Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti."

Transcript

1 Cognome Nome A Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. 1) 2) 4) 5)

2 Geometria e algebra lineare { 16/1/2019 A 1) Siano r e r 0 le rette dello spazio di equazioni: r : x 2z = y = 0 e r 0 : x = t; y = t; z = t + 1: 1. Si trovi un'equazione cartesiana del piano perpendicolare a r e passante per l'origine. 2. Si stabilisca la posizione reciproca di r e r Si calcoli la distanza tra le rette r e r 0. 2) Si considerino i vettori di R 4 v 1 = (1; 2; 0; k); v 2 = ( 1; 0; 1; 0); v 3 = (0; 2; 1; k 1): 1. Stabilire per quali valori di k l'insieme S = fv 1 ; v 2 ; v 3 g e linearmente indipendente. 2. Posto k = 1, si trovi, se possibile, una base di R 4 contenente v 1 ; v 2 ; v 3. 3) Dare la denizione di matrice inversa di una matrice, illustrando con esempi di matrici 3 3 invertibili e non invertibili. Che relazione c'e tra l'invertibilita di una matrice e i suoi autovalori? 4) Sia T : R 3! R 3 la funzione lineare con matrice associata rispetto alle basi canoniche. A = 1. Si stabilisca se T e iniettiva e/o suriettiva Si trovi la matrice associata a T rispetto alla base B = f(1; 2; 0); (1; 1; 0); (1; 1; 1)g (sia nel dominio che nel codominio). 3. (Solo per chi svolge solo la seconda parte del compito) Si consideri il prodotto scalare denito come T (x) x. Mostrare che esistono vettori x 2 R 3 non nulli tali che T (x) x < 0 (suggerimento: mostrare che T ha un autovalore negativo). 5) Sia T : R 4! R 4 la funzione lineare denita da T (x 1 ; x 2 ; x 3 ; x 4 ) = (2x 1 ; x 2 + x 3 + x 4 ; x 1 + x 3 + 2x 4 ; x 1 + x 4 ): 1. Si trovino gli autovalori di T e una base di ogni autospazio di T. 2. Si stabilisca se T e diagonalizzabile e se T e invertibile. 6) Dare la denizione di base ortonormale per un sottospazio di R n e scrivere due esempi di basi di un sottospazio tridimensionale di R 4, una ortonormale e una non ortonormale.

3 Cognome Nome B Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. 1) 2) 4) 5)

4 Geometria e algebra lineare { 16/1/2019 B 1) Siano r e r 0 le rette dello spazio di equazioni: r : x + y = y z + 1 = 0 e r 0 : x = 2t; y = 0; z = t: 1. Si trovi un'equazione cartesiana del piano perpendicolare a r e passante per l'origine. 2. Si stabilisca la posizione reciproca di r e r Si calcoli la distanza tra le rette r e r 0. 2) Si considerino i vettori di R 4 v 1 = (1; 1; k; 0); v 2 = (2; 0; 1; 0); v 3 = (1; 1; 1 + k; k): 1. Stabilire per quali valori di k l'insieme S = fv 1 ; v 2 ; v 3 g e linearmente indipendente. 2. Posto k = 1, si trovi, se possibile, una base di R 4 contenente v 1 ; v 2 ; v 3. 3) Dare la denizione di insieme di vettori linearmente indipendenti, illustrando con esempi nello spazio vettoriale R 4. Qual e il numero massimo di polinomi che un insieme linearmente indipendente nello spazio R 4 [x] puo contenere? 4) Sia T : R 3! R 3 la funzione lineare con matrice associata rispetto alle basi canoniche. A = 1. Si stabilisca se T e iniettiva e/o suriettiva Si trovi la matrice associata a T rispetto alla base B = f(0; 1; 1); (0; 1; 2); (1; 1; 1)g (sia nel dominio che nel codominio). 3. (Solo per chi svolge solo la seconda parte del compito) Si consideri il prodotto scalare denito come T (x) x. Mostrare che esistono vettori x 2 R 3 non nulli tali che T (x) x < 0 (suggerimento: mostrare che T ha un autovalore negativo). 5) Sia T : R 4! R 4 la funzione lineare denita da T (x 1 ; x 2 ; x 3 ; x 4 ) = ( x 1 + 3x 3 ; x 2 + x 3 + x 4 ; x 3 ; x 1 + x 4 ): 1. Si trovino gli autovalori di T e una base di ogni autospazio di T. 2. Si stabilisca se T e diagonalizzabile e se T e invertibile. 6) Si dia la denizione di molteplicita algebrica e molteplicita geometrica di un autovalore. Si faccia un esempio in cui tali molteplicita sono diverse, per un autovalore di una funzione lineare da R 2 in R 2.

