applicandoli all economia, ma costruire una matematica nuova, che fornisca uno strumento adatto allo studio di questi argomenti: la teoria dei giochi.
6 DI COSA SI OCCUPA LA TDG La TdG o Teoria delle decisioni interattive si occupa delle situazioni in cui nel processo decisionale: interviene più di un decisore, ogni decisore detiene solo un controllo parziale, i decisori hanno preferenze non necessariamente uguali sugli esiti.
7 ASSUNZIONI Si assume solitamente (almeno all inizio) che i decisori: conoscano la situazione di interazione (conoscenza comune), possano scegliere tra diversi corsi d azione, siano intelligenti (molto intelligenti e senza limiti alle loro capacità di calcolo o deduzione).
8 APPLICAZIONI Oggi la teoria dei giochi ha moltissimi variegati campi di applicazione. Alcuni esempi: La prima applicazione è ovviamente l economia(la teoria è nata sostanzialmente per questo) Il problema di scegliere adeguati meccanismi d asta; La Teoria dei giochi evolutivi che ha una buona capacità di comprendere comportamenti animali; In Microbiologia: lo studio della rilevanza di alcuni geni nella insorgenza di specifiche malattie; In Medicina: come organizzare un sistema di scambi di reni (cross-over) per i trapianti. Nel 2012 il premio Nobel per l economia è stato assegnato a Lloyd Shapley e Alvin Roth e una delle motivazioni è proprio questa.
9 Perché è importante conoscere le preferenze dei giocatori quando si descrive un gioco? Per stabilire quali sono i nostri obiettivi nel giocare dobbiamo sapere quantificare gli esiti del gioco. Un giocatore potrebbe anche desiderare la sconfitta se il suo obiettivo è far felice l avversario, o desiderare il pareggio se è un perfetto egualitario. Se per qualcuno fare del bene è soddisfacente, questo è ciò che guida le sue azioni e deve essere implicito nella sua funzione di utilità. Non importa quali sono gli obiettivi. Ciò che importa è soltanto che siano quantificabili.
10 PREFERENZE il termine intelligenza si riferisce alla capacità di analisi della situazione e alla capacità illimitata di calcolo degli individui che partecipano al gioco: essi sono in grado di massimizzare la propria utilità rispetto ai vincoli imposti dal gioco. Il termine razionalità in teoria dei giochi si riferisce alla proprietà transitiva nell insieme delle preferenze: se un decisore preferisce una mela a una pera e una pera a una arancia deve preferire la mela all arancia.
11 PREFERENZE Perché tanta importanza alla transitività delle preferenze? Supponiamo di incontrare un decisore con preferenze non transitive. P=pera, M=mela, A= arancia Sia poi disponibile R + denaro e il decisore abbia preferenze di questo tipo: (0, M) (0, P) (0, A) (0, M) mentre per quanto riguarda il denaro le preferenze siano standard: maggiore è il denaro meglio è.
12 PREFERENZE Supponiamo anche che (0, M) (0, P) ( ε, M) (0, P) (0, P) (0, A) ( ε, P) (0, A) (0, A) (0, M) ( ε, A) (0, M) per ε piccolo. In presenza di un tale decisore se ci si possono procurare una pera, un arancia e una mela ci si può arricchire.
13 PREFERENZE Si regala la pera al decisore e poi gli si propongono scambi: M P e si guadagna ε e si resta con P, A A M e si guadagna ε e si resta con P, M P A e si guadagna ε e si resta con M, A M P e si guadagna ε e si resta con P, A Dopo n passaggi di questo tipo abbiamo intascato nε
14 PREFERENZE Il problema delle preferenze sugli esiti induce una riflessione sulla cosidetta teoria dell utilità. Secondo l economia politica classica (Smith, Ricardo, Marx), l utilità (valore) coincide con una proprietà fisica dei beni. In una seconda fase (a partire da Bentham) l utilità è intesa come una caratteristica intrinseca dei soggetti, ne misura in qualche modo il benessere o la soddisfazione in relazione a certi consumi: l utilità è una funzione definita sull insieme dei beni (o degli esiti del gioco).
15 PREFERENZE Ma come quantificare l utilità? La cosa più ragionevole è pensare all utilità come a una relazione definita sull insieme E delle possibili alternative con le proprietà: riflessiva: x x per ogni x che appartiene a E transitiva: x y e y z = x z per ogni x y z che appartengono a E totale: per ogni x, y appartenenti ad E o x y o y x Questo tipo di utilità si dice utilità ORDINALE
16 PREFERENZE Preferenze ordinali o cardinali? Si parla di funzione di utilità. Ogni individuo ha una sua funzione di utilità u sull insieme dei beni. che soddisfa la proprietà x y u(x) u(y)
17 Sotto opportune ipotesi u esiste ma non è unica: se u rappresenta un preordine anche tutte le funzioni che si ottengono applicando una trasformazione strettamente crescente a u rappresentano.
18 GIOCHI Una prima distinzione nell ambito della teoria dei giochi è data dal contesto istituzionale nel quale ci si muove: Si parla di giochi cooperativi se sono ammessi accordi vincolanti; Si parla di giochi non cooperativi se non sono ammessi accordi vincolanti. Questa distinzione non implica che nei giochi cooperativi siano presenti atteggiamenti più altruistici: le eventuali scelte altruistiche sono già nel modello e vengono rappresentate dalle funzioni di utilità dei singoli.
19 GIOCHI La TdG nasce" nel 1944 con l intento di approntare nuovi strumenti matematici con i quali affrontare l analisi dei fenomeni economici e sociali. Dopo periodi di alterna fortuna il progetto di Von Neumann e Morgenstern si sta realizzando. Naturalmente non si ha una matematizzazione completa e soddisfacente dei fenomeni sociali, ma la Teoria dei giochi è uno strumento efficace ed importante per la loro analisi. La TdG non è in grado di fornire risposte nette e ricette semplici tranne in casi molto particolari: non è semplice stabilire quali sono i giusti" concetti di soluzione applicabili ai vari contesti interattivi. Si deve soprattutto a von Neumann l idea di analizzare i giochi cooperativi, mentre è Nash che ha dato impulso alla teoria non cooperativa.
20 In realtà i giochi in senso letterale (scacchi, carte, backgammon, etc...) vengono usati come palestre per imparare a modellizzare interazioni economiche e sociali, qualcosa di analogo a quanto accade per i cosidetti giochi d azzardo in relazione alla probabilità. Osserviamo che un cosidetto gioco contro il caso (per esempio il lotto o la roulette) in cui c è un solo giocatore che gioca contro la sorte non è un gioco (o meglio è un gioco degenere) nel senso della teoria dei giochi. Per esserci un gioco vero devono esserci almeno due individui razionali che interagiscono.
21 COME DESCRIVERE UN GIOCO Una importante classificazione che occorre fare nel contesto dei giochi discende dalla risposta alla seguente domanda: Vi è oppure no per i giocatori la possibilità di sottoscrivere accordi vincolanti? in presenza di questa possibilità si parla di giochi cooperativi, in caso contrario si parla di giochi non cooperativi. Parleremo di giochi non cooperativi a due giocatori.
22 Giochi non cooperativi Due modalità rappresentative: la forma estesa la forma normale o strategica. Un gioco è in forma estesa quando la descrizione è fatta mossa per mossa fino ad arrivare a presentare tutte le situazioni finali, ciascuna esito univoco di una data serie di mosse. La forma normale (o strategica) invece precisa le strategie. Le strategie in questa descrizione sono un dato del problema, mentre nella forma estesa il dato sono le mosse, ed un compito di chi analizza il gioco è proprio quello di dedurre da queste le strategie di ogni giocatore.
23 Giochi non cooperativi Un ulteriore distinzione è quella fra giochi ad Informazione completa e giochi ad Informazione incompleta. In un gioco a Informazione completa le regole del gioco e le funzioni di utilità di tutti i giocatori sono conoscenza comune dei giocatori. L ipotesi di informazione incompleta porta a una teoria più sofisticata ma anche più soddisfacente, proprio in quanto più aderente alla realtà. Noi però per il momento ci occuperemo di giochi a informazione completa.
24 Forma estesa La forma estesa consiste in una descrizione dettagliata di tutte le possibili partite. È stata introdotta da von Neumann e Morgenstern (1944) e formalizzata da Kuhn (1953)
25 IL GIOCO DELL OTTO Si gioca in due. Il primo giocatore può scegliere di giocare 2 o 3. Successivamente il secondo giocatore fa la stessa cosa. I numeri giocati vengono sommati. E così via a turno, ma è vietato fare una mossa che porti ad un totale superiore ad 8. Vince chi fa in modo che la somma dei numeri giocati sia 8.
26 La GAME FORM DEL GIOCO DELL OTTO (IN FORMA ESTESA ) I 2 3 II II I I 3 I I II 2 pari pari vince 1 pari vince 1 vince 1 vince 2
27 IL GIOCO DELL OTTO (IN FORMA ESTESA ) con le utilità standard per i giocatori II I 2 II 2 3 I I II 2 3 I I
28 INDUZIONE A RITROSO II I 2 II 2 3 I I II 2 3 I I
29 GIOCO DEL PALLONE O FIDANZATA/O Abbiamo un appuntamento con la fidanzata/o alle ore 18. Alle ore 16 ci telefona un amico perché manca un giocatore per la partita di calcetto. Noi abbiamo due possibilità: a) dirgli di no perché abbiamo appuntamento con la fidanzata; b) dirgli di síe arrivare in ritardo all appuntamento. La fidanzata a questo punto potrebbe o andarsene o aspettarci. Il nostro ordine di preferenze è: 1. giocare a calcetto e incontrarci un po in ritardo con la fidanzata (1); 2. incontrarci con la fidanzata rinunciando al calcetto (0); 3. giocare a calcetto e perdere l appuntamento ( 1). L ordine di preferenza della fidanzata è: 1. che noi arriviamo in tempo all appuntamento (1); 2. aspettarci perché siamo in ritardo (0); 3. andarsene perché siamo in ritardo ( 1).
30 FORMA ESTESA I C II A NA NC II 0K 0 1
31 UN ALTRO GIOCO IN FORMA ESTESA I A B II II x y w z
32 UN ALTRO GIOCO IN FORMA ESTESA x 1 1 I A C B II II II y j k w z I I D E 1 0 F G
33 ESERCIZIO:FIAMMIFERI Ci sono due mucchietti di due fiammiferi ciascuno. Due giocatori a turno levano un certo numero (strettamente positivo) di fiammiferi tutti dallo stesso mucchio. Chi toglie l ultimo fiammifero perde. Costruire l albero.
Teoria dei Giochi. Anna Torre. Almo Collegio Borromeo 6 marzo 2012
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 6 marzo 2012 UN PO DI STORIA UN PO DI STORIA Von Neumann, Morgenstern Theory of Games and Economic Behavior (Princeton, 1944); UN PO DI STORIA Von Neumann,
Teoria dei Giochi. Anna Torre
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,
Teoria dei Giochi non Cooperativi
Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare
Teoria dei Giochi. Anna Torre. Almo Collegio Borromeo 2 marzo A. Torre Caso, intelligenza e decisioni razionali
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 2 marzo 2010 UN PO DI STORIA UN PO DI STORIA La teoria dei giochi è una disciplina matematica molto recente. La sua nascita viene convenzionalmente fissata
Teoria dei Giochi. Anna Torre
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 5 marzo 25 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo25.html MODALITÀ DI ESAME È previsto un appello alla fine
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE. Dispense :
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dispense : http://www-dimat.unipv.it/atorre/lez1.pdf Dipartimento di Matematica, Università di Pavia, Via Ferrata 1,
Teoria dei Giochi. Anna Torre
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 9 marzo 2010 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2010.html TEOREMI DI ESISTENZA TEOREMI DI ESISTENZA Teorema
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE 1 1 INTRODUZIONE La teoria dei giochi è una disciplina matematica molto recente. La sua nascita viene convenzionalmente
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE. Dispense :
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dispense : http://www-dimat.unipv.it/atorre/lez1.pdf Dipartimento di Matematica, Università di Pavia, Via Ferrata 1,
Teoria dei Giochi. Anna Torre
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 26 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html COOPERAZIONE Esempio: strategie correlate e problema
TEORIA DELL UTILITÀ E DECISION PROCESS
TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge
Una breve introduzione alla Teoria dei Giochi
Una breve introduzione alla Teoria Stefano GAGLIARDO Dipartimento di Matematica - Università degli studi di Genova Stage DIMA - 19/04/2011 (DIMA, UNIGE) 19/04/2011 1 / 74 Outline 1 Un po di storia 2 La
Laboratorio di dinamiche socio-economiche
Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE 1 1 INTRODUZIONE La teoria dei giochi è una disciplina matematica molto recente. La sua nascita viene convenzionalmente
TEORIA DEI GIOCHI Parte 2 Matematica nella realtà Università Bocconi
TEORIA DEI GIOCHI Parte 2 Matematica nella realtà Università Bocconi Roberto Lucchetti - Politecnico di Milano 17 Dicembre 2010 Giochi in forma estesa, fino a Zermelo Un modo matematico per descrivere
Teoria dei Giochi. Teoria dei Giochi
Teoria dei Giochi E uno strumento decisionale, utile per operare previsioni sul risultato quando un decisore deve operare in concorrenza con altri decisori. L ipotesi principale su cui si basa la TdG è
Corso di Politica Economica
Corso di Politica Economica Lezione 10: Introduzione alla Teoria dei Giochi David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica
TEORIA DEI GIOCHI Parte 1. Roberto Lucchetti - Politecnico di Milano
TEORIA DEI GIOCHI Parte 1 Matematica nella realtà Università Bocconi Roberto Lucchetti - Politecnico di Milano 10 Dicembre 2010 Che significa teoria dei giochi? Gioco: Due o più individui partono da una
Scelte in condizione di incertezza
Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo
Decisioni in condizioni di rischio. Roberto Cordone
Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di
Intelligenza Artificiale
Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi
1 Giochi a due, con informazione perfetta e somma zero
1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una
Caso, intelligenza e decisioni razionali
Caso, intelligenza e decisioni razionali Anna Torre San Pellegrino Terme 8 settembre 2009 UN PO DI STORIA UN PO DI STORIA La teoria dei giochi è una disciplina matematica molto recente. La sua nascita
I mercati assicurativi
I mercati NB: Questi lucidi presentano solo parzialmente gli argomenti trattati ttati in classe. In particolare non contengono i modelli economici per i quali si rinvia direttamente al libro di testo e
GIUSTIFICARE LE RISPOSTE. Non scrivere la soluzione di esercizi diversi su uno stesso foglio.
Teoria dei giochi applicata alle scienze sociali Laurea Specialistica in Ingegneria Gestionale, Politecnico di MI, 2006/07 I prova intermedia, 19 dicembre 2006, foglio A Tempo: 2 ore e 1/2; risolvere 3
Equilibrio bayesiano perfetto. Giochi di segnalazione
Equilibrio bayesiano perfetto. Giochi di segnalazione Appunti a cura di Stefano Moretti, Silvia VILLA e Fioravante PATRONE versione del 26 maggio 2006 Indice 1 Equilibrio bayesiano perfetto 2 2 Giochi
Esercizi di Teoria dei Giochi
Esercizi di Teoria dei Giochi ultimo aggiornamento: 11 maggio 2010 1. Si consideri il gioco fra 2 giocatori rappresentato (con le notazioni standard) dalla seguente matrice: (3, 1) (5, 0) (1, 0) (2, 6)
Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni
Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre
Il Piano Finanziario Parte 2: Equilibrio e Investimento
Il Piano Finanziario Parte 2: Equilibrio e Investimento Non aspettare, il tempo non potrà mai essere " quello giusto". Inizia da dove ti trovi, e lavora con qualsiasi strumento di cui disponi, troverai
INTRODUZIONE ALLA TEORIA DEI GIOCHI PER PROBLEMI DI DECISIONE
INTRODUZIONE ALLA TEORIA DEI GIOCHI PER PROBLEMI DI DECISIONE Vito Fragnelli Dipartimento di Scienze e Tecnologie Avanzate Università del Piemonte Orientale vito.fragnelli@mfn.unipmn.it Teoria dei Giochi
DILEMMA O NON DILEMMA, QUESTO È IL DILEMMA!
MADD-SPOT, 1, 2015 DILEMMA O NON DILEMMA, QUESTO È IL DILEMMA! DI LUCIA PUSILLO La Teoria dei Giochi si occupa in generale delle tecniche matematiche per analizzare situazioni in cui due o più individui
Giudizio, decisione e violazione degli assiomi di razionalità
- DPSS - Università degli Studi di Padova http://decision.psy.unipd.it/ Giudizio, decisione e violazione degli assiomi di razionalità Corso di Psicologia del Rischio e della Decisione Facoltà di Scienze
Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza
Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,
Giochi e decisioni strategiche
Teoria dei Giochi Giochi e decisioni strategiche Strategie dominanti L equilibrio di Nash rivisitato Giochi ripetuti Giochi sequenziali Minacce impegni e credibilità Deterrenza all entrata 1 Giochi e decisioni
Richiami di microeconomia
Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.
In Action with Math. Competizione e Strategia: Teoria dei Giochi. Giulia Bernardi, Roberto Lucchetti. 5 novembre 2014
In Action with Math Competizione e Strategia: Teoria dei Giochi Giulia Bernardi, Roberto Lucchetti 5 novembre 2014 1 / 16 Roulette russa Altri esempi Teorema di Zermelo Descrizione del gioco Due giocatori
Giochi ripetuti. Gianmaria Martini
Giochi ripetuti Gianmaria Martini INTRODUZIONE In molte situazioni strategiche l elemento temporale ha un ruolo rilevante, nel senso che le scelte vengono ripetute nel tempo. I giochi ripetuti studiano
Concetti di soluzione in giochi dinamici a informazione perfetta in strategie pure (LEZIONE 4)
Economia Industriale (teoria dei giochi) Concetti di soluzione in giochi dinamici a informazione perfetta in strategie pure (LEZIONE 4) Valerio Sterzi Università di Bergamo Facoltà di ingegneria 1 Cosa
Come si analizza un gioco
Come si analizza un gioco Parte II Giochi strategici a somma zero Alberto Abbondandolo Filippo Giuliani Alessandro Montagnani Università di Pisa Settimana di orientamento in Matematica 2010 Alice e Bruno
VINCERE AL BLACKJACK
VINCERE AL BLACKJACK Il BlackJack è un gioco di abilità e fortuna in cui il banco non può nulla, deve seguire incondizionatamente le regole del gioco. Il giocatore è invece posto continuamente di fronte
Teoria dei giochi. 1. Introduzione ed esempi. Slides di Teoria dei Giochi, Vincenzo Cutello 1
Teoria dei giochi 1. Introduzione ed esempi Vincenzo Cutello 1 Cos è la teoria dei giochi? Da Wikipedia: La teoria dei giochi è la scienza matematica che analizza situazioni di conflitto e ne ricerca soluzioni
WERNER GÜTH Max Planck Institute of Economics Jena, Germany INTERSEZIONI DI: INFORMAZIONI INCOMPLETE, RAZIONALITÀ LIMITATA E SUGGERIMENTI ESTERNI
WERNER GÜTH Max Planck Institute of Economics Jena, Germany INTERSEZIONI DI: INFORMAZIONI INCOMPLETE, RAZIONALITÀ LIMITATA E SUGGERIMENTI ESTERNI 1. Problemi di informazione 2. Tipi di incertezza 3. Avere
Caso, intelligenza e decisioni razionali:spunti didattici
Mathesis 9 febbraio 2006 Caso, intelligenza e decisioni razionali:spunti didattici A. Torre Università di Pavia 1 http://www-dimat.unipv.it/atorre/conferenza.pdf Motivazioni per cui la TEORIA DEI GIOCHI
Economia Politica (potete riferirvi al testo di esame di J. Hey o ad altri tipo il Varian)
Introduzione al Corso Nozioni Propedeutiche di base: Economia Politica (potete riferirvi al testo di esame di J. Hey o ad altri tipo il Varian) Matematica generale Metodo e Finalità dell Apprendimento:
Le preferenze e la scelta
Capitolo 3: Teoria del consumo Le preferenze e la scelta 1 Argomenti trattati in questo capitolo Usiamo le preferenze dei consumatori per costruire la funzione di domanda individuale e di mercato Studiamo
Perché si fanno previsioni?
Perché si fanno previsioni? Si fanno previsioni per pianificare un azione quando c è un lag fra momento della decisione e momento in cui l evento che ci interessa si verifica. ESEMPI decisioni di investimento
Teoria dei giochi Gioco Interdipendenza strategica
Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali
Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali:
Teoria dei Giochi Dr. Giuseppe Rose (Ph.D., M.Sc., London) Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 1 1 Nozioni introduttive La teoria
Economia Pubblica Rischio e Incertezza
Economia Pubblica Rischio e Incertezza Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Seconda parte del corso di Economia Pubblica I problemi dell
Le scelte del consumatore in condizione di incertezza (cap.5)
Le scelte del consumatore in condizione di incertezza (cap.5) Che cos è il rischio? Come possiamo indicare le preferenze del consumatore riguardo al rischio? C è chi acquista assicurazione (non ama il
Probabilità discreta
Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che
Aspetti probabilistici del gioco d azzardo
Università degli Studi di Genova Scuola di Scienze Sociali Dipartimento di Economia Perché il banco vince sempre? Aspetti probabilistici del gioco d azzardo Enrico di Bella (edibella@economia.unige.it)
Imprese e reti d impresa
Imprese e reti d impresa 6. Elementi di teoria dei giochi non cooperativi Giuseppe Vittucci Marzetti 1 Corso di laurea triennale in Scienze dell Organizzazione Facoltà di Sociologia Università degli Studi
1. LA MOTIVAZIONE. Imparare è una necessità umana
1. LA MOTIVAZIONE Imparare è una necessità umana La parola studiare spesso ha un retrogusto amaro e richiama alla memoria lunghe ore passate a ripassare i vocaboli di latino o a fare dei calcoli dei quali
Teoria dei giochi e calcoli strategici: dalla guerra fredda alle aste on-line
Teoria dei giochi e calcoli strategici: dalla guerra fredda alle aste on-line Vincenzo Bonifaci Istituto di Analisi dei Sistemi ed Informatica Consiglio Nazionale delle Ricerche, Roma Cos è la Teoria dei
Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.
DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti
Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.
Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo
Capitolo 4 Probabilità
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.
Il principio di induzione e i numeri naturali.
Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito
Un modello matematico di investimento ottimale
Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità
La decisione. Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Indirizzo Gruppi A.A. 2004-05. Contents First Last Prev Next
La decisione Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Indirizzo Gruppi A.A. 2004-05 Contents 1 Dimensioni della decisione................................... 3 2 Modalità della
PREFAZIONE. http://www.fioravante.patrone.name/
Prefazione La Teoria dei Giochi (d ora in poi, TdG) ha avuto negli ultimi decenni un enorme sviluppo ed anche un notevole successo, con applicazioni rilevanti, in primis in economia, ma anche in altri
Scelte in condizioni di rischio e incertezza
CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni
Multiagent systems. Christian Schunck, Ph.D. UD 1.2: Esempi di Giochi
Multiagent systems Sistemi i di Agenti Christian Schunck, Ph.D. UD 1.2: Esempi di Giochi Christian Schunck,Ph.D. Multiagent Systems Sistemi di Agenti UD 1.1 30/03/2010 Dia 2 TIPOLOGIE DI GIOCHI SOMMA COSTANTE/NON
Economia Pubblica Giochi con informazione incompleta e Selezione Avversa
Economia Pubblica Giochi con informazione incompleta e Selezione Avversa Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Outline Equilibrio di Nash
Corrispondenze e relazioni - Complementi
PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan
La Teoria dei Giochi. I do not believe in luck, but I do believe in assigning value to things (J. Nash)
La Teoria dei Giochi I do not believe in luck, but I do believe in assigning value to things (J. Nash) Di cosa si occupa la TdG 1944 Theory of Games and Economic Behavior di John von Neumann (matematico)
Il comportamento del consumatore
Il comportamento del consumatore Le preferenze del consumatore I vincoli di bilancio La scelta del consumatore Preferenze rivelate Utilità marginale e scelta del consumatore 1 Teoria del comportamento
Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che:
Teoria dei Giochi, Trento, 2004/05 c Fioravante Patrone 1 Teoria dei Giochi Corso di laurea specialistica: Decisioni economiche, impresa e responsabilità sociale, A.A. 2004/05 Soluzioni degli esercizi
IL PUZZLE INGRANDITO Prof c èc. un problema
ISTITUTO PROFESSIONALE STATALE PER I SERVIZI COMMERCIALI E TURISTICI E. MORANTE DI SASSUOLO (MO) presenta IL PUZZLE INGRANDITO Prof c èc un problema Classi 1^D e 1^E Docenti: Prof. Vestuti Antonio, Prof.ssa
Introduzione alla Teoria dei Giochi
Introduzione alla Teoria dei Giochi Giochi dinamici a informazione completa Lorenzo Rocco Scuola Galileiana - Università di Padova 01 aprile 2010 Rocco (Padova) Giochi 01 aprile 2010 1 / 24 Giochi in forma
Può la descrizione quantomeccanica della realtà fisica considerarsi completa?
Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento
Un modello matematico di investimento ottimale
Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente
La ricerca empirica: una definizione
Lucido 35/51 La ricerca empirica: una definizione La ricerca empirica si distingue da altri tipi di ricerca per tre aspetti (Ricolfi, 23): 1. produce asserti o stabilisce nessi tra asserti ipotesi teorie,
e Paradosso del Gelataio
e Paradosso del Gelataio Cos'è la Teoria dei Giochi Astrazione del processo decisionale Scelte comportamentali e strategiche Effetti delle scelte proprie e altrui Analisi del comportamento razionale Gioco
L economia: i mercati e lo Stato
Economia: una lezione per le scuole elementari * L economia: i mercati e lo Stato * L autore ringrazia le cavie, gli alunni della classe V B delle scuole Don Milanidi Bologna e le insegnati 1 Un breve
Corso di Politica Economica Teoria delle votazioni
Corso di Politica Economica Teoria delle votazioni Prof. Paolo Buonanno Università degli Studi di Bergamo Funzione di Benessere Sociale Problema della scelta di un punto socialmente ottimale lungo la frontiera
Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.
Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di
Teoria dei giochi. Teoria che analizza in modo formale l interazione strategica di soggetti razionali che agiscono in modo strategico
Teoria dei giochi Teoria che analizza in modo formale l interazione strategica di soggetti razionali che agiscono in modo strategico Situazione strategica Sette persone si recano insieme al ristorante
Limitazioni cognitive e comportamento del consumatore (Frank, Capitolo 8)
Limitazioni cognitive e comportamento del consumatore (Frank, Capitolo 8) RAZIONALITÀ LIMITATA Secondo Herbert Simon, gli individui non sono in grado di comportarsi come i soggetti perfettamente razionali
La Matematica dei Giochi
Capitolo 1 La Matematica dei Giochi 1.1 Introduzione Che cosa fanno i bambini non appena cominciano a interagire col mondo esterno? Cominciano a giocare. Che cosa accomuna l umanità da sempre, gli antichi
inclinazione del terreno ostacoli voluminosi
Unità 7 Macchine agricole e infortuni CHIAVI In questa unità imparerai: a comprendere testi scritti sulla sicurezza in agricoltura le parole relative alla sicurezza in agricoltura e all uso delle macchine
SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.
SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno
Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario
Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario Mario frequenta la facoltà di Biologia dell Università di Vattelapesca. Vuole avere un buon voto
Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri.
6 LEZIONE: Algoritmi Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10-25 Minuti (a seconda che tu abbia dei Tangram disponibili o debba tagliarli a mano) Obiettivo Principale: Spiegare come
Politica economica: Lezione 5
Politica economica: Lezione 5 II canale: M - Z Crediti: 9 Corsi di laurea: Nuovo Ordinamento (DM. 270) Vecchio ordinamento (DM. 590) Politica Economica - Luca Salvatici 1 Efficienza nella produzione Criterio
Cosa è la teoria dei giochi e a cosa serve Brevi note introduttive a cura di Fioravante Patrone
Cosa è la teoria dei giochi e a cosa serve Brevi note introduttive a cura di Fioravante Patrone La Teoria dei Giochi (TdG) è una disciplina di cui si sente parlare con una certa frequenza. A volte, magari,
Cooperazione di Agenti Informatici Corso di Laurea Specialistica in Informatica A.A. 2008/09 Prof. Alberto Postiglione
ooperazione di genti Informatici orso di Laurea Specialistica in Informatica.. 2008/09 Prof. lberto Postiglione UD.2: Esempi di Giochi Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2
Teoria dei Giochi. Anna Torre
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)
La gestione delle emozioni: interventi educativi e didattici. Dott.ssa Monica Dacomo
La gestione delle emozioni: interventi educativi e didattici Dott.ssa Monica Dacomo Attività per la scuola secondaria di I grado Chi o cosa provoca le nostre emozioni? Molti pensano che siano le altre
Calcolo delle probabilità
Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità
Università per Stranieri di Siena Livello A1
Unità 20 Come scegliere il gestore telefonico CHIAVI In questa unità imparerai: a capire testi che danno informazioni sulla scelta del gestore telefonico parole relative alla scelta del gestore telefonico
Incentivi alla cooperazione Introduzione
Incentivi alla cooperazione dellamico@disi.unige.it Sistemi Distribuiti P2P A.A. 2007-08 6-7 dicembre 2007 Outline 1 Cooperazione e free riding Free riding Reciprocità 2 Eliminazione iterata 3 Forma iterata
Capitolo 25: Lo scambio nel mercato delle assicurazioni
Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel
Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.
Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:
STRUTTURA DELLE RETI SOCIALI ASTE. Vincenzo Auletta Università di Salerno
STRUTTURA DELLE RETI SOCIALI ASTE Vincenzo Auletta Università di Salerno ASTE Le aste (auctions) sono un altro importante ambito in cui possiamo applicare il framework della teoria dei giochi Come devo
CLASSIFICAZIONE DEI CARATTERI
CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è
Come si analizza un gioco
Come si analizza un gioco Parte III Giochi strategici a somma qualsiasi Alberto Abbondandolo Filippo Giuliani Alessandro Montagnani Università di Pisa Settimana di orientamento in Matematica 2010 Il dilemma
Corso di Intermediari Finanziari e Microcredito. La finanza etica
Corso di Intermediari Finanziari e Microcredito La finanza etica Idea di sovversivi o segmento di mercato? 1. La finanza etica, per alcuni, è la strada per una obiezione finanziaria. Tutto il mondo della