* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1"

Transcript

1

2 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone rappresentatva della sorgente Aprle 2006 RL/SUO-TEC 166/2006 1

3 Nota nerente l calcolo della concentrazone rappresentatva della sorgente Al fne d charre alcun aspett della procedura rportata nel paragrafo de Crter metodologc per l applcazone dell anals d rscho a st contamnat - rev.0 per l calcolo della concentrazone rappresentatva della sorgente, rchamata nel rquadro sottostante, s osserva quanto segue: a) l numero mnmo d dat, corrspondente a 10, necessaro per l esecuzone d anals d tpo statstco, s rfersce a sondagg effettuat nell area n cu vene applcata l anals d rscho e non a campon dsponbl che, paradossalmente, potrebbero essere relatv a uno stesso sondaggo; b) l UCL deve essere calcolata prendendo n consderazone tutt dat d concentrazone dsponbl, anche quell che non superano le CLA stablte dal DM 471/99; c) per l calcolo de valor rappresentatv d concentrazone nel suolo (SS, SP) ne cas n cu sano applcabl anals d tpo statstco devono essere applcat seguent crter: 1. dat d concentrazone relatv a terren devono essere raggruppat per strat omogene: top-sol, materale d rporto, nsaturo, dstnguendo tra var ltotp present (es: sabbe, ghae, arglle, etc.); 2. la procedura statstca per l calcolo dell UCL (ved appendce H) deve essere applcata a cascuno strato omogeneo; 3. tra le UCL ottenute per cascuno strato omogeneo devono essere selezonat valor massm relatv al comparto SS (0-1 m), SP (>1 m) che verranno mpegat come dat d nput; 4. le caratterstche sto-specfche da utlzzare per la sorgente saranno quelle relatve allo strato omogeneo maggormente rappresentatvo della contamnazone (ad es. sulla base de valor massm d UCL); 5. ne cas n cu non fosse possble raggruppare dat dsponbl n strat omogene, dovranno essere pres n consderazone valor massm rscontrat, n corrspondenza dello stesso sondaggo, relatvamente a compart SS (0-1 m), SP (>1 m): tal valor verranno mpegat come dat d nput per l elaborazone statstca; 6. nel caso n cu, per cascuno strato omogeneo, fossero dsponbl pù campon, potrà essere applcato l seguente crtero, elaborato dall US EPA: se ogn ntervallo d camponamento, all nterno dello strato RL/SUO-TEC 166/2006 2

4 omogeneo, è caratterzzato dalla stessa lunghezza (es. 1 metro), la concentrazone rappresentatva della contamnazone, s ottene facendo la semplce meda artmetca delle concentrazon msurate per ogn ntervallo. Se gl ntervall d camponamento, all nterno dello strato omogeneo, non sono della stessa lunghezza (es. alcun sono 1 metro mentre altr sono d 20 cm), allora l calcolo della concentrazone meda deve tenere n consderazone le lunghezze dverse degl ntervall. In tal caso, se la msura della concentrazone n un campone è rappresentatva d un ntervallo d lunghezza l, e s consdera che l n-esmo ntervallo sa l'ultmo ntervallo camponato, (l n-esmo ntervallo raggunge la massma profondtà della contamnazone), allora la concentrazone meda dovrebbe essere calcolata come meda pesata sulla profondtà, secondo la seguente formula: c n = 1 = n = 1 l c l d) per l calcolo de valor rappresentatv d concentrazone nel comparto acque sotterranee (GW) ne cas n cu sano applcabl anals d tpo statstco devono essere applcat seguent crter: 1. dat d concentrazone relatv alle acque sotterranee devono essere raggruppat relatvamente all acqufero d provenenza (ad es: falda freatca, prma falda, seconda falda, ecc); 2. la procedura statstca per l calcolo dell UCL (ved appendce H) deve essere applcata a cascun acqufero ndvduato; 3. tra le UCL ottenute per cascun acqufero ndvduato, dovranno essere selezonat valor massm relatv al comparto GW che verranno mpegato come dat d nput; 4. le caratterstche sto-specfche da utlzzare per la sorgente saranno quelle relatve all acqufero maggormente rappresentatvo della contamnazone (ad es. sulla base de valor massm d UCL). RL/SUO-TEC 166/2006 3

5 3.1.4 Defnzone della concentrazone rappresentatva n sorgente L applcazone d un lvello 2 d anals d rscho rchede l ndvduazone d un unco valore d concentrazone rappresentatva n corrspondenza ad ogn sorgente secondara d contamnazone (suolo superfcale, suolo profondo e falda). Tale valore rappresenta un nput prmaro per l anals d rscho, e va determnato sulla base d crter legat ad assunzon che varano pù o meno sensblmente a seconda del grado d approssmazone rchesto, del numero e del tpo d rlevament dsponbl, della loro rappresentatvtà. Il punto d crtctà prncpale n questo tpo d anals è dunque la scelta de campon e l utlzzazone d algortm tal da arrvare a valor che rsultno rappresentatv e scentfcamente attendbl. Vene ora descrtto l crtero da utlzzare per la stma della concentrazone rappresentatva alla sorgente a fn della applcazone dell anals assoluta d rscho santaro. Innanztutto, s rtene opportuno sottolneare che, n tale contesto, s presuppone che dat analtc a dsposzone sano stat gà valdat, ossa che sa stata verfcata la loro attendbltà. Per l ndvduazone della concentrazone rappresentatva alla sorgente (C RS ) è necessaro: 1. Suddvdere l data-set d valor d concentrazone n funzone d ogn sorgente secondara d contamnazone (SS, SP e GW). Il valore d concentrazone rappresentatvo deve essere qund ndvduato n corrspondenza a cascuno de tre suddett compart ambental. 2. Effettuare una accurata valutazone de dat, n grado d stablre l applcabltà d crter statstc su valor d concentrazone analtcamente determnat ne campon d suolo e d falda. In partcolare, è necessaro: 2.a) Esamnare l ampezza del data-set. Per ogn data-set (SS, SP, GW), l numero d dat a dsposzone non può essere nferore a 10. Al d sotto d tale sogla, non essendo possble effettuare alcuna stma statstca attendble e n accordo con l prncpo d massma conservatvtà, s pone la concentrazone rappresentatva alla sorgente concdente con l valore d concentrazone massmo analtcamente determnato (C RS = C MAX ). 2.b) Verfcare che l camponamento sa unformemente dstrbuto su tutta la sorgente d contamnazone (camponamento random o camponamento a grgla). Se l camponamento è pù concentrato nella porzone del sto maggormente sospetta d contamnazone, cò può comportare una sovrastma della C s. Poché tale approcco rsulta essere conservatvo e qund protettvo per la salute umana, lo stesso può rteners accettable. Non è nvece ammssble l caso n cu le aree caratterzzate da un maggore grado d contamnazone, o sospette tal, sano sotto-rappresentate. 2.c) Identfcare gl outler e dstnguere ver outler da fals outler. I ver outler possono dervare da error d trascrzone, d codfca de dat o da una qualsas neffcenza degl strument del sstema d rlevazone de dat. I fals outler sono que valor estrem real, che, n campo ambentale d nqunamento de suol, n genere corrspondono a pcch (hot spot) local d contamnazone. E dunque necessaro dentfcare e dfferenzare tp d outler, n modo da rmuovere prm e mantenere second. Se l data-set a dsposzone è stato gà valdato s esclude automaticamente la presenza d ver outler. S rtene opportuno sottolneare che è d fondamentale mportanza tener conto e qund non rmuovere fals outler dal data set. 2.d) Identfcare Non-Detect. Seguendo l prncpo d cautela, s rtene opportuno porre, n ogn caso e qund n corrspondenza a qualsas dstrbuzone dell nseme de dat, Non-Detect par al corrspondente Detecton Lmt (ND = DL). 3. Indvduare la dstrbuzone d probabltà che approssm meglo l nseme de dat dsponbl. Quando s ha a che fare con dat ambental (n partcolare, concentrazon d spece chmche ne compart ambental: suolo, acqua, ara), le dstrbuzon d probabltà pù comunemente utlzzate per la loro rappresentazone sono: dstrbuzone gaussana o normale dstrbuzone lognormale dstrbuzone gamma dstrbuzone non parametrca. Le caratterstche delle dstrbuzon suddette e test da applcare per la selezone delle stesse sono descrtt nel dettaglo rspettvamente ne paragraf 4.2.1, e dell Appendce H. Per la applcazone de test s deve fare rfermento al software ProUCL ver (Appendce H). Applcare la procedura statstca corrspondente al tpo d dstrbuzone rconoscuta. Il valore che con un maggore grado d attendbltà permette d stmare la C RS è dato dall UCL della meda. A seconda del tpo d dstrbuzone, selezonata come maggormente rappresentatva del data set n esame, è possble ndvduare l pù approprato crtero per l calcolo dell UCL. Le procedura statstche da applcare per l calcolo dell UCL sono descrtte nel dettaglo nell Appendce H. Per la applcazone delle stesse s fa rfermento al software ProUCL ver (Appendce H). (da Crter metodologc per l applcazone dell anals assoluta d rscho a st contamnat, APAT, 2005) RL/SUO-TEC 166/2006 4

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia PROT. N 53897 ENTE EMITTENTE: OGGETTO: DESTINATARI: DATA DECORRENZA: CIRCOLARE N. 9 DC Cartografa, Catasto e Pubblctà Immoblare, d ntesa con l Uffco del Consglere Scentfco e la DC Osservatoro del Mercato

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes.

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes. EH SmartVew Servz Onlne d Euler Hermes Una SmartVew su rsch e sulle opportuntà Servzo d montoraggo dell asscurazone del credto www.eulerhermes.t Cos è EH SmartVew? EH SmartVew è l servzo d Euler Hermes

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal Def: Sono DBMS che consentono d memorzzare e recuperare dat d natura multmedale:

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

DATA MINING E CLUSTERING

DATA MINING E CLUSTERING Captolo 4 DATA MINING E CLUSTERING 4. Che cos'è l Data Mnng Per Data Mnng s'ntende quel processo d estrazone d conoscenza da banche dat, tramte l'applcazone d algortm che ndvduano le assocazon non mmedatamente

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

IMMAGINE RICONOSCIMENTO. 6.1 La densità di vegetazione: l indice NDVI DELLA VEGETAZIONE SULL I

IMMAGINE RICONOSCIMENTO. 6.1 La densità di vegetazione: l indice NDVI DELLA VEGETAZIONE SULL I CAPITOLO SESTO RICONOSCIMENTO DELLA VEGETAZIONE SULL I IMMAGINE QUICKBIRDIRD 6.1 La denstà d vegetazone: l ndce NDVI Allo scopo d caratterzzare la dstrbuzone della vegetazone sulle superfc d barena s è

Dettagli

Edifici a basso consumo energetico: tra ZEB e NZEB

Edifici a basso consumo energetico: tra ZEB e NZEB Edfc a basso consumo energetco: tra ZEB e NZEB Prof. Ing. Percarlo Romagnon Dpartmento d Progettazone e Panfcazone n Ambent Compless Unverstà IUAV d Veneza Dorsoduro 2206 30123 Veneza perca@uav.t Modell

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Delberazone 20 ottobre 2004 Approvazone delle condzon general d accesso e d erogazone del servzo d rgassfcazone d gnl predsposte dalla socetà Gnl Itala Spa (delberazone n. 184/04) L AUTORITÀ PER L ENERGIA

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Modello idraulico - Rapporto tecnico. (Rev. 0b)

Modello idraulico - Rapporto tecnico. (Rev. 0b) ASAP LIFE06/ENV/IT/000255 ASAP_D4-3_ModelloIdraulcoRappTecnco_IT_0b 1/20 LIFE06/ENV/IT/255 A.S.A.P. Actons for Systemc Aqufer Protecton The ASAP proect s partally funded by the European Unon LIFE Programme

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

ISTRUZIONE OPERATIVA:

ISTRUZIONE OPERATIVA: Pagna 1 d 5 legant da Acca da INDICE: 1) Scopo 2) Campo d applcazone 3) Norma d rfermento 4) Defnzon e smbol 5) Responsabltà 6) Apparecchature 7) Modaltà esecutve 8) Esposzone de rsultat calcestruzz aggregat

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 11

McGraw-Hill. Tutti i diritti riservati. Caso 11 Caso Copyrght 2005 The Companes srl Stma d un area fabbrcable n zona ndustrale nella cttà d Ferrara. La stma è effettuata con crter della comparazone e quello del valore d trasformazone. Indce Confermento

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

PROCEDURA VALUTAZIONE DI IMPATTO AMBIENTALE

PROCEDURA VALUTAZIONE DI IMPATTO AMBIENTALE PROCEDURA VALUTAZIONE DI IMPATTO AMBIENTALE POTENZIAMENTO DELL IMPIANTO DI RECUPERO INERTI NON PERICOLOSI PROVENIENTI DA COSTRUZIONI E DEMOLIZIONI IN LOCALITA VAL DI MERSE D C B A EMISSIONE ITALCAVE s.r.l.

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Il Ministro delle Infrastrutture e dei Trasporti

Il Ministro delle Infrastrutture e dei Trasporti Il Mnstro delle Infrastrutture e de Trasport VISTO l decreto legslatvo 30 aprle 1992, n. 285, come da ultmo modfcato dal decreto legslatvo 18 aprle 2011, n. 59, recante Attuazone delle drettve 2006/126/CE

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

RELAZIONE TECNICA. Introduzione. 1 Finalità e requisiti delle attività di dispacciamento nel mercato elettrico liberalizzato

RELAZIONE TECNICA. Introduzione. 1 Finalità e requisiti delle attività di dispacciamento nel mercato elettrico liberalizzato Allegato n. 1 a Prot AU/01/130 RELAZIONE TECNICA PRESUPPOSTI PER L ADOZIONE DI SCHEMA DI CONDIZIONI PER L EROGAZIONE DEL PUBBLICO SERVIZIO DI DISPACCIAMENTO DELL ENERGIA ELETTRICA SUL TERRITORIO NAZIONALE

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

PROGRAMMAZIONE DIDATTICA

PROGRAMMAZIONE DIDATTICA ISTITUTO ISTRUZIONE SUPERIORE STATALE CARLO GEMMELLARO CATANIA PROGRAMMAZIONE DIDATTICA ECONOMIA AZIENDALE A.S.: 2015/2016 Prof Pnzzotto Dana classe 5 b afm Obtv educatv OBTV ddattc trasversal Acqusre

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Il diagramma PSICROMETRICO

Il diagramma PSICROMETRICO Il dagramma PSICROMETRICO I dagramm pscrometrc vengono molto utlzzat nel dmensonamento degl mpant d condzonamento dell ara, n quanto consentono d determnare n modo facle e rapdo le grandezze d stato dell

Dettagli

1. Una panoramica sui metodi valutativi

1. Una panoramica sui metodi valutativi . Una panoramca su metod valutatv La dottrna azendalstca rconosce l esstenza d var metod att a determnare l valore del captale economco d un mpresa. In partcolare, è possble ndvduare tre macro-tpologe

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio Codce d Stoccaggo Captolo 7 Blancamento e rentegrazone dello stoccaggo 7.4 Corrspettv per servz d stoccaggo L UTENTE è tenuto a corrspondere a STOGIT, per la prestazone de servz, gl mport dervant dall

Dettagli

LA FLUORESCENZA X CARATTERISTICA

LA FLUORESCENZA X CARATTERISTICA CORSO DI LABORATORIO DI FISICA DELL'AMBIENTE Dspense della lezone: LA FLUORESCENZA X CARATTERISTICA (dr. Roberta Vecch) 1 La Fluorescenza a Ragg X Premessa La tecnca della fluorescenza X ndotta è una delle

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

L analisi di studi con variabili di risposta multiple

L analisi di studi con variabili di risposta multiple X1 X X 3 Quando un confronto venga effettuato per tre lvell d un fattore, sembrerebbe ntutvo effettuare l confronto con l test t d Student a pù lvell: X X X 1 1 vs vs vs X X X 3 3 Metodologa per l anals

Dettagli

SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES)

SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES) SOFTWARE NBSI (NEIGHBOURHOOD BASED STRUCTURAL INDICES) DIPARTIMENTO DI SCIENZE DELL AMBIENTE FORESTALE E DELLE SUE RISORSE (DISAFRI) UNIVERSITÀ DEGLI STUDI DELLA TUSCIA - Va San Camllo de Lells, 000 Vterbo

Dettagli

LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000

LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000 LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000 L. Baron, F. Caul, D. Donatell, G. Farolf, R. Maserol, Servzo Geodetco - Isttuto geografco Mltare - Frenze 1. Premessa La Rete

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

ADATTAMENTO DEI SISTEMI E DEI SERVIZI IDROPOTABILI A SCENARI DI CARENZA IDRICA

ADATTAMENTO DEI SISTEMI E DEI SERVIZI IDROPOTABILI A SCENARI DI CARENZA IDRICA La rcerca scentfca talana nel campo dell draulca: presentazone de rsultat de progett PIN 2008 Ferrara, 24-25 gennao 2013 ADATTAMENTO DEI SISTEMI E DEI SEVIZI IDOPOTABILI A SCENAI DI CAENZA IDICA Coordnatore:

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Dati di tipo video. Indicizzazione e ricerca video

Dati di tipo video. Indicizzazione e ricerca video Corso d Laurea n Informatca Applcata Unverstà d Urbno Dat d tpo vdeo I dat vdeo sono generalmente rcch dal punto d vsta nformatvo. Sottottol (testo) Colonna sonora (audo parlato e/o musca) Frame (mmagn

Dettagli