5 Cognome Nome C Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. 1) 2) 4) 5)

6 Geometria e algebra lineare { 16/1/2019 C 1) Siano r e r 0 le rette dello spazio di equazioni: r : 2x y + 1 = z 1 = 0 e r 0 : x = t + 1; y = t; z = t: 1. Si trovi un'equazione cartesiana del piano perpendicolare a r e passante per l'origine. 2. Si stabilisca la posizione reciproca di r e r Si calcoli la distanza tra le rette r e r 0. 2) Si considerino i vettori di R 4 v 1 = ( 1; 2; 2; k 1); v 2 = (1; 0; 1; 0); v 3 = (0; 2; 3; k + 1): 1. Stabilire per quali valori di k l'insieme S = fv 1 ; v 2 ; v 3 g e linearmente indipendente. 2. Posto k = 1, si trovi, se possibile, una base di R 4 contenente v 1 ; v 2 ; v 3. 3) Dare la denizione di insieme di generatori di uno spazio vettoriale, illustrando con esempi nello spazio vettoriale R 4. Qual e il numero minimo di polinomi che un insieme generatore dello spazio R 4 [x] deve contenere? 4) Sia T : R 3! R 3 la funzione lineare con matrice associata rispetto alle basi canoniche. A = 1. Si stabilisca se T e iniettiva e/o suriettiva Si trovi la matrice associata a T rispetto alla base B = f(0; 1; 1); (0; 1; 1); (1; 1; 1)g (sia nel dominio che nel codominio). 3. (Solo per chi svolge solo la seconda parte del compito) Si consideri il prodotto scalare denito come T (x) x. Mostrare che esistono vettori x 2 R 3 non nulli tali che T (x) x < 0 (suggerimento: mostrare che T ha un autovalore negativo). 5) Sia T : R 4! R 4 la funzione lineare denita da T (x 1 ; x 2 ; x 3 ; x 4 ) = (2x 1 2x 3 ; 2x 1 + x 2 + x 3 + x 4 ; 2x 3 ; x 1 + x 4 ): 1. Si trovino gli autovalori di T e una base di ogni autospazio di T. 2. Si stabilisca se T e diagonalizzabile e se T e invertibile. 6) Si dia la denizione di nucleo di una funzione lineare e la si illustri mediante un esempio. Si enuncino alcune proprieta rilevanti del nucleo.

7 Cognome Nome D Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. 1) 2) 4) 5)

8 Geometria e algebra lineare { 16/1/2019 D 1) Siano r e r 0 le rette dello spazio di equazioni: r : x z 1 = y + z = 0 e r 0 : x = t; y = 2t; z = 0: 1. Si trovi un'equazione cartesiana del piano perpendicolare a r e passante per l'origine. 2. Si stabilisca la posizione reciproca di r e r Si calcoli la distanza tra le rette r e r 0. 2) Si considerino i vettori di R 4 v 1 = ( 1; 1; k; k); v 2 = (1; 0; 1; 0); v 3 = (0; 1; k + 1; k + 1): 1. Stabilire per quali valori di k l'insieme S = fv 1 ; v 2 ; v 3 g e linearmente indipendente. 2. Posto k = 1, si trovi, se possibile, una base di R 4 contenente v 1 ; v 2 ; v 3. 3) Dare la denizione di base di uno spazio vettoriale V, illustrando con esempi nello spazio vettoriale R 4. Ogni insieme di vettori di V puo essere contenuto in una base? Motivare la risposta. 4) Sia T : R 3! R 3 la funzione lineare con matrice associata rispetto alle basi canoniche. A = 1. Si stabilisca se T e iniettiva e/o suriettiva Si trovi la matrice associata a T rispetto alla base B = f(1; 0; 1); (1; 1; 1); (1; 0; 1)g (sia nel dominio che nel codominio). 3. (Solo per chi svolge solo la seconda parte del compito) Si consideri il prodotto scalare denito come T (x) x. Mostrare che esistono vettori x 2 R 3 non nulli tali che T (x) x < 0 (suggerimento: mostrare che T ha un autovalore negativo). 5) Sia T : R 4! R 4 la funzione lineare denita da T (x 1 ; x 2 ; x 3 ; x 4 ) = (3x 1 2x 4 ; 3x 2 + x 3 + x 4 ; x 1 + x 3 ; 3x 4 ): 1. Si trovino gli autovalori di T e una base di ogni autospazio di T. 2. Si stabilisca se T e diagonalizzabile e se T e invertibile. 6) Si deniscano il nucleo e l'immagine di una funzione lineare f : V! V 0. Si enunci il Teorema della nullita piu rango e lo si illustri con un esempio.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. 1) 2) 3) Geometria e algebra lineare 5/11/2015 A 1) Sia π il piano passante per i punti A = ( 3, 2, 1), B = (0, 1, 2), C

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 26 febbraio 2007 Traccia I COG 1 In R 3 sono assegnati i vettori: u 1 = (2, h, 0), u 2 = (1, 0, h), u 3 = (h, 1, 2). Stabilire se esistono valori reali del parametro h per cui S = {u 1, u 2,

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016) Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 22 Febbraio 2008 Traccia I H = {(x, y, z, t) : x + 3y = 0, y z = 0}; K = {(x, y, z, t) : y + z = 0} 3y z 2z x y y { } hx 1 +hx 4 = h 1 x 2 +hx 4 = 1 x 1 +x 3 = h 1 1 1 4 Sia S = 1 una matrice

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 28 giugno 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 11 luglio 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n.

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n. LAUREA IN INGEGNERIA CIVILE Corso di Matematica II a prova di accertamento Padova 10-1-07 Docenti: Chiarellotto - Cantarini TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3. CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 9 GENNAIO Compito A

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 9 GENNAIO Compito A Cognome e Nome: Matricola: Corso di laurea: GEOMETRIA E ALGEBRA LINEARE Prova scritta del 9 GENNAIO 2018 - Compito A (a) (b) (c) (d) Parziali 1 2 3 4 Regole: TOTALE: Scrivere solo con penna nera o blu

Dettagli

PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A

PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A. 2010-11 DOCENTE TITOLARE: FRANCESCO BONSANTE 1. Geometria analitica dello spazio (1) vettori applicati e lo spazio E 3 O: operazioni su vettori e proprietà.

Dettagli

PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A

PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A PROGRAMMA DEL CORSO DI GEOMETRIA E ALGEBRA. A.A. 2011-12 DOCENTE TITOLARE: FRANCESCO BONSANTE 1. Geometria analitica dello spazio (1) vettori applicati e lo spazio E 3 O: operazioni su vettori e proprietà.

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. x 2y = 0

Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. x 2y = 0 Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio 1A Siano r la retta di equazioni { x + y 2z = 1 e P il punto di coordinate

Dettagli

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione Geometria e algebra lineare 7//08 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio A Siano r la retta passante per i punti A = (0,, 0) e B = (,, ) ed s la retta

Dettagli

(c) Determinare per quali valori di k lo spazio delle soluzioni ha dimensione 2:

(c) Determinare per quali valori di k lo spazio delle soluzioni ha dimensione 2: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 7 luglio 2017 Matricola: Anno di corso: x y 1. (8 pt Si consideri il sistema lineare AX = B, dove X = z è il vettore delle t incognite, A e

Dettagli

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A }

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A } Algebra e Geometria per Informatica Primo Appello 3 giugno 6 Tema A Sia M (R lo spazio vettoriale delle matrici a coefficienti reali Sia W = { A M (R A T = A } il sottospazio vettoriale delle matrici simmetriche

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

GEOMETRIA. 2 Febbraio ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 2 Febbraio ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 2 Febbraio 2007 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A

GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A Soluzioni Appello del 17 GIUGNO 2010 - Compito A a) Se h = 7 il sistema ha infinite soluzioni (1 variabile libera), mentre se h 7 la soluzione è unica. b) Se h = 7 allora Sol(A b) = {( 7z, 5z + 5, z),

Dettagli

0 1 k. k k k +4. b) Posto k = 0, si calcoli l inversa di A e l inversa di T.

0 1 k. k k k +4. b) Posto k = 0, si calcoli l inversa di A e l inversa di T. Esercizi per il Parziale 2, Prof. Fioresi, 2018 1. Cambi di base, determinante e inversa 1. Si trovino le coordinate del vettore v = (1, 1,2) espresso nella base canonica, rispetto alla base B = {(1, 4,3),(5,3,

Dettagli

Registro dell insegnamento. Facoltà Ingegneria... Insegnamento GEOMETRIA... Settore Mat03... Corsi di studio Ingegneria Meccanica (M-Z)...

Registro dell insegnamento. Facoltà Ingegneria... Insegnamento GEOMETRIA... Settore Mat03... Corsi di studio Ingegneria Meccanica (M-Z)... UNIVERSITÀ DEGLI STUDI Registro dell insegnamento Anno Accademico 2014/2015 Facoltà Ingegneria...................................... Insegnamento GEOMETRIA............................. Settore Mat03...........................................

Dettagli

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO Compito A

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO Compito A Cognome e Nome: Matricola: Corso di laurea: GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO 2019 - Compito A (a) (b) (c) (d) Parziali 1 2 3 4 Regole: TOTALE: Scrivere solo con penna nera o blu

Dettagli

Algebra lineare e geometria AA Esercitazione del 14/6/2018

Algebra lineare e geometria AA Esercitazione del 14/6/2018 Algebra lineare e geometria AA. 2017-2018 Esercitazione del 14/6/2018 1) Siano A, B due matrici n n tali che 0 < rk(a) < rk(b) = n. (a) AB è invertibile. (b) rk(ab) = nrk(b). (c) det(ab) = det(a). (d)

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA AMBIENTE-TERRITORIO Padova I Appello TEMA n.1

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA AMBIENTE-TERRITORIO Padova I Appello TEMA n.1 CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA AMBIENTE-TERRITORIO Padova 16-06-2012 I Appello TEMA n.1 Esercizio 1. (a) In R 3 dotato del prodotto scalare usuale, si consideri

Dettagli

ANALISI MATEMATICA. Informazioni utili alla preparazione della prova parziale: Conoscere:

ANALISI MATEMATICA. Informazioni utili alla preparazione della prova parziale: Conoscere: ANALISI MATEMATICA 3 a prova parziale del 03-04-2017 Regole di comportamento: Il tempo a disposizione per la prova parziale è di un'ora e trenta minuti. Dotarsi esclusivamente di penna nera o blu, matita

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 2015 VERSIONE A

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 2015 VERSIONE A FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 015 VERSIONE A DOCENTE: MATTEO LONGO 1. Domande. Esercizi Esercizio 1 (8 punti). Al variare del parametro a R, considerare

Dettagli

incognite, A e B sono le seguenti matrici dipendenti dal parametro reale h:

incognite, A e B sono le seguenti matrici dipendenti dal parametro reale h: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: settembre 07 Matricola: Anno di corso: ( x. (8 pt Si consideri il sistema lineare AX = B, dove X = y è il vettore delle z incognite, A e B

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2012/13 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi 1.2

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0 Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne

Dettagli

Geometria e algebra lineare 1/2/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. = 2 + 3t = 1 t

Geometria e algebra lineare 1/2/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. = 2 + 3t = 1 t Geometria e algebra lineare 1//017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio 1A Siano r la retta di equazioni parametriche x y z = t = + 3t = 1 t ed r la

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

GEOMETRIA. 25 GENNAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 25 GENNAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 25 GENNAIO 2008 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 MATTEO LONGO Esercizio 1. Al variare del parametro a R, si consideri l applicazione lineare L a : R R definita dalle

Dettagli

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 7 FEBBRAIO 2009 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2009/2010 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi 1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,

Dettagli

Esame di Geometria e Algebra Lineare

Esame di Geometria e Algebra Lineare Esame di Geometria e Algebra Lineare Esame scritto: 28 Luglio 2014 Esame orale: Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

18 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

18 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria BAER Canale A-K Esercizi 9

Geometria BAER Canale A-K Esercizi 9 Geometria BAER Canale A-K Esercizi 9 Esercizio Sia (V,, ) uno spazio metrico Si mostri che se U V, v V, p U la proiezione ortogonale su U, allora v p U (v) U Soluzione: Il vettore v si scrive in modo unico

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio M 2 (R) a + 2b d = 0.

Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio M 2 (R) a + 2b d = 0. Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio 2013 1. Si considerino i seguenti sottospazi vettoriali di M 2 (R): ( ) ( ) 0 1 0 1 U =,, 1 0 1 0 ( ) a b V = c d } M 2 (R) a + 2b d = 0. (a) Si determinino

Dettagli

Ricomincia. ha l'autovalore nullo e' invertibile (c) ha l'autovalore con autospazio di dimensione ha immagine di dimensione

Ricomincia. ha l'autovalore nullo e' invertibile (c) ha l'autovalore con autospazio di dimensione ha immagine di dimensione Test 270 Geometria Exercise GEO270 I Quiz Geometria 14/09/2012 A Revisione Info Risultati Anteprima Modifica Sei collegato come Admin User. (Esci) Aggiorna Quiz Ricomincia Iniziato: lunedì, 3 settembre

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

Corsi di laurea in Matematica e Matematica per le Applicazioni Esame scritto di Algebra Lineare del 7/2/2002

Corsi di laurea in Matematica e Matematica per le Applicazioni Esame scritto di Algebra Lineare del 7/2/2002 Esame scritto di Algebra Lineare del 7/2/2002 Esercizio 1 Sia h R e sia f : R[x] 3 R 3 l applicazione lineare tale che f(1) = (1, 1, h) f(1 + x) = (h + 2, 0, h) f(x 2 ) = (0, 0, 1) f(1 + x + x 3 ) = (h

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

4. Sottospazi vettoriali Piani e rette in E 3 O

4. Sottospazi vettoriali Piani e rette in E 3 O Indice Prefazione i Capitolo 0. Preliminari 1 1. Insiemistica e logica 1 1.1. Insiemi 1 1.2. Insiemi numerici 2 1.3. Logica matematica elementare 5 1.4. Ancora sugli insiemi 7 1.5. Funzioni 10 1.6. Composizione

Dettagli

Esame di GEOMETRIA 27 giugno ore 11

Esame di GEOMETRIA 27 giugno ore 11 Esame di GEOMETRIA 27 giugno 2011 - ore 11 Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO 1. Domande Domanda 1. Dire quando una funzione f : X Y tra dee insiemi X ed Y si dice iniettiva.

Dettagli

Registro dell insegnamento

Registro dell insegnamento Registro dell insegnamento Anno accademico 2016/17 Prof. Settore inquadramento Gabriele Vezzosi MAT-03 Scuola di Ingegneria Dipartimento DIMAI U. Dini Insegnamento Geometria Moduli Settore insegnamento

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA B GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = (x + y z + w, y z, x +

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2013/14 Algebra Lineare ed Elementi di Geometria (Programma aggiornato in data 23 gennaio 2014) 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA A GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = ( x + y + z + w, y + z,

Dettagli

Facoltà di INGEGNERIA E ARCHITETTURA Anno Accademico 2016/17 Registro lezioni del docente ZUDDAS FABIO

Facoltà di INGEGNERIA E ARCHITETTURA Anno Accademico 2016/17 Registro lezioni del docente ZUDDAS FABIO Facoltà di INGEGNERIA E ARCHITETTURA Anno Accademico 2016/17 Registro lezioni del docente ZUDDAS FABIO Attività didattica GEOMETRIA E ALGEBRA [IN/0079] Periodo di svolgimento: Secondo Semestre Docente

Dettagli

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Esercizio 1. Sia f l endomorfismo di R 4 definito nel modo seguente: f(x, y, z, w) = (w,

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

Anno Accademico 2016/2017

Anno Accademico 2016/2017 Mod. 136/1 ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Anno Accademico 2016/2017 Scuola di Scienze Corsi di Laurea o di Diploma Triennale in Matematica (nuovo ordinamento) Insegnamento Geometria I Docente

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

Tutoraggio di Algebra Lineare e Geometria. Correzione del tema d'esame del 28/2/2006

Tutoraggio di Algebra Lineare e Geometria. Correzione del tema d'esame del 28/2/2006 Tutoraggio di Algebra Lineare e Geometria Correzione del tema d'esame del 8//6 Esercizio. Si considerino in R 4 i vettori : v =, v =, v = / / a) si dica se tali vettori sono linearemente indipendenti e

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. R. Sanchez - T. Traetta - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, dell Innovazione del Prodotto, Meccatronica

Dettagli

Ricomincia. ha l'autovalore nullo e' suriettivo (c) ha l'autovalore con autospazio di dimensione ha nucleo di dimensione

Ricomincia. ha l'autovalore nullo e' suriettivo (c) ha l'autovalore con autospazio di dimensione ha nucleo di dimensione Test 270 Geometria Exercise GEO270 I Quiz Geometria 14/09/2012 B Revisione Info Risultati Anteprima Modifica Sei collegato come Admin User. (Esci) Aggiorna Quiz Ricomincia Iniziato: lunedì, 3 settembre

Dettagli

Esercizio 1. Data la matrice:

Esercizio 1. Data la matrice: Domande 1. Definizione di prodotto scalare di uno spazio vettoriale. (2 punti) Prova scritta CdL Informatica, Canale A-G Data: 12/02/2019. Tema 1. Nome e cognome: Matricola: Firma: Il compito è di 4 pagine.

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Soluzione: La matrice M cercata è quella formata dagli autovettori di A. Il polinomio caratteristico di A è: p t (A) = (t 1)(t 3) 0 4 V 1 = Ker

Soluzione: La matrice M cercata è quella formata dagli autovettori di A. Il polinomio caratteristico di A è: p t (A) = (t 1)(t 3) 0 4 V 1 = Ker Compito di Algebra Lineare - Ingegneria Biomedica 4 luglio 7 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova II prova parziale TEMA n.1

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova II prova parziale TEMA n.1 CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova 15-06-2010 II prova parziale TEMA n.1 Parte 1. Quesiti preliminari. Stabilire se le seguenti affermazioni sono

Dettagli

Università degli Studi di Catania CdL in Ingegneria Industriale

Università degli Studi di Catania CdL in Ingegneria Industriale CdL in ngegneria ndustriale Prova scritta di Algebra Lineare e Geometria del 27 gennaio 2014 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. È vietato consultare

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

1. Esercizi (1) Calcolare + ( 1) + 3 2, 2. (2) siano X, Y, Z R 3. Dimostrare che se X +Y = X +Z, allora Y = Z;

1. Esercizi (1) Calcolare + ( 1) + 3 2, 2. (2) siano X, Y, Z R 3. Dimostrare che se X +Y = X +Z, allora Y = Z; Esercizi () Calcolare 4 + () + () siano X Y Z R Dimostrare che se X +Y = X +Z allora Y = Z; () dimostrare che i vettori sono linearmente dipendenti; (4) dimostrare che i vettori 4 sono linearmente indipendenti;

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI Nota. La descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione.

Dettagli

12 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

12 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 1 dicembre 005 - Soluzione esame di geometria - Ing. gestionale - a.a. 005-006 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

16 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

16 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 16 gennaio 017 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 016-017 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

14 dicembre Esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

14 dicembre Esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 MATTEO LONGO Svolgere entrambe le parti (Teoria ed Esercizi Si richiede la sufficienza su entrambe le parti 1

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2017/2018 Prof. GABRIELE VEZZOSI Settore inquadramento MAT/03 - GEOMETRIA Scuola Ingegneria Dipartimento Matematica e Informatica 'Ulisse Dini' Insegnamento GEOMETRIA

Dettagli

UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento

UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell'insegnamento Anno accademico 2012/2013 Prof. ELISA PRATO Settore inquadramento MAT/03 - GEOMETRIA Facoltà ARCHITETTURA Insegnamento ISTITUZIONI MATEMATICHE

Dettagli

LAUREA IN INGEGNERIA MECCANICA Corso di Matematica 2 I a prova parziale Padova Docenti: Cantarini Fiorot TEMA n.1

LAUREA IN INGEGNERIA MECCANICA Corso di Matematica 2 I a prova parziale Padova Docenti: Cantarini Fiorot TEMA n.1 LAUREA IN INGEGNERIA MECCANICA Corso di Matematica 2 I a prova parziale Padova 15-02-08 Docenti: Cantarini Fiorot TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o

Dettagli

(d) Determinare il segno di q e fornire, se esistono, un vettore non nullo su cui q è nulla e uno su cui q è negativa, giustificando la risposta.

(d) Determinare il segno di q e fornire, se esistono, un vettore non nullo su cui q è nulla e uno su cui q è negativa, giustificando la risposta. CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 9 febbraio 2017 Matricola: Anno di corso: ( ) ( ) 2 0 0 1. (8 pt) Si consideri la matrice A = 0 1 1 e X = y ; sia L A : R 3 R 3 0 1 1 l applicaione

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2014-2015 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare (associativa, distributiva

Dettagli

Ingegneria Edile - Corso di geometria - anno accademico 2009/2010

Ingegneria Edile - Corso di geometria - anno accademico 2009/2010 prova scritta del 7// TEMPO A DISPOSIZIONE: 9 minuti Esercizio. In R si considerino i punti A =, B = e la retta r passante per A e B. (i)il punto C = r? vero falso (ii) Determinare l equazione di un piano

Dettagli

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R:

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R: ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R: x 1 + x = 0 6x 1 + (λ + )x + x 3 + x 4 = 1 x 1 4x + (λ + 1)x 3 + 6x 4 = 3

Dettagli

Facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................ La prova

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli