PREVISIONE DEI RENDIMENTI MINIMI E MASSIMI DI UN TITOLO IN BORSA MEDIANTE UN MODELLO MULTIVARIATO DI VOLATILITÀ

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PREVISIONE DEI RENDIMENTI MINIMI E MASSIMI DI UN TITOLO IN BORSA MEDIANTE UN MODELLO MULTIVARIATO DI VOLATILITÀ"

Transcript

1 PREVISIONE DEI RENDIMENTI MINIMI E MASSIMI DI UN TITOLO IN BORSA MEDIANTE UN MODELLO MULTIVARIATO DI VOLATILITÀ ANDREA GUIZZARDI * - PAOLO PARUOLO ** 1. Introduzione Il problema di previsione dei rendimenti azionari è da sempre al centro della letteratura finanziaria empirica; si veda ad esempio Granger (1992) e riferimenti ivi contenuti. Tale letteratura considera frequentemente dati giornalieri e si concentra sulla previsione del rendimento alla chiusura della giornata borsistica, senza indagare i possibili riflessi sulle strategie di investimento, si veda Bollerslev et al. (1992). Il collegamento fra gli aspetti previsivi e di strategia operativa ha invece implicazioni rilevanti sulla definizione delle grandezze che occorre prevedere e di conseguenza sul tipo di impostazione del problema della previsione. Ad esempio, nella predisposizione di schemi operativi ad alta frequenza, più che l anticipazione dei rendimenti alla chiusura risulta di particolare rilevanza la stima dei rendimenti attesi massimi e minimi giornalieri. La necessità di prevedere congiuntamente i rendimenti massimo e minimo colloca, di conseguenza, il problema di previsione ad alta frequenza in ambito multivariato. Oltre al valore atteso, un importante caratteristica di ciascun rendimento azionario è il rischio, valutato condizionatamente all informazione disponibile in ogni periodo. Nella letteratura finanziaria dei modelli CAPM, il rischio di un investimento è riassunto nella cosiddetta «volatilità», identificata con la varianza condizionata del rendimento, si veda ad esempio Ingersoll (1987), Campbell et al. (1997) o Sartore (1999). Volatilità e rendimento atteso, ossia i primi due * Dipartimento di Scienze Statistiche, Università degli Studi di Bologna, ** Facoltà di Economia, Lavoro svolto con parziale contributo MURST ex 60 per cento e presentato alla XL Riunione scientifica della Società Italiana degli Economisti, Ancona, ottobre Si ringrazia il professor Giannini per utili suggerimenti e discussioni. A fini ufficiali si specifica che i paragrafi 4, 5, 6, 7 sono stati curati da Andrea Guizzardi e i paragrafi 1, 2, l Appendice e la programmazione informatica da Paolo Paruolo. 51

2 momenti condizionati, costituiscono pertanto le caratteristiche di interesse di ciascuno dei rendimenti considerati. Nel presente lavoro si considerano tutti gli aspetti menzionati e si affronta il tema della previsione ad alta frequenza guardando sia ai problemi di previsione dei rendimenti e della volatitilà di un titolo azionario, sia ai problemi di implementazione di strategie di investimento basate sulle previsioni ottenute. Come messo in evidenza da Granger (1992), la prevedibilità dei rendimenti azionari non implica necessariamente la possibilità di trarre profitto da strategie di arbitraggio basate sulle previsioni, e quindi l inefficienza di mercato, anche se occasionalmente una particolare strategia operativa basata su buone previsioni può fornire risultati soddisfacenti. La letteratura ha proposto nell ultimo decennio diverse classi di processi che spiegano l evoluzione temporale dei valori attesi e della volatilità di più rendimenti; fra i processi di riferimento in questo contesto si colloca la classe di processi GARCH multivariati trattati in Engle e Kroner (1995), e nei riferimenti ivi contenuti. Tali processi sono stati generalizzati al caso in cui vi sia dipendenza dei due primi momenti condizionati da variabili d informazione esterne (VAR- GARCH-X), e al caso in cui sono presenti effetti asimmetrici sulla volatilità nelle fasi di espansione e di storno del mercato. Diversi modelli finanziari, quali varie versioni del CAPM, prevedono una dipendenza lineare dei rendimenti attesi da una misura di volatilità che riassume il rischio; a parità di altre condizioni, infatti, ci si attende un premio per il rischio positivo, ossia un più alto rendimento atteso, a fronte di una più alta rischiosità dell investimento. L estensione dei processi GARCH che annida tale dipendenza è indicata in letteratura come «GARCH in media» o GARCH-M. L aspetto multivariato di questi processi consente di desumere l evoluzione temporale di qualsiasi combinazione lineare dei rendimenti dei titoli considerati, corrispondente a un portafoglio di titoli. Nel caso il sistema contenga i rendimenti minimi e massimi di una stessa azione, una combinazione lineare di interesse è costituita dalla loro differenza, che identifica lo spread max-min. Il ricorso a modelli multivariati permette quindi l analisi dell evoluzione temporale dello spread senza richiedere la definizione di ulteriori equazioni 1. L insieme di informazione disponibile riveste un ruolo centrale nella valutazione dei momenti condizionati oggetto di interesse. Come analizzato nella vasta letteratura sull efficienza informativa dei mercati azio- ¹ Nei modelli univariati non sono inclusi gli aspetti di «collegamento» fra titoli. Per tenerne conto, nel caso di un economia stocastica con due soli titoli, occorrerebbe specificare un numero di «relazioni» univariate pari al numero dei portafogli che si possono generare combinando i due titoli; è semplice osservare che tali combinazioni sono infinite. Un modello multivariato include tutti gli aspetti di «collegamento» necessari a valutare l evoluzione di ogni possibile portafoglio. 52

3 A. GUIZZARDI - P. PARUOLO, PREVISIONE DEI RENDIMENTI MINIMI E MASSIMI... nari, Fama (1970), l insieme di informazione disponibile ai vari investitori potrebbe essere diverso. In questo lavoro si è tentato di utilizzare l insieme d informazione disponibile giorno per giorno ad un operatore finanziario «tipo» appartenente ad un istituzione finanziaria di dimensioni medio-piccole. In tali istituzioni l osservazione dei prezzi di apertura dei mercati spesso precede le decisioni di investimento giornaliere. I prezzi di apertura riflettono l informazione accumulatasi dalla chiusura del mercato precedente, e influenzano le misure di volatilità dei rendimenti, come documentato ad esempio in Gallo e Pacini (1998) e nei riferimenti ivi contenuti. Il prezzo di apertura si forma sulla base delle contrattazioni «virtuali» del mercato che precedono l apertura effettiva. Anche tali informazioni sono utilizzate nella specificazione dei modelli qui presentati. Il lavoro è così organizzato: nel paragrafo 2 si introducono i modelli di riferimento come casi particolari del modello multivariato VAR-GARCH con variabili esterne, effetti asimmetrici e in media. Nel paragrafo 3 si descrivono i dati utilizzati, e nel paragrafo 4 si riportano i risultati di stima e specificazione. Nel paragrafo 5 si riporta il confronto fra previsioni, mentre il paragrafo 6 riporta le conclusioni. In Appendice si riportano alcune considerazioni tecniche sui modelli utilizzati assieme ad alcune tabelle di risultati. 2. Modelli In questo lavoro si considerano modelli econometrici parametrici a tempo discreto t = 1, 2,... per i primi due momenti condizionati di un vettore n-dimensionale di variabili dipendenti Y t. Si suppone che l operatore «tipo» abbia a disposizione un altro vettore di variabili osservabili X t che si ritiene contenga informazione rilevante collegata a Y t ; tali variabili si dicono nel seguito esplicative. Le variabili esplicative possono essere sia di natura deterministica, come una costante o dummy stagionali, sia di natura prettamente stocastica. Al fine di costruire un modello di previsione ex ante per Y t si ipotizza che le variabili esplicative contenute in X t siano osservabili ai tempi passati t i, i = 1, 2,..., o al più a un tempo strettamente precedente rispetto al tempo t 2. L insieme di informazione disponibile consiste pertanto nei valori correnti e passati di X t, ossia X t i, i = 0, 1,... e nei valori passati di Y t, ossia Y t i, i = 1, 2,..., ed è riassunto nel vettore W t :=(Y t 1, Y t 2,... Y t py, Y t, Y t 1,... Y t px ) di dimensione n ω 1, dove p x e p y indicano ordini finiti di ritardi di Y t e X t che si ipotizza siano sufficienti a rappresentare l informazione rilevante per la previsione di Y t. ² La precisazione riguarda ad esempio i prezzi di apertura del mercato tedesco e italiano, considerati noti al tempo t, si veda il paragrafo 3. 53

4 I due momenti condizionati oggetto di interesse µ t := E t (Y t ):= E (Y t W t ) e H t := V t (Y t ):= V (Y t W t ) sono ipotizzati del seguente tipo µ t =ΨW t +Λh t [1] H t = g(c) + g (A(ε t 1 + γ)) + BH t 1 B +g (DW t ), [2] dove h t rappresenta (incolonnati per colonna) gli elementi sulla diagonale principale e nel triangolo inferiore della matrice di varianza e covarianza H t. La funzione g è scelta pari a g(x) = xx. I parametri del modello sono dati da (Ψ, Λ, C, A, γ, B, D); il vettore n-dimensionale ε t indica gli scarti dal valore atteso condizionato, dette innovazioni, ε t := Y t µ t. I modelli [1] e [2] sono stati per la prima volta introdotti da Engle e Kroner (1995) 3. Rispetto alla formulazione originaria, la specificazione presente contiene alcuni termini aggiuntivi che possono dare ragione degli effetti di asimmetria nell impatto dell informazione e della dipendenza diretta della volatilità dall insieme di informazione. Una breve descrizione tecnica di detti modelli è riportata in Appendice. 3. I dati Il campione considerato per l analisi empirica va dal gennaio 1994 al settembre 1999, per un totale di osservazioni giornaliere. Il periodo è adatto a studiare le dinamiche di un titolo azionario quotato alla Borsa di Milano in quanto comprende tutti i principali movimenti dei prezzi che si possono osservare sui mercati borsistici. In particolare tra il gennaio 1994 e la metà del 1997 si è osservato un lungo movimento laterale seguito da un periodo di crescita che è stato interrotto da due forti fasi di storno nel La fonte di tutte le serie è DATASTREAM. Per compiere l analisi previsiva il campione totale è stato suddiviso in tre sottocampioni: un campione di stima (C 1 ), un campione di calibrazione (C 2 ), e un campione di previsione (C 3 ). Il campione C 1 copre il periodo tra il 3 gennaio 1994 ed il 30 dicembre 1998, per un totale di osservazioni, ed è utilizzato per la specificazione e la stima dei modelli. Il ricorso a variabili ritardate quali variabili d informazione ha ridotto il numero di osservazioni disponibili a T 1 = ³ In dettaglio corrispondono alla forma ridotta dei processi GARCH(1, 1) simultanei multivariati con effetto in media di tipo BEKK con K = 1 introdotti da Engle e Kroner (1995), eq. (3.1). In questo lavoro si utilizza la forma ridotta rinunciando all approfondimento della struttura di simultaneità fra le variabili dipendenti per focalizzare l attenzione sugli aspetti previsivi. Questa scelta non va intesa come riduttiva dell importanza della struttura di simultaneità, ma solo come scelta operativa. 54

5 A. GUIZZARDI - P. PARUOLO, PREVISIONE DEI RENDIMENTI MINIMI E MASSIMI... Il campione C 2 è composto da T 2 T 1 = 96 osservazioni relative al periodo 1 gennaio - 21 maggio 1999, ed è utilizzato sia per stimare i quantili della distribuzione dei previsori in modo non parametrico sia per valutare le potenzialità delle regole di trading implementabili sulla base della previsione di rendimenti attesi e volatilità. Il campione C 2 è stato successivamente unito al campione C 1 per ristimare i modelli selezionati prima di procedere al calcolo delle previsioni su di un terzo campione. Questo, indicato con C 3, consta di T 3 T 2 = 76 osservazioni riferite al periodo tra il 24 maggio ed il 3 settembre 1999; C 3 oltre che alla valutazione della capacità previsiva dei modelli, è utilizzato per misurare il profitto ottenibile dalle regole di trading calibrate sul campione C Le variabili dipendenti Si è scelto per l analisi il titolo azionario IFIL-Finanziaria di Partecipazioni SPA, un impresa che sul periodo d osservazione ha fatto parte dell indice MIB30. Oltre alla elevata dimensione 4, altre importanti ragioni hanno suggerito la scelta del titolo. La finanziaria ha una rilevante quota di azionariato stabile e la sua quotazione è pertanto meno soggetta rispetto a quella di altre blue-chips ad oscillazioni legate a manovre speculative; inoltre risulta un titolo meno esposto di altri alle congiunture settoriali dato che ha partecipazioni ampiamente diversificate. L IFIL conta partecipazioni nella grande distribuzione (con il controllo del gruppo Rinascente attraverso la sua partecipazione maggioritaria nel pacchetto azionario del gruppo Eurofind), nell alimentare (con il 55,2 per cento della Worms & C. (Fr)), e nel leisure (attraverso il controllo del 43,5 per cento del capitale sociale di Alpitour, del 25 per cento di Sifalberghi e del 22,7 per cento di Club Med. Altre partecipazioni rilevanti sono quelle collegate alla proprietà del 3,5 per cento del capitale sociale di S. Paolo- IMI, del 22 per cento del gruppo UNICEM e soprattutto del 12,3 per cento del gruppo FIAT detenuto direttamente o attraverso società controllate. Le variabili dipendenti Y t := (Y 1t, Y 2t ) sono costituite dai rendimenti giornalieri massimo e minimo del titolo IFIL calcolati rispettivamente come logaritmo del rapporto tra le quotazioni massima e minima e il prezzo fatto registrare alla chiusura della giornata borsistica precedente. La differenza S t := Y 1t Y 2t definisce il max-min spread fra i rendimenti massimo e minimo del titolo IFIL. L analisi grafica delle variabili Y t mostra per la serie Y 2t la presenza di 2 realizzazioni che è possibile considerare anomale data l entità del movi- ⁴ La IFIL è una impresa con circa dipendenti ed una capitalizzazione di Borsa di circa 2,5 miliardi di euro all inizio del

6 mento e la loro realizzazione in periodi di bassa volatilità. Il 26/5/94 si è registrata una diminuzione massima di 17,6 punti percentuali in occasione dell aumento di capitale varato per acquistare UNICEM; il 24/4/98 si è registrata una flessione massima di oltre il 10 per cento dovuta a false aspettative createsi durante la fusione tra banca IMI e Istituto S. Paolo; tali osservazioni sono state eliminate nella fase di stima. Altre diminuzioni superiori a 10 punti percentuali si sono realizzate nel corso del periodo considerato, ma il loro verificarsi in settimane di elevata volatilità ha consigliato di non eliminarle dal campione. La Figura 1 riporta i grafici di Y 1t e Y 2t nel campione C 1 mentre la Figura 2 riporta i grafici delle stesse serie nei campioni C 2 e C 3. Fig. 2 Rendimenti giornalieri massimi Y 1t (a sinisra) e minimi Y 2t (a destra) del titolo IFIL dal 1 gennaio 1998 al 3 settembre 1999, campioni di calibrazione C 2 e di previsione C 3 56

7 A. GUIZZARDI - P. PARUOLO, PREVISIONE DEI RENDIMENTI MINIMI E MASSIMI... L analisi descrittiva delle due serie (Tabella 1) evidenzia come nei movimenti al rialzo o al ribasso il titolo abbia mantenuto una forte simmetria rispetto al prezzo di chiusura (lo zero); i valori medi, mediani, ed i quantili estremi di Y 1t e Y 2t sono definiti dagli stessi valori (con segno inverso); anche la volatilità delle due serie è molto simile. Le distribuzioni marginali dei rendimenti minimi e massimi sono asimmetriche, la prima a sinistra la seconda a destra, con un indice di asimmetria abbastanza simile; il test di Jarque-Bera sulla normalità marginale dei rendimenti indica per entrambe le variabili il rifiuto dell ipotesi di normalità sia pure tale non normalità risulti inferiore a quella misurata sullo spread S t. Tabella 1 Statistiche descrittive per le serie dei rendimenti considerati, campione totale C 1, C 2, C 3, periodo dal 3 gennaio 1994 al 3 settembre 1999; i dati relativi alle date contenenti i 2 outliers sono stati esclusi Y 1t Y 2t S t Y 1t Y 2t S t media 1,43 1,48 2,91 asimmetria 0,92 1,05 2 mediana 1,25 1,26 2,53 curtosi 5,62 6,16 9,9 minimo 0,054 0,118 0 Jarque-Bera massimo 9,72 4,63 14,3 1 centile 0, 02 0,07 0,008 dev. st. 1,67 1,74 1,57 99 centile 0, 07 0,02 0, Le variabili d informazione Le variabili di informazione comprendono prezzi, volumi, cambi e tassi di interesse rilevati a cadenza giornaliera e disponibili al pubblico degli investitori. In riferimento ai prezzi azionari si sono rilevate le quotazioni di apertura, minime, massime e di chiusura delle azioni ordinarie e di risparmio dei titoli IFIL e FIAT. I prezzi del titolo FIAT sono stati esplicitamente considerati nell ipotesi che l andamento di questa importante controllata possa anticipare le dinamiche dei prezzi IFIL. Inoltre si sono considerati altri indicatori azionari reelativi ai mercati italiano, tedesco e statunitense quali gli indici Comit, DAX e Standard & Poor 500. L informazione sui volumi è considerata mediante le capitalizzazioni giornaliere dei singoli titoli e dei mercati italiano e statunitense 5. Per considerare l effetto delle dinamiche dei tassi a breve e a lungo ⁵ La serie della capitalizzazione giornaliera delle azioni scambiate del titolo ordinario IFIL presenta una decina di dati mancanti; si è quindi fatto ricorso alla seguente semplice tecnica di imputazione. Se a fronte di un dato mancante non si verificano variazioni di prezzo si è imputato il volume minimo, viceversa se vengono osservate modificazioni di prezzo si imputa la capitalizzazione media delle giornate borsistiche precedente e successiva. 57

8 termine si sono osservati il tasso RIBOR a 7 giorni e il rendimento del BTP decennale benckmark. Per quanto riguarda il mercato dei cambi ci si è limitati a includere la sola informazione sul cambio liradollaro in considerazione dell entrata dell Italia nell area euro. Tutte le variabili sono state opportunamente ritardate in modo da rappresentare l informazione disponibile per l operatore «tipo» nell istante precedente la formazione dei rendimenti da prevedere. La maggior parte sono quindi calcolate con riferimento all istante t 1; si sono anche considerate variabili correnti rispetto alle variabili dipendenti Y t qualora sia possibile conoscerne le realizzazioni alcuni istanti prima dell apertura del mercato italiano. Tra queste variabili figurano il dato di apertura delle Borse tedesca e italiana; nell ipotesi che quest ultimo dato sia prevedibile dall operatore tipo prima dell effettivo inizio delle contrattazioni, a partire dalle informazioni sui prezzi nelle fasi di pre-apertura e validazione. Nel seguito del lavoro per indicare le singole variabili di informazione si utilizza una notazione del tipo xyz, dove i possibili valori assunti dalle tre lettere sono riassunti nella Tabella 2. Ad esempio I_H indica il logaritmo naturale del prezzo massimo IFIL al tempo t 1; si noti che i soli dati di apertura si riferiscono al tempo corrente. La non stazionarietà di molte delle serie considerate ha suggerito alcune trasformazioni alle variabili originarie. Ad esclusione dei tassi di interesse, i prezzi i volumi e i cambi sono espressi mediante il loro logaritmo naturale. La trasformazione consente di approssimare i rendimenti mediante differenze temporali e di valutare i rendimenti di portafoglio mediante combinazioni lineari. In particolare i differenziali xyh xyl e xyh xy_ danno 8 rendimenti (stazionari) che forniscono informazioni possibilmente rilevanti per la previsione di Y t. Tabella 2 Simbologa xyz adottata per descrivere le variabili d informazione x y z I ln prezzo IFIL R azione di risparmio H massimo in t 1 F ln prezzo FIAT _ altrimenti L minimo in t 1 C ln indice Comit O apertura in t D ln indice DAX V volume in t 1 S ln indice S&P500 _ altrimenti in t 1 L ln cambio /$ B tasso BTP R tasso RIBOR Accanto a rendimenti e differenziali si sono anche considerati alcuni indicatori simili a quelli proposti dall analisi tecnica. Tra questi si sono calcolati la differenza tra prezzo di un titolo e la sua media mobile a 5 e 21 termini (corrispondenti rispettivamente alla lunghez- 58

9 A. GUIZZARDI - P. PARUOLO, PREVISIONE DEI RENDIMENTI MINIMI E MASSIMI... za di una settimana e di un mese borsistico), la differenza tra medie mobili di diversa lunghezza (oscillatore MACD) e infine la differenza tra il rendimento dei singoli titoli e quello di mercato (forza relativa). Per rappresentare schematicamente tali indicatori si fa ricorso nel seguito alla notazione m (X t, i) per indicare l operatore media mobile applicato a i termini della variabile X t, m (X t, i) := i 1 i j = 1 0 X t j, e alla notazione m i (X t ) per indicare gli operatori m 1 (X t ):=X t m(x t, 5), m 2 (X t ):= m (X t, 5) m(x t, 21). Si rammenti infine che l operatore differenza è definito come segue X t := X t X t 1. Le variabili di informazione ricavate mediante le trasformazioni precedentemente descritte sono 174. La necessità di non escludere a priori informazioni che possono essere rilevanti nella specificazione di schemi di previsione dinamici ha suggerito di considerare anche i ritardi secondo e quinto, quest ultimo corrispondente ai valori delle variabili di informazione lo stesso giorno della settimana precedente. Data la presenza di relazioni di collinearità nell insieme delle variabili d informazione ai ritardi 1, 2, 5 (indicato con il 125 ) le variabili nel complesso considerate risultano Ricerca della specificazione e stima dei modelli previsivi Nella specificazione dei modelli si è inizialmente affrontato il problema della scelta delle varibili d informazione rilevanti tra le 400 descritte nel paragrafo precedente. A tale fine si è ipotizzato che l operatore tipo selezioni le variabili rilevanti, per la previsione di Y t, con una semplice logica lineare univariata; questa si traduce nel confronto, mediante test F, di diversi modelli lineari univariati per la media condizionata di Y 1t e Y 2t (del tipo [1], con λ=0) stimati condizionatamente a differenti insiemi di variabili esplicative. Nel caso della variabile dipendente Y 1t il confronto tra le somma dei quadrati dei residui delle due regressioni sugli insiemi di informazione 125 e 15 ha portato a una statistica F con valore di probabilità nella coda (p-value) pari a 67,9 per cento mentre il confronto fra 125 e 12 ha dato luogo a un p-value pari a 4,1 per cento. L ulteriore confronto considerando gli insiemi di informazione 15 e 1 ha dato luogo a un p-value pari a 0,3 per cento. Nel caso di Y 2t il confronto dei risultati basati sugli insiemi 125 e 15, e 125 e 12 ha portato in entrambi i casi a p-values superiori al 30 per cento mentre l ulteriore confronto fra gli insiemi di informazione 15 e 1, e 12 e 1 ha dato luogo a p-values inferiori all 1 per cento. ⁶ Un esempio di collinearità nell insieme si ha considerando le variabili α t := (I_H t 1 I t 1 ), b t := (I_L t 1 I t 1 ), c t :=.I_H t 1, d t := I_L t 1 e i loro ritardi α t 1, b t 1, c t 1, d t 1. Si osservi che (α t bt)= (I_H t 1 I_L t 1 ), e che quindi (α t b t ) (α t 1 -b t 1 ) = c t d t. Tale relazione di esatta collinearità implica la «ridondanza» dell informazione contenuta nei ritardi a t 1 e b t 1. 59

10 A partire dagli insiemi selezionati con i test precedenti ( 15 per Y 1t e 12 per Y 2t ) si è quindi proceduto alla selezione delle variabili d informazione utilizzando la procedura stepwise contenuta in SPSS (1997). I risultati della selezione hanno permesso di ridurre le variabili iniziali a 46; a queste si sono aggiunte 14 combinazioni lineari di alcune delle variabili escluse che presentano una diretta interpretazione come indicatori di analisi tecnica. In dettaglio: le differenze tra i rendimenti di apertura, chiusura, massimo e minimo dei titoli considerati e il rendimento di mercato, oltre alla differenza tra le variazioni percentuali dei volumi di singoli titoli e le variazioni percentuali dei volumi del mercato. Si è quindi valutata la significatività di queste variabili «tecniche» mediante test sui coefficienti di regressione, escludendo le variabili con statistiche t non significative al 5 per cento; l informazione sui volumi è risultata significativa nell equazione del rendimento massimo atteso Y 1t. Selezionate le variabili d informazione si è condotta un analisi dei residui delle equazioni univariate stimate per le medie condizionate, con l obiettivo di indagare la presenza di eteroschedasticità condizionata. Si sono quindi calcolati test LM, Engle (1982), specificando 5 ritardi per la variabile dipendente. Per Y 1t si è ottenuta una statistica F pari a 4,66 con p-value 0,032 per cento; per la variabile Y 2t si è ottenuta una statistica F pari a 6,40 con p-value 0,0007 per cento; tali risultati indicano la presenza di eteroschedasticità condizionata e suggeriscono di limitare i successivi confronti alla modellistica GARCH univariata e multivariata con effetti in media I modelli univariati Le specificazioni GARCH univariate sono state scelte in modo da annidare le precedenti specificazioni lineari per la media condizionata. Le variabili d informazione contenute in 1 sono state introdotte nella specificazione dell equazione della varianza condizionata e successivamente eliminate in modo sequenziale sulla base delle statistiche t associate. I calcoli sono stati effettuati con Eviews ver La specificazione finale è stata ulteriormente confrontata con il modello contenente tutte le variabili d informazione 1 nell equazione della varianza; quando il test ha suggerito il rifiuto dell ipotesi di uguaglianza tra i modelli alcune delle variabili omesse sono state reintrodotte, fino ad ottenere un modello congruente con il modello generale. La procedura è stata ripetuta per entrambe le variabili dipendenti ed ha portato a selezionare 19 ulteriori variabili per la varianza condizionata oltre alle 46 scelte in precedenza per modellare il valor atteso condizionato. Le 65 variabili d informazione così ottenute sono elencate nella Tabella 12A in Appendice. I modelli GARCH univariati stimati sono riassunti nelle Tabelle 13A, 14A in Appendice. 60

11 A. GUIZZARDI - P. PARUOLO, PREVISIONE DEI RENDIMENTI MINIMI E MASSIMI... L elevato valore di R 2, pari a 0,52, delle specificazioni per Y 1t e Y 2t testimonia l alto contenuto informativo delle variabili esplicative selezionate. La Tabella 3 riporta la diagnostica sui residui dei modelli univariati. L analisi dei residui standardizzati evidenzia, per entrambe le variabili dipendenti, la non normalità dei residui, si veda il test di Jarque-Bera. La curtosi dei residui standardizzati risulta minore di quella delle variabili dipendenti grezze, cfr. Tabella 1; tuttavia permane l asimmetria a destra nei residui dell equazione per Y 1, t e a sinistra per l equazione di Y 2, t. I valori assunti dai test Q di Ljung-Box non consentono di rifiutare l ipotesi di incorrelazione dei residui a qualunque ritardo temporale e i residui standardizzati appaiono omoschedastici; la presenza di eteroschedasticità residua fino al ritardo 5 è infatti rifiutata sulla base del test LM-ARCH. Tabella 3 Test sui residui standardizzati; LB: test di Ljung e Box, ARCH: test ARCH di Engle. Nelle colonne relative a test si riportano le probabilità nella coda. Il test di normalità di Jarque e Bera è sempre risultato significativo modello R 2 asim- curtosi LB ARCH metria (21) (5) Y 1t Univariato 0,52 0,97 3,85 0,90 0,76 Y 2t Univariato 0,52 0,94 4,41 0,65 0,85 Y 1t VAR 0,65 11,5 1 0,01 0,00 Y 2t VAR 0,90 30,5 24 0,00 0,00 Y 1t GARCH 0,78 1,20 5,28 0,54 0,39 Y 2t GARCH 0,80 1,04 4,52 0,39 0, I modelli multivariati I modelli multivariati sono stati stimati sia nella formulazione [1] con vincoli Λ =0, H t = H (modello VAR), sia nella formulazione [1] e [2] senza alcun vincolo sui parametri (modello VAR-GARCH-M). Per garantire il confronto con i risultati dei modelli univariati, l insieme d informazione utilizzato per specificare la modellistica VAR comprende le sole 65 variabili impiegate per la stima delle specificazioni univariate. Per la stessa ragione nel modello GARCH multivariato sono state inizialmente incluse nelle equazioni della media le sole variabili d informazione presenti nelle equazioni della media dei due modelli GARCH univariati e nelle equazioni della varianza le medesime variabili esplicative contenute nelle equazioni univariate delle varianze. Il modello VAR è stato stimato utilizzando PCFIML ver. 9.0, si veda Doornik e Hendry (1996). La stima del modello VAR-GARCH-M è stata ottenuta mediante massimizzazione numerica effettuata in Gauss 3.01 Vmi con il modulo applicativo Maxlik e derivate prime 61

12 analitiche. In Appendice si riportano alcune delle soluzioni adottate per l inizializzazione dei parametri nella massimizzazione numerica. I residui della specificazione VAR mostrano problemi di eteroschedasticità e correlazione seriale, che consigliano di considerare effetti GARCH, si veda la Tabella 3. Alla specificazione del modello GARCH multivariato finale si è giunti attraverso semplificazioni successive della specificazione iniziale sulla base di test di Wald robusti rispetto alla mis-specificazione della distribuzione delle innovazioni. Il modello ottenuto presenta R 2 entro campione prossimi a 0,8 per entrambe le equazioni, si veda la Tabella 3, indicando un miglior adattamento rispetto alle specificazioni univariate. Le statistiche di curtosi e di asimmetria della distribuzione dei residui standardizzati mostrano le medesime caratteristiche di nonnormalità osservate per i modelli univariati. Il confronto con le medesime statistiche calcolate sui dati grezzi mostra una lieve diminuzione della curtosi, si veda la Tabella 1; i residui standardizzati non mostrano segni di autocorrelazione nei livelli o nei quadrati. Le Tabelle 4, 5 riportano dettagliatamente il risultato finale della stima del modello GARCH multivariato e le statistiche t asintotiche. I parametri non riportati sono risultati non significativi e sono stati quindi vincolati a 0; alcuni coefficienti con statistiche t non lontane dalla soglia di significatività del 5 per cento sono stati comunque stimati nel modello. I risultati ottenuti permettono di avanzare alcune considerazioni. La significatività di alcuni coefficienti in Λ suggerisce l esistenza di premi per il rischio; a parità di altri fattori, il premio di rischio sulla volatiltà del rendimento minimo risulta maggiore di quello sul rendimento massimo. Il risultato implica che all aumentare della volatilità diventa più facile aumentare il rendimento giornaliero acquistando a prezzi bassi piuttosto che vendendo a prezzi elevati. La matrice stimata A risulta diagonale, indicando un effetto separato sulle rispettive varianze delle innovazioni sul rendimento minimo e massimo. Il vettore γ associato agli effetti asimmetrici non è risultato significativo, indicando l assenza di effetti asimmetrici nella volatilità. La rischiosità non dipende quindi dal segno delle innovazioni ma solo dal loro valore assoluto. Il risultato potrebbe essere ricondotto alla natura poco speculativa del titolo considerato. In linea con le indicazioni contenute nella letteratura, la matrice B stimata risulta significativa e con coefficienti molto elevati. Tali valori rilevano la presenza di effetti persistenti nella varianza (cluster di variabilità); si osservi inoltre la presenza di effetti incrociati associati ai coefficienti non diagonali. L analisi delle matrici Ψ e D stimate mostra una interessante distinzione nell azione delle variabili d informazione. L informazione contenuta nei tassi e nei volumi dei singoli titoli è rilevante soprattutto per la previsione della varianza, mentre nella previsione dei rendi- 62

1. Exponential smoothing. Metodi quantitativi per i mercati finanziari. Capitolo 5 Analisi dei prezzi. Consideriamo la media mobile esponenziale

1. Exponential smoothing. Metodi quantitativi per i mercati finanziari. Capitolo 5 Analisi dei prezzi. Consideriamo la media mobile esponenziale 1. Exponential smoothing Consideriamo la media mobile esponenziale Metodi quantitativi per i mercati finanziari XMA t = (1 α)xma t 1 + αp t come previsione del prezzo al tempo T + 1 sulla base dell insieme

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Esercizi: i rendimenti finanziari

Esercizi: i rendimenti finanziari Esercizi: i rendimenti finanziari Operazioni algebriche elementari Distribuzione e dipendenza Teoria di probabilità Selezione portafoglio p. 1/25 Esercizio I Nella tabella sottostante relativa all indice

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

La Regressione Lineare

La Regressione Lineare La Regressione Lineare. Cos è l Analisi della Regressione Multipla? L analisi della regressione multipla è una tecnica statistica che può essere impiegata per analizzare la relazione tra una variabile

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario AREA FINANZA DISPENSA FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Strumenti di Valutazione di un Prodotto Finanziario ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA Strumenti

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

Regressione Lineare con un Singolo Regressore

Regressione Lineare con un Singolo Regressore Regressione Lineare con un Singolo Regressore Quali sono gli effetti dell introduzione di pene severe per gli automobilisti ubriachi? Quali sono gli effetti della riduzione della dimensione delle classi

Dettagli

Appunti: Teoria Dei Test

Appunti: Teoria Dei Test Appunti: Teoria Dei Test Fulvio De Santis, Luca Tardella e Isabella Verdinelli Corsi di Laurea A + E + D + G + R 1. Introduzione. Il test d ipotesi è un area dell inferenza statistica in cui si valuta

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

EMBA PART TIME 2012 ROMA I ANNO

EMBA PART TIME 2012 ROMA I ANNO BUSINESS STATISTICS: ASSIGNMENT II: EMBA PART TIME 2012 ROMA I ANNO PROF. MOSCONI ESERCIZIO 1: USO DEL MODELLO DI REGRESSIONE PER DETERMINARE IL VALORE DEGLI IMMOBILI. ESERCIZIO 2: PREVISIONE DI VARIABILI

Dettagli

Capitolo 5: Preferenze

Capitolo 5: Preferenze Capitolo 5: Preferenze 5.1: Introduzione Le preferenze individuali alla base dell analisi dei capitoli 3 e 4 vengono rappresentate graficamente da curve di indifferenza parallele in direzione verticale

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

AEX. Statistica dei mercati monetari e finanziari. k 2. Order book. Giovanni De Luca A.A. 2007/2008

AEX. Statistica dei mercati monetari e finanziari. k 2. Order book. Giovanni De Luca A.A. 2007/2008 Giovanni De Luca Statistica dei mercati monetari e finanziari A.A. 2007/2008 10 8 6 4 2 0 0.05 0 200 400 600 0 10 20 30 0.5 SP500 15 vs 0.4 0.3 0.2 k 2 Σ ρk i=1 AEX 0.15 0.1 0.05 0 20 25 Order book Statistica

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Il modello di regressione lineare multivariata

Il modello di regressione lineare multivariata Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria - 2013 1 / 39 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

GUIDA ALLA LETTURA DELLE SCHEDE FONDI

GUIDA ALLA LETTURA DELLE SCHEDE FONDI GUIDA ALLA LETTURA DELLE SCHEDE FONDI Sintesi Descrizione delle caratteristiche qualitative con l indicazione di: categoria Morningstar, categoria Assogestioni, indice Fideuram. Commenti sulla gestione

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Metodi di previsione

Metodi di previsione Metodi di previsione Giovanni Righini Università degli Studi di Milano Corso di Logistica I metodi di previsione I metodi di previsione sono usati per ricavare informazioni a sostegno dei processi decisionali

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

STIMARE valori ed eseguire ANALISI DI REGRESSIONE

STIMARE valori ed eseguire ANALISI DI REGRESSIONE STIMARE valori ed eseguire ANALISI DI REGRESSIONE È possibile impostare una serie di valori che seguono una tendenza lineare semplice oppure una tendenza con crescita esponenziale. I valori stimati vengono

Dettagli

Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi.

Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi. ANALISI DEGLI INVESTIMENTI Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi. Come un comodo abito ogni investimento deve essere fatto su misura.

Dettagli

Titolo. Corso di Laurea magistrale in Economia e Finanza. Tesi di Laurea

Titolo. Corso di Laurea magistrale in Economia e Finanza. Tesi di Laurea Corso di Laurea magistrale in Economia e Finanza Tesi di Laurea Titolo Modelli della capital growth e dalla growth security nella gestione di portafoglio. Relatore Ch. Prof. Marco Corazza Laureando Alessio

Dettagli

MODELLO DI REGRESSIONE PER DATI DI PANEL

MODELLO DI REGRESSIONE PER DATI DI PANEL MODELLO DI REGRESSIONE PER DAI DI PANEL 5. Introduzione Storicamente l analisi econometrica ha proceduto in due distinte direzioni: lo studio di modelli macroeconomici, sulla base di serie temporali di

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

La scelta di portafoglio

La scelta di portafoglio La scelta di portafoglio 1 La scelta di portafoglio La scelta di portafoglio: il modo in cui un individuo decide di allocare la propria ricchezza tra più titoli Il mercato dei titoli è un istituzione che

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

Comunicazione n. DIN/DSE/9025454 del 24-3-2009

Comunicazione n. DIN/DSE/9025454 del 24-3-2009 Comunicazione n. DIN/DSE/9025454 del 24-3-2009 Oggetto: Premessa Istruzioni metodologiche per la determinazione dell informativa sul profilo di rischio e sull orizzonte temporale d investimento consigliato

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Comunicazione n. DIN/DSE/9025454 del 24-3-2009

Comunicazione n. DIN/DSE/9025454 del 24-3-2009 Comunicazione n. DIN/DSE/9025454 del 24-3-2009 Oggetto: Istruzioni metodologiche per la determinazione dell informativa sul profilo di rischio e sull orizzonte temporale d investimento consigliato prevista

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

La valutazione delle aziende. 4a parte

La valutazione delle aziende. 4a parte La valutazione delle aziende 4a parte 95 Il WACC Il WACC non è né un costo, né un rendimento minimo: è la media ponderata di un costo e di un rendimento minimo. Considerare il WACC un costo può essere

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Le operazioni di assicurazione e la teoria

Le operazioni di assicurazione e la teoria Capitolo 1 Le operazioni di assicurazione e la teoria dell utilità 1.1 Introduzione In questo capitolo si discutono alcuni aspetti di base della teoria delle assicurazioni. In particolare, si formalizza

Dettagli

Ulteriori metodi per la stima di una singola equazione

Ulteriori metodi per la stima di una singola equazione 1 Materiali didattici: ANALISI E PREVISIONI NEI MERCATI FINANZIARI a.a. 2014-2015 DISPENSA N.3bis (APPENDICE alla dispensa n.3) Ulteriori metodi per la stima di una singola equazione (Prof. Giovanni Verga)

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

TURBO Certificate Long & Short

TURBO Certificate Long & Short TURBO Certificate Long & Short Fai scattare la leva dei tuoi investimenti x NEGOZIABILI SUL MERCATO SEDEX DI BORSA ITALIANA Investi a Leva su indici e azioni! Scopri i vantaggi dei TURBO Long e Short Certificate

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Il concetto di correlazione

Il concetto di correlazione SESTA UNITA Il concetto di correlazione Fino a questo momento ci siamo interessati alle varie statistiche che ci consentono di descrivere la distribuzione dei punteggi di una data variabile e di collegare

Dettagli

Università degli studi di Padova

Università degli studi di Padova Università degli studi di Padova Facoltà di Scienze Statistiche Corso di Laurea in Statistica Economia e Finanza TESI DI LAUREA LA VOLATILITÀ NELLE SERIE FINANZIARIE - EVIDENZE EMPIRICHE E MODELLI- Relatore:

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) La Regressione Multipla La Regressione Multipla La regressione multipla

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Modelli finanziari per i tassi di interesse

Modelli finanziari per i tassi di interesse MEBS Lecture 3 Modelli finanziari per i tassi di interesse MEBS, lezioni Roberto Renò Università di Siena 3.1 Modelli per la struttura La ricerca di un modello finanziario che descriva l evoluzione della

Dettagli

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo Università degli Studi di Perugia Laurea specialistica in Finanza a.a. 2009-10 Corso di Laboratorio di calcolo finanziario prof. Franco Moriconi Esperienza MBG Il moto browniano geometrico. Proprietà teoriche

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

La regressione lineare applicata a dati economici

La regressione lineare applicata a dati economici La regressione lineare applicata a dati economici Matteo Pelagatti 7 febbraio 2008 Indice 1 Il modello lineare 2 2 La stima dei coefficienti e le ipotesi classiche 2 3 Le conseguenze del venir meno di

Dettagli

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole -

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - - richiami preliminari sulle proprietà strutturali - Abbiamo visto che alcune caratteristiche dei sistemi dinamici (DES compresi) non

Dettagli

Prof. Carlo Salvatori 1. UNA VISIONE D ASSIEME 5. BANCA VERSUS MERCATO. UniversitàdegliStudidiParma

Prof. Carlo Salvatori 1. UNA VISIONE D ASSIEME 5. BANCA VERSUS MERCATO. UniversitàdegliStudidiParma UniversitàdegliStudidiParma Banca e Finanza in Europa Prof. 1 5. BANCA VERSUS MERCATO 1. Una visione d assieme 2. I mercati: le tipologie 3. I mercati creditizi: gli intermediari 4. Gli intermediari in

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

L'analisi tecnica e i modelli GARCH

L'analisi tecnica e i modelli GARCH L'analisi tecnica e i modelli GARCH Davide Dalan ROLO Banca 1473 Domenico Sartore Università Ca Foscari e GRETA Premessa. Nel precedente articolo di Cappellina e Sartore dedicato alla relazione tra analisi

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

SoftWare DMGraphics. Indice. Manuale d uso. 1) Introduzione. 2) Pagine grafiche. 3) Grafici. 4) Menù

SoftWare DMGraphics. Indice. Manuale d uso. 1) Introduzione. 2) Pagine grafiche. 3) Grafici. 4) Menù SoftWare DMGraphics Manuale d uso Indice 1) Introduzione 2) Pagine grafiche. 2.1) Pagina grafica 2.2) Concetti generali 2.3) Scale dei valori 2.4) Posizionamento elementi nel grafico 3) Grafici 3.1) Grafici

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO I TEST STATISTICI E IL P-VALUE Obiettivo di questo Learning Object è ripassare la teoria ma soprattutto la pratica dei test statistici, con un attenzione particolare ai test che si usano in Econometria.

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Strumenti statistici per l analisi di dati genetici

Strumenti statistici per l analisi di dati genetici Strumenti statistici per l analisi di dati genetici Luca Tardella + Maria Brigida Ferraro 1 email: luca.tardella@uniroma1.it Lezione #1 Introduzione al software R al suo utilizzo per l implementazione

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 12-Correlazione vers. 1.1 (27 novembre 2012) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2011-2012 G. Rossi (Dip. Psicologia)

Dettagli

ALLEGATO 7. Nota Tecnica e Metodologica SK16U

ALLEGATO 7. Nota Tecnica e Metodologica SK16U ALLEGATO 7 Nota Tecnica e Metodologica SK16U NOTA TECNICA E METODOLOGICA 1. CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione dello studio

Dettagli

Modello di regressione lineare

Modello di regressione lineare Modello di regressione lineare a cura di Giordano dott. Enrico enrico.giordano@meliorbanca.com Nel presente lavoro viene descritto in modo dettagliato (attraverso anche un impatto visivo), l analisi di

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

COPIA TRATTA DA GURITEL GAZZETTA UFFICIALE ON-LINE

COPIA TRATTA DA GURITEL GAZZETTA UFFICIALE ON-LINE Semplicita' del sistema delle fasce e numerosita' dei gruppi di ore Accanto all obiettivo di offrire agli operatori un segnale di prezzo corretto che ne stimoli il comportamento efficiente, vi e' tra gli

Dettagli

STUDIO DI SETTORE VG82U

STUDIO DI SETTORE VG82U ALLEGATO 18 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VG82U SERVIZI PUBBLICITARI, RELAZIONI PUBBLICHE E COMUNICAZIONE 862 CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L'applicazione dello studio

Dettagli

STUDIO DI SETTORE VG87U

STUDIO DI SETTORE VG87U ALLEGATO 21 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VG87U CONSULENZA FINANZIARIA, AMMINISTRATIVO-GESTIONALE E AGENZIE DI INFORMAZIONI COMMERCIALI CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

STUDIO DI SETTORE VG40U

STUDIO DI SETTORE VG40U ALLEGATO 4 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VG40U LOCAZIONE, VALORIZZAZIONE, COMPRAVENDITA DI BENI IMMOBILI 227 CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L'applicazione dello studio

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Note webinar Ponderazione per Beta in IB Risk Navigator

Note webinar Ponderazione per Beta in IB Risk Navigator Note webinar Ponderazione per Beta in IB Risk Navigator Panoramica Il nostro Risk Navigator è stato potenziato, accessibile all'interno di Trader Workstation, offre ora le metriche ponderate per il beta.

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Schema di Statistica di Michele Faggion

Schema di Statistica di Michele Faggion Schema di Statistica di Michele Faggion Lezione 1 Bontà del modello: stima delle componenti di errore. Lʼobiettivo è capire la struttura per poi estrapolare delle previsioni (assunto di continuità). Eʼ

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

Capitolo 33: Beni Pubblici

Capitolo 33: Beni Pubblici Capitolo 33: Beni Pubblici 33.1: Introduzione In questo capitolo discutiamo le problematiche connesse alla fornitura privata dei beni pubblici, concludendo per l opportunità dell intervento pubblico in

Dettagli