Corso di Probabilità e Statistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Probabilità e Statistica"

Transcript

1 Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di Probabilità e Statistica (Prof.ssa L.Morato) Esercizi a cura di: S.Poffe A.A

2 La dispensa si propone come raccolta di esercizi non risolti relativi al corso di Probabilità e Statistica. Gli esercizi sono suddivisi in capitoli, paragrafi e sottoparagrafi in base al loro contenuto. Alla fine di ogni capitolo è stato inserito un paragrafo conclusivo con esercizi di riepilogo. i

3 ii

4 Indice 1 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete Probabilità classica Calcolo combinatorio Applicazioni del calcolo combinatorio alla probabilità classica Probabilità moderna Probabilità condizionata Indipendenza di eventi Variabili aleatorie discrete Esercizi di riepilogo Variabili aleatorie discrete e assolutamente continue, valore atteso, varianza e relative proprietà Variabili aleatorie assolutamente continue Valore atteso e varianza di variabili aleatorie discrete e assolutamente continue Valore atteso e varianza di funzioni di variabili aleatorie Disuguaglianza di Cebi cev Esercizi di riepilogo Variabili aleatorie dipendenti e indipendenti, covarianza e coefficiente di correlazione, densità e valore atteso condizionati Variabili aleatorie dipendenti e indipendenti Covarianza e coefficiente di correlazione

5 iv INDICE 3.3 Densità condizionata e valore atteso condizionato Variabili aleatorie congiuntamente gaussiane Funzioni di più variabili aleatorie Esercizi di riepilogo Statistica inferenziale Stimatori corretti e consistenti Le distribuzioni χ 2 (n) e N(0, 1) Intervalli di confidenza Esercizi di riepilogo Esercitazione di statistica descrittiva 49

6 Capitolo 1 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete 1.1 Probabilità classica Il campo nel quale più direttamente si può applicare la definizione classica di probabilità è quello dei giochi di dadi, carte, ecc.. In essi le regole individuano con precisione le diverse alternative, e si può ragionevolmente supporre che esse siano ugualmente probabili. Esercizio Qual è la probabilità di ottenere un numero pari lanciando un dado? [ ] 1 2 Esercizio Qual è la probabilità che, lanciando un dado, esca un numero pari o il numero 5? [ ] 2 3

7 2 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete Esercizio (es. 2.1 p.54, Bramanti) Dimostrare, utilizzando gli assiomi di probabilità, che non è possibile definire una probabilità sull insieme Ω dei numeri naturali 1, 2, 3,... in modo tale che i numeri siano tutti equiprobabili. Questo fatto si può interpretare dicendo che non è possibile inventare un esperimento aleatorio che abbia come esito l estrazione di un numero naturale a caso, se si vuole che tutti i numeri siano estratti con ugual probabilità Calcolo combinatorio Il calcolo combinatorio ha per scopo la costruzione e la misurazione del numero di raggruppamenti che, secondo un assegnata definizione, si possono formare con una prefissata quantità di n oggetti. Esso risulta utile anche indipendentemente dal calcolo delle probabilità. Permutazioni semplici di n oggetti P n = n! n! Disposizioni semplici di n oggetti di classe k (k n) D n,k = (n k)! ( ) n n! Combinazioni semplici di n oggetti di classe k (k n) C n,k = = k (n k)!k! Disposizioni con ripetizione di n oggetti di classe k D R n,k = n k ( ) n + k 1 Combinazioni con ripetizione di n oggetti di classe k Cn,k R = k Esercizio In quanti modi si possono estrarre 3 lettere da un insieme di 10? 720 (estrazione ordinata) 120 (estrazione in blocco) 1000 (estrazione con reinserimento)

8 1.1 Probabilità classica 3 Esercizio In quanti modi si può riordinare una sequenza di 20 oggetti diversi? [ ] Esercizio In quanti modi si può estrarre una cinquina da un urna con 200 palline numerate? [ e + 11 (estrazione ordinata) ] e + 09 (estrazione in blocco) Esercizio In quanti modi si possono estrarre, con reinserimento, 2 palline da un urna contenente una pallina bianca, una rossa e una nera? [9] Esercizio In quanti modi si può formare una sequenza di 10 cifre usando 0 e 1? [1.024] Esercizio (es. 2.2 p.66, Bramanti) In quanti modi 8 persone possono sedersi attorno ad un tavolo che ha 8 posti? [40329] Esercizio (es. 2.3 p.66, Bramanti) Come nell esercizio precedente, ma si considerino distinti 2 modi solo se varia la disposizione relativa delle persone attorno al tavolo (rotondo). (In altre parole, due disposizioni ottenute l una dall altra mediante rotazione del tavolo si considerano uguali). [5040] Esercizio (es. 2.4 p.66, Bramanti) In quanti modi 4 uomini e 4 donne possono sedersi in modo alternato attorno ad un tavolo?

9 4 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete Esercizio (es. 2.5 p.66, Bramanti) Un valigetta ventiquattrore ha una conbinazione formata da 6 numeri. a) In quanti modi è possibile combinare le 10 cifre da 0 a 9? [1152] b) E se invece delle 10 cifre ci fossero le lettere A, B, C, D? [ a) b) 4096 ] Applicazioni del calcolo combinatorio alla probabilità classica Esercizio Dato un contenitore con 10 oggetti numerati, qual è la probabilità che, scegliendone 3 a caso, escano nell ordine 9, 2, 5? Esercizio [ ] Dato un contenitore con 10 oggetti numerati, qual è la probabilità che, scegliendone in blocco 3, escano 9, 2, 5? Esercizio Da un urna con 10 palline numerate se ne estraggono in blocco 3. probabilità di estrarre la 6? Esercizio [ ] Qual è la [ ] 3 10 Un giocatore estrae casualmente tre carte da un mazzo di 52. Qual è la probabilità di estrarre: {A, 3, 5 }?

10 1.1 Probabilità classica 5 Esercizio (estrazione ordinata) (estrazione in blocco) Formando in modo casuale delle parole di quattro lettere con A, B, C, qual è la probabilità di comporre la parola ABBA? Esercizio [ ] 1 81 Lanciando in successione 3 dadi, qual è la probabilità che escano tre numeri uguali? [ ] 1 36 Esercizio Lanciando in successione 2 dadi, qual è la probabilità che escano due numeri successivi (6 1)? Esercizio [ ] 1 6 In un esperimento si producono in modo casuale sequenze di 5 elementi. Ogni elemento può essere di due tipi: 0 o 1. a) Qual è la probabilità che esca (1, 0, 0, 0, 0)? b) Qual è la probabilità che esca due volte 1? Esercizio a) b) Scegliendo a caso ordinatamente 6 persone in una popolazione, qual è la probabilità che almeno due abbiano il compleanno lo stesso mese?

11 6 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete Esercizio (esempio 42 p.65, Bramanti) [0.78] Si consideri una partita d assi: 4 giocatori, 40 carte, distribuite 10 a testa. Calcolare la probabilità per un giocatore di avere: a) l asso di quadri e nessun altro asso b) almeno un asso c) un asso e non di più d) due assi prefissati e) due assi prefissati e non di più f) due assi qualsiasi e non di più g) almeno due assi [a) = 0.11; b) = 0.70; c) = 0.44; d) = 0.06; e) = 0.04; f) = 0.21; g) = 0.35] Esercizio (es p.67, Bramanti) Tre persone si danno appuntamento in un bar nella piazza centrale della città; poco pratici del luogo, non sanno che in tale piazza ci sono 4 bar. Qual è la probabilità che scelgano: a) tutti e tre lo stesso bar? b) tutti e tre bar differenti? [ a) b) ] Esercizio (es p.67, Bramanti) Un urna contiene 5 palline bianche, 6 nere, 4 rosse. Se ne estraggono 2. Calcolare la probabilità che siano dello stesso colore supponendo che l estrazione avvenga:

12 1.2 Probabilità moderna 7 a) in blocco b) con reimmissione 1.2 Probabilità moderna a) b) Esercizio Si osservano due quantità aleatorie X e Y entrambe con valori 1, 0, 1. Assumendo che la coppia (0, 0) abbia probabilità 1 2 probabilità che: a) X + Y > 0 e le altre siano equiprobabili, qual è la b) X + Y 0 a) b) Esercizio Si considerino dei pezzi prodotti da una macchina e siano A e B la presenza del difetto a e b rispettivamente. Sapendo che: - P (A) = P (B C ) = P (A B) = 0.01 calcolare la probabilità che il pezzo non presenti alcun difetto. [0.71]

13 8 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete Esercizio Due giocatori laciano a turno due dadi. Un giocatore vince se escono due numeri uguali o se la loro somma è maggiore di 6. Assumendo le uscite equiprobabili, si calcoli la probabilità di vittoria. Esercizio (es. 1 proposto) [ ] 2 3 Si estraggono ordinatamente 4 carte da un mazzo di 20 carte numerate. Costruire uno spazio di probabilità uniforme e calcolare la probabilità che: a) venga estratta la carta numero 5 b) vengano estratte la numero 5 e la numero 6 c) vengano estratte la numero 5 o la numero 6 a) b) c) Esercizio (es. 2 proposto) a) Calcolare la probabilità che, estraendo a caso 4 individui in una popolazione formata da 5 tipi diversi egualmente rappresentati, almeno due individui siano dello stesso tipo b) E se le tipologie di popolazione fossero 3? a) b) Esercizio (es. 3 proposto) Si estraggono in blocco due oggetti da una collezione di M oggetti diversi. Calcolare la probabilità di estrarre due oggetti particolari.

14 1.2 Probabilità moderna 9 Esercizio (es. 4 proposto) [ 2 ] M(M 1) Calcolare la probabilità che, sistemando a caso 4 oggetti in due contenitori, entrambi i contenitori ne contengano Probabilità condizionata Esercizio [ ] 1 5 Indicando con A e B gli eventi esce il numero 2 e esce un numero pari lanciando un dado equilibrato, calcolare la probabilità di A, condizionatamente al verificarsi dell evento B. Esercizio [ ] 1 3 Uno statistico osserva due variabili X e Y, che prendono valori rispettivamente {0, 1, 2, 3} e {0, 1}. Assumendo tutte le possibili coppie di valori equiprobabili, calcolare la probabilità che X sia non nulla se Y è uguale a zero. Esercizio [ ] 3 4 Si consideri una popolazione costituita dal 40% di fumatori e dal 60% di non fumatori. Sapendo il 25% dei fumatori e il 7% dei non fumatori contraggono una malattia alle vie respiratorie, calcolare la probabilità che un individuo scelto a caso sia ammalato. Esercizio [0.142] In un paese vi sono 60% nativi, 25% immigrati e 15% turisti. Sapendo che utilizzano i mezzi pubblici il 30% dei nativi, il 70% degli immigrati e il 90% dei turisti:

15 10 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete a) qual è la probabilità che una persona scelta a caso utilizzi i mezzi pubblici? b) noto che su un automobile privata c è una persona, qual è la probabilità che sia un turista? [ a) 0.49 ] b) Esercizio (es. 5 proposto) Un corso universitario è frequentato da 100 persone, di cui 70 sono uomini e 30 sono donne. Sapendo che il 40% degli uomini e il 60% delle donne fumano, con quale probabilità uno studente fumatore è di sesso maschile? [0.6087] Esercizio (es. 6 proposto) Un giocatore punta alla roulette i numeri Dopo la giocata un informatore gli dice che uscirà un numero pari. Quale probabilità avrà di vincere? [0.1052] Esercizio (es. 7 proposto) In una università i medici rappresentano il 22% dei laureati in un anno, gli ingegneri il 10%, i laureati in lettere il 30%, mentre il restante 40% è rappresentato da laureati in altre discipline. Ad un anno dalla laurea lavora il 60% dei medici, il 90% degli ingegneri, il 10% dei laureati in lettere e il 50% dei rimanenti. a) sapendo che uno studente si è appena laureato, con quale probabilità sarà disoccupato nei prossimi 12 mesi? b) con quale probabilità un disoccupato (laureatosi un anno fa) è laureato in ingegneria? c) con quale probabilità si è laureato in medicina un neoassunto, laureatosi da meno di un anno?

16 1.2 Probabilità moderna 11 Esercizio (es. 8 proposto) a) 0.56 b) c) In un urna sono contenute 5 palline rosse e 4 bianche. Due persone estraggono una pallina ciascuna (senza reinserimento). Calcolare la probabilità che la seconda persona estragga una pallina rossa: a) sapendo che la prima ne ha estratta una bianca b) non sapendo quale pallina abbia estratto la prima Indipendenza di eventi a) b) Esercizio Si disponga di una moneta equilibrata e siano T 1 e T 2 gli eventi esce testa al primo lancio e esce testa al secondo lancio. Calcolare la probabilità che si verifichino congiuntamente gli eventi T 1 e T 2. Esercizio Si lanci due volte una moneta non equilibrata. Assumendo che: P (T 1 ) = P (T 2 ) = p P (C 1 ) = P (C 2 ) = 1 p calcolare le probabilità: a) P (T, T ) che escano due teste [ ] 1 4

17 12 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete b) P (T, C) che escano due facce diverse c) P (C, C) che escano due croci a) p 2 b) p(1 p) c) (1 p) 2 Esercizio In una coltivazione di mais le piantine si ammalano con una frequenza del 20%. Sotto opportune ipotesi calcolare le probabilità che scegliendo a caso 10 piantine: a) siano tutte sane b) solo 3 siano sane [ a) b) ] Esercizio (es. 9 proposto) Si lanciano successivamente 3 monete equilibrate. Calcolare la probabilità che: a) esca testa 3 volte b) esca testa una sola volta Variabili aleatorie discrete a) b) Il risultato di una prova è in molti casi un numero che è aleatorio, cioè incerto prima della prova, per poi diventare noto. In generale si è interessati ad una funzione del risultato della prova (che come caso particolare può essere la funzione identica, cioè il risultato stesso). Queste funzioni sono dette variabili aleatorie.

18 1.2 Probabilità moderna 13 Nome Supporto Probabilità Restrizioni sui parametri Bernoulli (p) k {0, 1} p k (1 p) 1 k 0 p 1 Binomiale (n, p) k {0, 1,..., n} Poisson (λ) k {0, 1,...} ( ) n p k (1 p) n k 0 p 1 k e λ λ k k! λ > 0 Geometrica (p) k {0, 1,...} p(1 p) k 0 < p < 1 Esercizio Alcune variabili aleatorie discrete In una linea di produzione di integrati, un integrato su è difettoso. Calcolare la probabilità che una confezione di 100 integrati: a) non contenga pezzi defettosi b) contenga un integrato difettoso c) contenga almeno tre integrati difettosi a) b) c) Esercizio Un urna contiene 9 palline bianche e 1 nera. Due giocatori estraggono a caso una pallina a turno e poi la rimettono nell urna. Vince chi estrae per primo la pallina nera. Calcolare la probabilità che il gioco duri almeno cinque prove. Esercizio (es. 10 proposto) Un urna contiene 3 palline rosse, 4 bianche e 5 nere.

19 14 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete a) Si estraggono 5 palline con reimmissione. Con quale probabilità ce ne sono 3 nere? b) Supponendo che se ne estraggano 7, con quale probabilità ce ne sono 3 nere, 2 bianche e 2 rosse? [ ] a) b) Esercizio (es. 11 proposto) Un grande contenitore contiene piccolissimi oggetti di 100 tipi diversi, dei quali sono presenti copie di ognuno. Se ne estraggono in modo casuale n 100. Si determini la probabilità che un particolare tipo di oggetto non venga estratto, in funzione del numero di oggetti estratti (si supponga n << ). Si calcoli n in modo che tale probabilità sia uguale a [n 460] Esercizio (es. 12 proposto) Dato uno stock di lampadine, viene esaminato un campione di 100 pezzi. Indicato con m il numero di pezzi difettosi nello stock, si dia una formula per determinare la probabilità di trovare 10 pezzi difettosi, in funzione di m (m << ). Esercizio (es. 13 proposto) Supponendo che 300 errori di stampa siano distribuiti a caso su 500 pagine, si determini la probabilità che una determinata pagina contenga: a) esattamente 2 errori b) almeno 2 errori [ a) b) ] Esercizio (es. 14 proposto) In un paese il 50% della popolazione ha un età compresa tra i 30 e 60 anni, il 30% ha meno di 30 anni e il rimanente 20% ha più di 60 anni. Supponendo di intervistare 20 individui scelti a caso, con quale probabilità:

20 1.2 Probabilità moderna 15 a) sono tutti giovani al di sotto dei 30 anni? b) ci sono 10 giovani al di sotto dei 30 anni, 7 persone tra i 30 e i 60 anni e 3 con più di 60? c) nessuno ha meno di 30 anni? a) 3.48 e 11 b) 8.18 e 3 c) 7.98 e 4 Esercizio (es. 15 proposto) Un urna contiene 3 palline rosse, 4 bianche e 5 nere. Estraendo 5 palline con reinserimento, con quale probabilità si estrae la prima pallina nera al terzo tentativo? [0.1418] Esercizio (es. 16 proposto) Una catena di produzione di un industria alimentare produce scatole di biscotti. Viene stimato che una scatola su 100 non viene chiusa bene, nel qual caso la linea si ferma. Si calcoli la probabilità di produrre: a) esattamente 1000 scatole fino alla prima interruzione b) almeno 1000 scatole fino alla prima interruzione Esercizio (teorema 32 p.62, Bramanti) Dimostrare che: (a + b) n = n k=0 ( ) n a k b n k k [ a) 4.32 e 07 b) 4.32 e 05 ] per ogni intero positivo n, per ogni coppia di numeri reali a, b. (formula di Newton per lo sviluppo della potenza di un binomio).

21 16 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete 1.3 Esercizi di riepilogo Esercizio (es p.79, Bramanti) Calcolare la probabilità che, lanciando due dadi, escano: a) due 4 b) un 3 e un 5 c) due numeri pari d) due numeri la cui somma sia 9 e) due numeri uguali [ a) 1 36 ; b) 1 ] 18 ; c)1 4 ; d)1 9 ; e)1 6 Esercizio (es p.79, Bramanti) Da un mazzo di 52 carte se ne estrae una. Calcolare la probabilità che sia: a) una carta di picche o una figura di cuori b) una figura o una carta rossa [ a) b) ] Esercizio (es p.79, Bramanti) Da un urna che contiene 40 palline di cui 12 bianche, 11 rosse e 17 verdi, si estraggono contemporaneamente sei palline. Calcolare la probabilità che esse siano: 3 bianche, 2 rosse, 1 verde. [0.0536] Esercizio (es p.80, Bramanti) a) In quanti modi 8 persone possono sedersi in 5 posti?

22 1.3 Esercizi di riepilogo 17 b) In quanti modi 5 persone possono sedersi in 8 posti? c) In quanti modi 3 amici possono sedersi in una fila di 15 posti, al cinema, stando vicini tra loro? Esercizio (es p.80, Bramanti) a) 6720 b) 6720 c) 78 Siano A, B due eventi indipendenti, con P (A) = 1 3, P (B) = 3. Determinare la 4 probabilità p dell evento (A B) (A B). [ ] 7 12 Esercizio (es p.80, Bramanti) Una ditta produce un certo tipo di apparecchiature sofisticate; l 8% degli apparecchi prodotti, mediamente, presenta qualche tipo di malfunzionamento. Perciò la ditta ha messo a punto un test di collaudo, che tiene conto dei difetti più frequenti, in modo tale che: il 90% degli apparecchi imperfetti non supera il test; l 1% degli apparecchi sani non supera il test (per qualche errore nell esecuzione del collaudo). Se vengono messi in commercio tutti e soli gli apparecchi che superano il test, qual è la probabilità che uno di essi risulti difettoso? Esercizio (es p.80, Bramanti) [0.0087] Nella prima parte di questo esercizio si chiede di formalizzare, col linguaggio preciso e sintetico del calcolo delle probabilità, alcune informazioni espresse mediante il linguaggio comune. Sia A l evento lo studente ha studiato bene e B l evento lo studente passa l esame. Tradurre in simboli le seguenti affermazioni: a) la probabilità che uno studente abbia studiato bene e passi l esame è 0.4 b) la probabilità che uno studente che ha studiato bene passi l esame è 0.8

23 18 Probabilità classica e probabilità combinatoria, variabili aleatorie discrete c) la probabilità che uno studente che non ha studiato bene non passi l esame è 0.9 d) la probabilità che uno studente abbia studiato male ma passi ugualmente l esame è 0.05 e) la probabilità che uno studente che non ha passato l esame non avesse studiato bene è 9 11 Supponiamo ora che le informazioni a, b, c, d, e siano tutte corrette. Sfruttando opportunamente queste informazioni, si calcoli: f) P (A B) g) P (A B) h) P (A B) i) P (B A) f) 0.55 g) 0.45 h) 0.89 i) 0.2 Esercizio (es p.82, Bramanti) Un urna contiene 6 palline bianche e 4 nere; se ne estraggono 3 senza reimmissione. Qual è la probabilità di estrarre B, N, N (in quest ordine)? [ ] 1 10

24 Capitolo 2 Variabili aleatorie discrete e assolutamente continue, valore atteso, varianza e relative proprietà 2.1 Variabili aleatorie assolutamente continue Esercizio Sia X una variabile aleatoria uniforme su [0, 1], con densità: { 1 x [0, 1] f X (x) = Calcolare: 0 altrove a) P (X (, + )) b) P (X [0, 1 2 ]) c) P (X [0, 1 3 ])

25 20Variabili aleatorie discrete e assolutamente continue, valore atteso, varianza e relative proprietà Esercizio Sia X una variabile aleatoria esponenziale di parametro λ > 0. X = {tempo di vita di una lampadina} Sia: f X (x) = { λe λx x 0 0 altrove a) 1 b) 1 2 c) 1 3 Calcolare P (X [0, 1]). [ 1 e λ ] Esercizio Sia X una variabile aleatoria normale (o gaussiana) standard, con densità: f X (x) = 1 2π e x 2 2 x R Calcolare: a) P (X [0, 1 2 ]) b) P (X [ 1, 1]) c) P (X [ 1, 1 ] o X [0, 1]) 2 Nota: Non esiste una primitiva in forma analitica! Φ(t) = t x 2 1 e 2 dx (valori tabulati p.287, Bramati) 2π a) b) c)

26 2.2 Valore atteso e varianza di variabili aleatorie discrete e assolutamente continue 21 Esercizio Sia X una variabile aleatoria uniforme su [0, 1], con densità: f X (x) = Calcolare P { 2x x [0, 1] 0 altrove ( [ X 0, 1 ] 4 o X [ ]) 3 4, 1 [ ] Valore atteso e varianza di variabili aleatorie discrete e assolutamente continue Esercizio Sia X una variabile aleatoria discreta che assume valori in {1, 2, 3, 4, 5}, con funzione di probabilità: p X (x k ) = 1 5 k = 1,..., 5 Calcolare E(X). [3] Esercizio Sia X una variabile aleatoria discreta che assume valori in {1, 2, 3, 4, 5}, con funzione di probabilità: 1 p X (x k ) = x k = 1, 2 x k = 3, 4, 5 Calcolare E(X).

27 22Variabili aleatorie discrete e assolutamente continue, valore atteso, varianza e relative proprietà Esercizio [ ] 27 8 Sia X una variabile aleatoria di Bernoulli di parametro p, con funzione di probabilità: p X (x) = Calcolare E(X). Esercizio { 1 p 0 1 p Sia X una variabile aleatoria Binomiale di parametro p. X Binomiale(n, p) Calcolare E(X). Esercizio Sia X una variabile aleatoria uniforme su [0, 1], con densità: { 1 x [0, 1] f X (x) = 0 altrove [p] [np] Calcolare E(X). Esercizio Sia X una variabile aleatoria esponenziale di parametro λ > 0, con densità: [ ] 1 2 f X (x) = Calcolare: { λe λx x 0 0 altrove

28 2.2 Valore atteso e varianza di variabili aleatorie discrete e assolutamente continue 23 a) E(X) b) V (X) a) b) 1 λ 1 λ 2 Esercizio Sia X una variabile aleatoria di Poisson di parametro λ, con funzione di probabilità: λ λx p X (x) = e x! x = 0, 1, 2,... Calcolare: a) E(X) b) V (X) [ a) λ ] b) λ Esercizio Sia X una variabile aleatoria normale (o gaussiana) standard, con densità: f X (x) = 1 2π e x 2 2 x R Dimostrare che: a) E(X) = 0 b) V (X) = 1

29 24Variabili aleatorie discrete e assolutamente continue, valore atteso, varianza e relative proprietà Valore atteso e varianza di funzioni di variabili aleatorie Esercizio Sia X una variabile aleatoria discreta che assume valori in {1, 2, 3} con probabilità: P X (1) = 1 6, P X(2) = 1 3, P X(3) = 1 2 Posto Y = X 2, calcolare E(Y ). Esercizio Sia X una variabile aleatoria uniforme su [0, 1], con densità: { 1 x [0, 1] f X (x) = 0 altrove Posto Y = X 2, calcolare E(Y ) Esercizio [6] [ ] 1 3 Sia X una variabile aleatoria discreta che assume valori in {0, 1, 2, 3} con probabilità: P X (0) = 1 10, P X(1) = 1 5, P X(2) = 3 10, P X(3) = 2 5 Calcolare: a) E(X) e V (X) b) E(Y ) e V (Y ), posto Y = 2X, c) E(W ) e V (W ), posto Z = X 2 e W = Z + Y a) 2; 1 b) 4; 4 c) 9; 30

30 2.3 Esercizi di riepilogo 25 Esercizio Sia X una variabile aleatoria uniforme su [0, 1]. Posto Y = X 3 calcolare: a) E(Y ) b) V (Y ) Disuguaglianza di Cebi cev Esercizio Sia X una variabile aleatoria normale (o gaussiana) con: E(X) = 1 e V (X) = 4 a) b) Può essere P ( X 1 > 10) = 0.8? [No] 2.3 Esercizi di riepilogo Esercizio (es. 1 proposto) Sia X una variabile aleatoria geometrica di parametro p, con funzione di probabilità: p X (x) = p(1 p) x 1 x = 1, 2,... Calcolare: a) E(X) b) V (X)

31 26Variabili aleatorie discrete e assolutamente continue, valore atteso, varianza e relative proprietà Esercizio Sia X una variabile aleatoria uniforme sull intervallo (a, b). Calcolare: a) E(X) a) b) 1 p 1 p p 2 b) V (X) Esercizio (es. 2 proposto) a) b) b + a 2 (b a) 2 Siano X 1,..., X n variabili aleatorie indipendenti ed equidistribuite di legge Poisson di parametro λ. Calcolare la varianza delle variabili aleatorie: a) Y = X X n 12 b) Z = ax 1 + b [ a) nλ b) a 2 λ ] Esercizio (es p.105, Bramanti) Verificare, utilizzando le densità discrete di questa variabile aleatoria, che le leggi Bernoulli(p), Binomiale(n, p) soddisfano la condizione: p X (k) = 1 k Esercizio (es. 3.2 p.104, Bramanti) Una macchina per confezionare generi alimentari riempie meno del dovuto il 10% delle confezioni. Calcolare la probabilità che su 5 confezioni il numero di quelle sottopeso sia:

32 2.3 Esercizi di riepilogo 27 a) Esattamente 3 b) Esattamente 2 c) Zero d) Almeno 1 a) b) c) d) Esercizio (es. 3.7 p.105, Bramanti) Un ispettore per il controllo della qualità rifiuta una partita di schede a circuiti stampati se in un campione di 20 schede sottoposte a test vengono trovati 3 o più pezzi difettosi. Determinare il numero atteso di pezzi difettosi e la probabilità di rifiutare una partita se la proporzione di pezzi difettosi nell intera partita è: a) 0.01 b) 0.05 c) 0.1 d) 0.2 a) 0.2; b) 1; c) 2; d) 4; Esercizio (es p.134, Bramanti) Il 35% dell elettorato è a favore del candidato Pinco Pallino. In una sezione elettorale votano 200 persone e X è il numero di quelle che sono a suo favore. a) Determinare la probabilità che X sia maggiore di 75 (scrivere la formula esplicita che assegna questa probabilità, senza eseguire il calcolo numerico)

33 28Variabili aleatorie discrete e assolutamente continue, valore atteso, varianza e relative proprietà b) A votazione conclusa, lo scrutinatore inizia lo spoglio delle schede. Determinare la probabilità che il nome di Pinco Pallino compaia per la prima volta alla quarta scheda scrutinata (fornire anche il risultato numerico). Determinare il valore atteso del numero di schede da scrutinare per trovare la prima volta il nome di Pinco Pallino c) Lo scrutinio è terminato: Pinco Pallino ha ricevuto 60 voti. Se ora si scelgono a caso 10 schede tra le 200, qual è la probabilità che tra esse ce ne siano esattamente 3 per Pinco Pallino? Scrivere l espressione esatta che assegna questa probabilità e fornire il risultato numerico d) Eseguire ora il calcolo della probabilità richiesta al punto precedente, usando una opportuna approssimazione, mediante un altra legge notevole, e fornire il risultato numerico b) ; 3 c) d) 2 e 3

34 Capitolo 3 Variabili aleatorie dipendenti e indipendenti, covarianza e coefficiente di correlazione, densità e valore atteso condizionati 3.1 Variabili aleatorie dipendenti e indipendenti Esercizio Sia (X, Y ) una variabile aleatoria bidimensionale ( doppia ) tale che: X { 1, 0, 1} Y {0, 1} Sia data la seguente tabella delle densità congiunte:

35 Variabili aleatorie dipendenti e indipendenti, covarianza e coefficiente di correlazione, densità e 30 valore atteso condizionati Y 0 1 X a) Calcolare P (X + Y = 0) b) Verificare se X e Y sono indipendenti a) 7 18 b) No Esercizio Sia (X, Y ) una variabile aleatoria bidimensionale uniforme sul quadrato [0, 1] [0, 1], con densità: { 1 X [0, 1], Y [0, 1] f X,Y (x, y) = 0 altrove a) Calcolare P ( [ X 0, 1 ] [, Y 0, 1 ]) 2 2 b) Verificare se X e Y sono indipendenti a) 1 4 b) Si Esercizio Sia (X, Y ) una variabile aleatoria bidimensionale continua con densità: { c(x + y) x [0, 1], y [0, 1] f X,Y (x, y) = a) Determinare la costante c 0 altrove

36 3.1 Variabili aleatorie dipendenti e indipendenti 31 b) Calcolare le densità marginali di X e Y c) Verificare se X e Y sono indipendenti a) 1 b) f X (x) = x f Y (y) = y c) No (x [0, 1]) (y [0, 1]) Esercizio Si osserva l efficacia (X) e la tossicità (Y ) di un farmaco (in opportune unità di misura). Si stima che la coppia (X, Y ) abbia distribuzione continua con densità congiunta: { 0 se x o y < 0 f(x, y) = c e 2(x+y) se x e y 0 a) Determinare la costante c b) Verificare se X e Y sono indipendenti c) Calcolare P (efficacia > 10) a) 4 b) Si c) e 20 Esercizio Viene osservato il tempo di vita di una specie di farfalla nel mese di giugno ed il tasso di piovosità nello stesso mese (in giorni e mm rispettivamente). Si osserva che la coppia (X, Y ) è distribuita in modo continuo con densità: 0 x o y < 0 f X,Y (x, y) = c [e 5x (1 + y 2 )] x 0 e 0 y 20 0 y > 20

37 Variabili aleatorie dipendenti e indipendenti, covarianza e coefficiente di correlazione, densità e 32 valore atteso condizionati a) Determinare la costante c b) Verificare se X e Y sono indipendenti c) Calcolare P (una farfalla viva più di 1,2 giorni) a) 5[ ] 1 b) Si c) e Covarianza e coefficiente di correlazione Esercizio Sia X una variabile aleatoria Binomiale: X B(n, p) Calcolare la varianza di X. [np(1 p)] Esercizio Siano X e Y due variabili aleatorie discrete entrambe con valore in {0, 1, 2, 3}. Sia data la seguente tabella della densità congiunta: Y X a) Verificare se X e Y sono indipendenti b) Calcolare il coefficiente di correlazione a) No b) 3 10

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Esercizi di probabilità discreta

Esercizi di probabilità discreta Di seguito, potete trovare i testi (con risposta) degli esercizi svolti (o proposti) nel corso di esercitazioni dell insegnamento di Matematica applicata. 1 Esercizi di probabilità discreta Algebra degli

Dettagli

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel

Dettagli

Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 2010

Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 2010 Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 200 Esercizio. Dati due eventi A e B, scrivete, in termini di operazioni booleane, l espressione dell evento: {si verifica esattamente un solo evento

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

metodi matematici per l ingegneria prove scritte d esame 1 Indice

metodi matematici per l ingegneria prove scritte d esame 1 Indice metodi matematici per l ingegneria prove scritte d esame Indice. Novembre 4 - Prova in itinere. Luglio 5.. Febbraio 6 4 4. Giugno 6. 5 5. Luglio 6 6 . Novembre 4 - Prova in itinere Esercizio. Una scatola

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza Calcolo delle P robabilitá Esercizi svolti e quesiti per il CdS in Economia e Finanza Giuseppe Sanfilippo Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Università degli Studi di Palermo

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛ Università di Macerata Facoltà di Scienze Politiche - Anno accademico 009- Una variabile casuale è una variabile che assume determinati valori con determinate probabilità; Ad una variabile casuale è associata

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Esericizi di calcolo combinatorio

Esericizi di calcolo combinatorio Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco sicco@dm.unito.it Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

21.05.08 Prima prova parziale di Calcolo delle probabilità I C.L. in Matematica

21.05.08 Prima prova parziale di Calcolo delle probabilità I C.L. in Matematica 21.05.08 Prima prova parziale di Calcolo delle probabilità I Ogni esercizio vale 5 punti. 1. Si gioca a nascondino in una casa di quattro stanze: cucina, salotto, bagno e camera da letto. Otto bambini

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Scienza della Produzione e Trasformazione del Latte Note di Calcolo delle Probabilità e Statistica STEFANO FERRARI Analisi Statistica dei Dati Note di Calcolo

Dettagli

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a: TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Inferenza statistica. Inferenza statistica

Inferenza statistica. Inferenza statistica Spesso l informazione a disposizione deriva da un osservazione parziale del fenomeno studiato. In questo caso lo studio di un fenomeno mira solitamente a trarre, sulla base di ciò che si è osservato, considerazioni

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli

LINEAMENTI DI MATEMATICA

LINEAMENTI DI MATEMATICA P. BARONCINI - E. FABBRI - C. GRASSI IGEA Triennio LINEAMENTI DI MATEMATICA per il triennio degli istituti tecnici commerciali IGEA Probabilità e statistica Analisi numerica MODULO d P. Baroncini - E.

Dettagli

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 8 luglio, 2010 CP110 Probabilità: Esame del 3 giugno 2010 Testo e soluzione 1. (6 pts 12 monete da 1 euro vengono distribuite tra

Dettagli

Appunti: elementi di Probabilità

Appunti: elementi di Probabilità Università di Udine, Facoltà di Scienze della Formazione Corso di Laurea in Scienze e Tecnologie Multimediali Corso di Matematica e Statistica (Giorgio T. Bagni) Appunti: elementi di Probabilità. LA PROBABILITÀ..

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

ESERCIZI DI RIEPILOGO 2. 7 jj(addi ESERCIZI DI RIEPILOGO 2 ESERCIZIO 1 Da un comune mazzo di 52 carte francesi (13 carte per ognuno dei quattro semi: picche, cuori, fiori e quadri) viene estratta casualmente una carta. Definiti gli eventi:

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

MODULI DI LINEAMENTI DI MATEMATICA

MODULI DI LINEAMENTI DI MATEMATICA R. MANFREDI - E. FABBRI - C. GRASSI TRIENNIO licei scientifici MODULI DI LINEAMENTI DI MATEMATICA per il triennio della scuola secondaria di secondo grado L CALCOLO DELLE PROBABILITÀ E ELEMENTI DI STATISTICA

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 6 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, nere, 8 bianche. Si estrae una pallina; calcolare la

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

Risolvi le seguenti equazioni e disequazioni fra [ 0 ; 2 π ]

Risolvi le seguenti equazioni e disequazioni fra [ 0 ; 2 π ] IV A GAT PRIMA VERIFICA DI MATEMATICA 3 ottobre 0 Risolvi le seguenti equazioni e disequazioni fra [ 0 ; π ].. 3... 6. 7. 8. Risultati:. = π/6 e = 7π/6. =π/ ; =π/6 ; =π/6 3. =π/3 ; =π/3. =π/3 ; =π/3. π/

Dettagli

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011 Metodi quantitativi per il trade marketing Modulo Valutazione dei rischi per il marketing a.a. 200/20 Problemi per esercitazione individuale (non svolti in aula NB: i problemi assegnati per esercitazione

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 7 marzo 20 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana

Dettagli

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio Indice 1 Probabilità 1 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio.. 1 1.2 Probabilità condizionata, indipendenza e teorema di Bayes.... 2 1 Probabilità 1.1 Primi esercizi di probabilità

Dettagli

ESERCIZI EVENTI E VARIABILI ALEATORIE

ESERCIZI EVENTI E VARIABILI ALEATORIE ESERCIZI EVENTI E VARIABILI ALEATORIE 1) Considera la tabella seguente, che descrive la situazione occupazionale di 63 persone in relazione al titolo di studio. Occupazione SI NO Titolo Licenza media 5%

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica MARIA GARETTO STATISTICA Lezioni ed esercizi Corso di Laurea in Biotecnologie A.A. 00/00 Quaderno # Novembre 00 M. Garetto - Statistica

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 2/03/205 Primo foglio di esercizi Esercizio 0.. Una classe di studenti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vengono esposti in una graduatoria in ordine

Dettagli

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove Corso di laurea in Ing. Gestionale, a.a. 2001/2002 Prova scritta di Metodi Matematici e Statistici del 25 giugno 2002 Si effettuano n prove ciascuna delle quali consiste nello scegliere una moneta tra

Dettagli

Traccia della soluzione degli esercizi del Capitolo 1

Traccia della soluzione degli esercizi del Capitolo 1 Traccia della soluzione degli esercizi del Capitolo 1 Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini degli eventi A, B, C. 1. Almeno un evento si verifica. 2. Al più un evento si verifica..

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

COMPITO DI SCIENZE NATURALI 23 gennaio 2012. Modulo di probabilità e statistica

COMPITO DI SCIENZE NATURALI 23 gennaio 2012. Modulo di probabilità e statistica COMPITO DI SCIENZE NATURALI 23 gennaio 2012 Modulo di probabilità e statistica 1. In Svizzera, al primo gennaio di ogni anno, tutti i cittadini vengono sottoposti a vaccinazione contro l influenza annuale.

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Valori caratteristici di distribuzioni

Valori caratteristici di distribuzioni Capitolo 3 Valori caratteristici di distribuzioni 3. Valori attesi di variabili e vettori aleatori In molti casi è possibile descrivere adeguatamente una distribuzione di probabilità con pochi valori di

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi

CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi 1 CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi di statistica descrittiva Esercizio 1.1 (Prof. Pieraccini, 20 6-00) In

Dettagli

Probabilità. Esperimento, risultati e spazio campionario

Probabilità. Esperimento, risultati e spazio campionario Probabilità La probabilità è usata nel linguaggio comune per dare indicazioni quantitative sul verificarsi di certi eventi: i) probabilità di incorre in un data patologia causa l abuso di alcol, fumo,

Dettagli

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( )

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( ) Perché il calcolo combinatorio Basato sulle idee primitive di distinzione e di classificazione, stabilisce in quanti modi diversi si possono combinare degli oggetti E molto utile nell enumerazione dei

Dettagli

Marco Di Marzio. Primi elementi di inferenza statistica

Marco Di Marzio. Primi elementi di inferenza statistica Marco Di Marzio Primi elementi di inferenza statistica Ringraziamenti Un sentito ringraziamento a Fabiola Del Greco e Agnese Panzera per la preziosa collaborazione. Indice Probabilità. Esperimenti casuali...........................................2

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Statistica corso base Canale N Z prof. Francesco Maria Sanna. Prove scritte di esame a.a. 2012-13

Statistica corso base Canale N Z prof. Francesco Maria Sanna. Prove scritte di esame a.a. 2012-13 Statistica corso base Canale N Z prof. Francesco Maria Sanna Prova scritta del 8/1/2013 Prove scritte di esame a.a. 2012-13 Esercizio 1 (5 punti). Nella seguente tabella è riportata la distribuzione delle

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012

Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012 Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012 Esercizi di calcolo delle probabilità 1. Nel 1980 la popolazione USA era così composta: 10% della California, 6% di origine ispanica,

Dettagli

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente COMPITO n. 1 a) Nel gioco del poker ad ogni giocatore vengono distribuite cinque carte da un normale mazzo di 52. Quant è la probabilità che un giocatore riceva una scala di re (ovvero 9, 10, J, Q, K anche

Dettagli

SCHEDA DIDATTICA N 1

SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli