Il processo inverso della derivazione si chiama integrazione.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il processo inverso della derivazione si chiama integrazione."

Transcript

1 Integrale Indefinito e l Antiderivata Il proesso inverso della derivazione si hiama integrazione. Nota la variazione istantanea di una grandezza p.es. la veloità) è neessario sapere ome si omporta tale grandezza istante per istante p.es. la posizione). Nota allora una funzione f) il problema onsiste nel trovare un altra funzione F) tale he F )f) Ad es. se f)^, potrebbe essere F)^)/ Def. Data la funzione f, si hiama anti-derivata o primitiva di f in un intervallo I una funzione F tale he per ogni di I vale: F )f) Nota. Una funzione primitiva deve essere una funzione derivabile sull intervallo I. Nota. Si mostrerà in seguito he una funzione f ontinua in un intervallo [a;b] ammette sempre una primitiva magari non esprimibile elementarmente). Nota. Una onseguenza dei orollari del teorema di Lagrange afferma he la funzione primitiva di una data funzione f non è unia. Le primitive sono infatti infinite e differisono una dall altra per una ostante addivita. Cfr. il seondo orollario al teorema di Lagrange).

2 Integrale Indefinito e l Antiderivata Es. Sia f)^. Allora: F ) È una primitiva. Ma lo sono anhe: ) F ) F F ) F k ) k In quanto: F' ) F' k ) F' ) F' ) F' ) f ) Def. Si hiama integrale indefinito della funzione f l insieme delle primitive in un intervallo I. Notare: Si india on: f ) d Simbolo di integrale oppure f Funzione integranda Variabile di integrazione Differenziale della variabile di integrazione Ed è ostituito da tutte le funzione della forma F) on ostante ed F primitiva di f Nota Vale per definizione: f ' ) d f ) Nota Variabile di integrazione muta: f ) d f t) dt f y) dy

3 Integrale Indefinito e l Antiderivata Nota. Mentre nell operazione di derivazione di assoia ad una funzione un altra funzione la sua derivata), nell integrale indefinito si assoia ad una funzione una lasse insieme) di funzioni. Il alolo integrale risulta più diffiile rispetto al alolo delle derivate Nota: Esistenza dell integrale indefinito. Per alune funzioni anhe abbastanza semplii ) non esiste la forma analitia semplie per l integrale indefinito: ad es.: e e ln ) Inoltre, non tutte le funzioni ammettono una primitiva su un determinato intervallo I una ondizione suffiiente è he siano ontinue). Una funzione primitiva deve essere una funzione derivabile e quindi deve possedere alune proprietà di regolarità. Allo sopo vale il seguente teorema:

4 Integrale Indefinito e l Antiderivata Teorema. Sia f derivabile in un intervallo I, allora f può avere disontinuità solo di II speie: Nota. Non ogni funzione definita in un intervallo é una funzione derivata. Ad esempio funzioni on disontinuità eliminabili o di I speie in determinato intervallo, non sono derivate di nessuna funzione. As es. I [,] f ) per 0 < per - 0 Nota. Alla funzione f) non si può appliare il teorema preedente relativamente all intervallo I[-,] in quanto la funzione non è derivabile in 0 e quindi non lo è in tutto l intervallo I.

5 La Tabella delle anti-derivate immediate a d a a a - d ln e d e a d a ln a) sen ) d os ) os ) d sen ) d tan )) d tan ) os ) d artan ) d arsen ) Sh ) d Ch ) Ch ) d Sh ) 5

6 La Tabella delle anti-derivate immediate Sh ) d Ch ) Ch ) d Sh ) d SettSh ) ln ) ) d SettCh ) ln d arsen ) 6

7 Proprietà Integrale Indefinito Dalle proprietà della derivata disende: ) g ) ) d f ) d f g ) d k f ) d k f ) d p. di addivitità *) p. di omogeneità **) Es. Integrazione polinomi ) 5 d 5 d d ln ' ' ' *) H f g) H f g F f ) F f G g) G g H ' f g F' G' F G)' ' H F G ) ' **) H kf ) H kf F f ) F f H ' kf' kf)' H kf ) 7

8 Consideriamo: Antiderivate quasi immediate f ' ) d ln f ) f ) d ln ln ) ln ) d e ) ln ln ) d e ) ln e d d ln d sin ) d d sin ) tan ) ln os ) os ) os ) 8

9 Consideriamo: Antiderivate quasi immediate k [ f ) ] f ' ) d [ f ) ] k k on k - Nota: sin ) sin )os ) d os ) sin )os ) d sin ) ln ) ln ) d [ sin ) ] os ) d os ) sin ) os ) ostante 5 5 ) ) ) ) d d

10 e [ f ) ] f Antiderivate quasi immediate ' ) d e f ) a [ f ) ] f ' ) d f ) a ln a) e sin ) os ) d e sin ) e d e ) d e d ) d ln) 0

11 Antiderivate quasi immediate [ f ) ] sen f ' ) d os f )) os [ ) ] f f ' ) d sen f )) f ' ) d tan f )) os f )) sen d os ) ) sen ) d os d ) os d ) tan )

12 Antiderivate quasi immediate 5 Antiderivate quasi immediate 5 )) ) ' ) f arsen d f f )) artan ) ' ) f d f f arsen d d ) d d artan 9 9

13 Antiderivate quasi immediate 6 f ) f ' ) d SettSh f )) ln f) ) f ) ) ) sin ) os ) d SettShsin )) ln sin sin ) f ) f ' ) d SettCh f )) ln f) ) f ) - ) d d SettCh) ln

14 Riassunto: ambiamento di variabili Quanto sinora fatto può essere osì riassunto: NOTO: g ) d G ) Possiamo alolare: g f )) f ' ) d G f )) Poihé: D [ G f )) ] G ' f )) f ' ) g f )) f ' ) Possiamo anhe usare un ambiamento di variabili nell integrale indefinito: y f ) dy f ' ) d g f )) f ' ) d g y) dy G y) ) y f G f ))

15 Integrazione Funzioni Razionali Consideriamo ora integrali del tipo: N ) d D ) Con N) e D) polinomi nella variabile. Se n è il grado di N) e d il grado di D) e n d, l algoritmo di divisione dei polinomi permette di srivere attraverso il quoziente Q) ed il resto R) della divisione ome segue: N ) D ) Q ) R ) D ) Allora Q) ha grado qn-d ed il resto R) ha grado r<d. In tutta generalità supporremo he n<d, potendoi ridurre a questo aso. Ci ouperemo in partiolare dei asi n e d sempre on n<d) per sempliità. 5

16 Integrazione Funzioni Razionali : denominatore di primo grado Consideriamo integrali del tipo: k a b d k a b d k a b a d k a b a d k a ln k ln a b a a b Es d d ln 6

17 Integrazione Funzioni Razionali Δ>0 ) Consideriamo ora integrali del tipo: m q d on b a > a b Se ed sono le soluzioni reali e distinte dell eq. di grado assoiata al denominatore vale: a b 0 a ) ) Il proedimento vale anhe per m0 ) La funzione integranda viene osì risritta: m q a b a m q ) ) Si proede poi allo sviluppo in frazioni parziali del seondo fattore: m q A B ) ) ) ) 7

18 Integrazione Funzioni Razionali Δ>0 ) A A B B A B) A B ) ) ) ) Grazie al prinipio di identità dei polinomi, il seguente sistema lineare permette di trovare i valori di A e B: In onlusione: A B m A B q m q a b d a A d B d A B ln ln a a 8

19 Integrazione Funzioni Razionali Integrazione Funzioni Razionali Δ>0 ) >0 ) ) d d ) 5 d 5 ) B A B A B A / 0 A B A 9 ) ) ) ) ) ) ) B A B A B A / / 0 B A B A B A d d d 5 ) ln ln ln

20 Integrazione Funzioni Razionali Integrazione Funzioni Razionali Δ>0 ) >0 ) d d ) 5 5 d 5 0 ) ) ) ) 5 B A B A B A / 5 B A B A B A d d d / 5 ln / ln

21 Integrazione Funzioni Razionali Δ0 ) Consideriamo ora integrali del tipo: q d on b a a b 0 In questo aso, se 0 é la radie doppia del denominatore abbiamo: a b a 0) q q d d a b a ) 0 q a ) 0 Es. d ) / ) d d / )

22 Integrazione Funzioni Razionali Δ0 ) Consideriamo ora integrali del tipo: m q d on b a a b m q m q d d *) a b a ) 0 0 Si proede allo sviluppo in frazione parziali della funzione integranda: m q A B A B ) B A B 0 0 ) 0) 0) 0) 0) Il seguente sistema lineare permette di determinare A e B: A B a ) ) d *) 0 0 a A 0 0 B m A B0 B ln ) 0 q

23 Es. Integrazione Funzioni Razionali Δ0 ) 5 d / ) d 5 / ) A / ) B / ) A B / ) / ) B A / B / ) B A B / 5 A / / d 9 / ) / ) d ln / ) 9 / )

24 Integrazione Funzioni Razionali Δ0 ) Un metodo alternativo onsiste nel far omparire al numeratore, on opportune trasformazioni algebrihe, la derivata del denominatore: Es. 5 d ) d d d d d 9 8 ln ) 8 d 9 / ) 8 ln ) 8 9 / ) 8 8 ln 9 / ) ln 9 9 )

25 Integrazione Funzioni Razionali Δ<0 ) Consideriamo ora integrali del tipo: d on b a < a b 0 Si deve ottenere il ompletamento del quadrato dei primi due termini a b) al denominatore e poi integrare in arotangente. d d d d dy y d dy y artan y d artan y dy d 5

26 Integrazione Funzioni Razionali Δ<0 ) Consideriamo ora integrali del tipo: m q d on b a < a b Si lavora in modo da fare omparire a numeratore la derivata del denominatore; quello he rimane si integra in arotangente ome nel aso preedente: 0 d ) d d d d d ln *) d 6

27 Integrazione Funzioni Razionali Integrazione Funzioni Razionali Δ<0 ) <0 ) artan d d d d d dy y dy y artany) 7 artan 6 ln *)

28 Integrazione Funzioni Razionali Δ<0 bis) Consideriamo ora integrali del tipo: m q d on b a < a b Si lavora in modo da fare omparire a numeratore la derivata del denominatore; quello he rimane si integra in arotangente ome nel aso preedente: 0 d ) d 6 d 6 d 6 d - d ln - *) d 8

29 Integrazione Funzioni Razionali Δ<0 bis) d d d d 6 dy artany) 6 6 y y 6 6 artan dy d *) 8 6 ln - artan 9

30 Integrazione per Parti ) Partiolare tenia di integrazione. Date due funzione f,g ontinue on derivata ontinua : fg )' f'g fg' fg ) ' f'g fg' ) f'g fg' fg f'g fg ' f'g fg fg' f' ) g ) d f ) g ) f ) g' ) d Appliata all integrale del prodotto di due funzioni di ui deve essere nota, in partenza, una primitiva di una delle due nell es. la f). Spesso i si riferise alla f f )d ) ome fattor differenziale ed alla g ome fattor finito Nota In aluni asi è vantaggioso onsiderare anhe f Es. L integrale del logaritmo ln ) d ln ) ) ln ) d ln ) d 0

31 Es. os ) d Integrazione per Parti ) g ) f ' ) os ) g ) sen ) sen ) d sen ) sen ) d f ' ) sen ) sen ) )) d sen ) os ) sen ) os ) os ) In generale si usa [ P) polinomio ] : P ) h ) d g ) P ) f ' ) h ) os b) sen b) a e g ) h ) f ' ) P ) ln ) artan ) h ) l ) d h ) sen b),os b), e l ) sen b),os b), e a a La selta di f e g è indifferente

32 Integrazione per Parti ) Es. e d g ) f ' ) e e e d e e e d) e e e e ) Es. sen ) e d g ) sen ) f ' ) e os ) e sen ) e d sen ) e [ os ) e sen ) e d] sen ) e os ) e sen ) e d e sen ) e d sen ) os ) ) sen ) e d sen ) e os ) e

33 Es. sen ) d Integrazione per Parti ) g ) sen ) f ' ) sen ) os ) sen ) os ))os ) d os ) sen ) os ) d os ) sen ) sen )) d os ) sen ) sen ) d sen ) d os ) sen ) sen os ) ) sen ) d Alternativa: sen ) d os) d sen) sen) os) d

34 Es. os ) d Integrazione per Parti 5) g ) os ) f ' ) os ) sen )os ) sen ) sen )) d sen )os ) sen ) d sen )os ) os )) d sen )os ) os ) d os ) d sen )os ) os ) sen ) os ) d Es. Es. os ) d sen )) d sen )os ) sen )os ) os ) d os) sen) d...

35 Es. Ch ) d Integrazione per Parti 6) Sh ) Sh Sh ) Ch ) ) d Sh ) Ch ) d Es. g ) Ch ) f ' ) Ch ) Sh ) Ch ) Sh ) d Ch ) ) Sh ) Ch ) Ch ) ) Sh Ch ) ) Ch ) d Sh ) d d ) Ch ) Ch Ch ) Sh ) Ch ) Sh ) ) Ch ) Sh ) Sh ) ) d Ch ) Sh ) d Ch ) Sh ) d g ) Sh ) f ' ) Sh ) Sh ) Ch ) Sh ) d d

36 Integrazione per Sostituzione ) E la tenia più diffiile e generale. Per appliarla bisogna infatti sostituire nell integrale indefinito alla variabile un altra funzione on l obiettivo non di risolvere immediatamente il alolo ma di semplifiarlo. f ) d f g t)) g' t) dt È neessario alla fine del alolo dell integrale a seondo membro nella variabile t) ritornare alla valutazione dell integrale a primo membro nella variabile ) mediante l inversione della relazione gt). Periò, più preisamente, la relazione preedente diventa: g t) d g' t) dt f ) d f g t)) g' t) dt t g ) 6

37 Integrazione per Sostituzione: appliazioni simili al ambiamento di variabile ) Tipologia F e a ) d Sostituzione a t e dt ae a dt d d a t Es. e e e t dt t d t t dt t t t t t t dt t t e dt e t dt dt dt artan t ) t d d dt t ln t ) artan t) e ) ln artan e ) t e 7

38 Integrazione per Sostituzione: appliazioni simili al ambiamento di variabile ) Tipologia F, a b) d Sostituzione: t a b a t dt d d dt a b a Es. 5 5 t) dt t d 5 t tdt t dt d d t 5t 0 t 0 ) tdt 8

39 Integrazione per Sostituzione: appliazioni simili al ambiamento di variabile ) Tipologia F sen b),os b)) d Sostituzione : t os ) dt sen ) d t d d t dt Es. os )) sen ) d t) os ) dt) ln t t t ln os ) os ) t os ) dt sen ) d 9

40 Es. Integrazione per Sostituzione: appliazioni simili al ambiamento di variabile ) e d e t t t t d t dt dt t dt e e e d t d t t dt dt t t dt t artan t) e artan e ) 0

41 Integrazione per Sostituzione: Esempi partiolari 0) d d os t) d sen t) dt Sh t) d Ch t) dt d Ch t) d Sh t) dt

42 Es. Integrazione per Sostituzione: Esempi partiolari ) d os t) d sen t) dt os t ) sen t)) dt sen t) sen t)) dt sen t) dt t sen t)os t) senaros )) aros ) t aros ) aros ) Se effettuo la sostituzione sen t) d os t) dt arsen )

43 Es. Integrazione per Sostituzione: Esempi partiolari ) d Sh t) d Ch t) dt Sh t) Ch t) dt Ch t) Ch t)) dt Ch t) dt Sh t) Ch t) t SettSh ) t SettSh ) ) SettSh ) : ln

44 Es. Integrazione per Sostituzione: Esempi partiolari ) Ch t) Sh t) dt Sh t) Ch t) t d Sh t) Sh t)) dt Sh t) dt SettCh ) t SettCh ) Ch t) d Sh t) dt ) SettCh ) : ln

45 Integrazione per Sostituzione: Esempi partiolari ) d SettSh ) ln ) ) d SettCh ) ln d arsen ) 5

Gli integrali indefiniti

Gli integrali indefiniti Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una

Dettagli

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE.

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. DEF. Una funzione F() si die primitiva di una funzione y f() definita nell intervallo

Dettagli

16 L INTEGRALE INDEFINITO

16 L INTEGRALE INDEFINITO 9. Integrali immediati 6 L INTEGRALE INDEFINITO Riassumiamo le puntate preedenti: si die INTEGRALE INDEFINITO di una funzione f ( ), la famiglia di tutte e sole quelle funzioni la ui derivata è uguale

Dettagli

Analisi 1 e 2 - Quarto compitino Soluzioni proposte

Analisi 1 e 2 - Quarto compitino Soluzioni proposte Analisi 1 e 2 - Quarto ompitino Soluzioni proposte 23 maggio 2017 Eserizio 1. Risolvere il problema di Cauhy y = x(4 y2 ) y y(0) = α al variare di α R, α 0 Soluzione proposta. Se α = 2 oppure α = 2 abbiamo

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Derivabilità e derivata in un punto Sia y = f x una funzione reale di variabile reale di dominio D(f), e sia D(f). Si die he la funzione è derivabile in se esiste ed è finito il

Dettagli

Prefazione LUIGI PIANESE

Prefazione LUIGI PIANESE Prefazione Questo volume è dediato all integrazione indefinita, essendo il problema dell integrazione definita ompletamente risolto dal teorema fondamentale. L argomento, spesso, presenta notevoli diffioltà

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

TAVOLA DEGLI INTEGRALI INDEFINITI

TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni elementari c c ln c arc tan c arc tan c a a a e e c TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni composte f( ) f ( ) f '( ) C ' f ln f ( ) c f( ) f '( ) arctan( f

Dettagli

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti 5. CALCOLO INTEGRALE Il calcolo integrale nasce, da un lato per l esigenza di calcolare l area di regioni piane o volumi e dall altro come operatore inverso del calcolo differenziale. 5. Integrali indefiniti

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

Gli approcci alla programmazione dinamica: alcuni esempi

Gli approcci alla programmazione dinamica: alcuni esempi Gli approi alla programmazione dinamia: aluni esempi Franeso Menonin February, 2002 Ottimizzazione dinamia Il problema he qui si onsidera è quello di un soggetto he intende massimizzare (o minimizzare)

Dettagli

Il calcolo letterale

Il calcolo letterale Il alolo letterale Monomi Si die ESPRESSIONE ALGEBRICA LETTERALE (o sempliemente espressione algebria) un espressione in ui ompaiono lettere he rappresentano numeri. Esempio: 5 b 4 + 5 1 OSS: QUANDO non

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( )

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( ) Algoritmo di best-it (o itting) sinusoidale a 3 parametri Supponiamo di disporre della versione digitalizzata di un segnale sinusoidale di ampiezza di pio A, requenza nota, ase assoluta ϕ e on omponente

Dettagli

Unità Didattica N 29 : L integrale Indefinito

Unità Didattica N 29 : L integrale Indefinito Unità Didattica N 9 L integrale indefinito ) La definizione di integrale indefinito ) Proprietà dell ' integrale indefinito ) Integrali indefiniti immediati ) Integrazione per decomposizione ) Integrazione

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

Calcolo degli integrali indefiniti

Calcolo degli integrali indefiniti Appendice B Calcolo degli integrali indefiniti Se f è una funzione continua nell intervallo X, la totalità delle sue primitive prende il nome di integrale indefinito della funzione f, o del differenziale

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO Si die he, per he tende a, la funzione y=f() ha per ite l e si srive: l = l I( ) ESEMPIO DI VERIFICA DI

Dettagli

Unità Didattica 1. Sistemi di Numerazione

Unità Didattica 1. Sistemi di Numerazione Unità Didattia Sistemi di Numerazione Sistemi di Numerazione Posizionali Criterio per la rappresentazione di un insieme infinito di numeri mediante un insieme limitato di simoli. Un sistema di numerazione

Dettagli

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta.

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta. FUNZIONI CONTINUE funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si die ontinua in un punto D se risulta Analizza bene la definizione: lim x f ( x) = f ( ) Il punto deve

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

TEOREMA DEL CAMPIONAMENTO

TEOREMA DEL CAMPIONAMENTO 1 TEOREMA DEL CAMPIONAMENTO nota per il orso di Teleomuniazioni a ura di F. Benedetto G. Giunta 1. Introduzione Il proesso di ampionamento è di enorme importanza ai fini della realizzazione dei dispositivi

Dettagli

Integrali inde niti. F 2 (x) = x5 3x 2

Integrali inde niti. F 2 (x) = x5 3x 2 Integrali inde niti Abbiamo sinora studiato come ottenere la funzione derivata di una data funzione. Vogliamo ora chiederci, data una funzione f, come ottenerne una funzione, che derivata dia f. Esempio

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Esercitazione del Analisi I

Esercitazione del Analisi I Esercitazione del 0-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 0-0 Integrale di funzioni razionali Supponiamo di voler calcolare un integrale del tipo P () Q() d

Dettagli

Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana

Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità

Dettagli

Primitive e Integrali Indefiniti

Primitive e Integrali Indefiniti Capitolo 0 Primitive e Integrali Indefiniti In questo capitolo ci proponiamo di esporre la teoria delle funzioni primitive per funzioni reali di una variabile reale e di dare cenni ai metodi utilizzati

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA TRASFORMATA DI LAPLACE I sistemi dinamii invarianti e lineari (e tali sono le reti elettrihe) possono essere studiati, nel dominio del tempo, attraverso le equazioni differenziali nelle quali l'inognita

Dettagli

9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO

9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO A. A. 2014-2015 L. Doretti 1 La nascita e lo sviluppo del calcolo integrale sono legati a due tipi

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Integrali indefiniti, definiti e impropri - teoria

Integrali indefiniti, definiti e impropri - teoria Integrali indefiniti, definiti e impropri - teoria Primitiva Data una funzione si dice primitiva di tale f. la f. che ha per derivata, ovvero. Le primitive di una f. sono infinite e tutte uguali a meno

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO ABSTRACT DELL ELABORATO DI LAUREA. Valutazione del trasporto solido

FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO ABSTRACT DELL ELABORATO DI LAUREA. Valutazione del trasporto solido UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO ABSTRACT DELL ELABORATO DI LAUREA Valutazione del trasporto solido in sospensione

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

Esercizi sulla funzione integrale

Esercizi sulla funzione integrale Eserizi sulla funzione integrale Versione del 8 marzo 27 In questo fasioletto propongo aluni eserizi sulla funzione integrale. I testi della prima parte sono presi dalle prove assegnate agli esami di stato

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Proprietà globali delle funzioni ontinue Tramite i limiti, abbiamo studiato il omportamento di una funzione nell intorno di un punto (proprietà loali). Ora i oupiamo di funzioni ontinue su tutto un intervallo,

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 f : A R R A ' Funzioni Continue La funzione f si dice continua in f ( f ( se (e solo se A Ne seguono tre proprietà affinché f( sia continua in :. Devono esistere finiti il ite destro e sinistro di f( in.

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 )

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 ) Soluzioni delle Esercitazioni VII -6//8 A. Integrali indefiniti. Si ha +)d. Si ha + )d. Si ha + d +. Si ha d 5. Si ha / + / )d / ) d d + ++c ++c. + / +c + +c. + ) d ln + / +c ln + +c. ) / d )/ +) / d +)/

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Università degli Studi di Teramo Faoltà di Sienze Politihe Corso di Laurea in Statistia Lezioni del Corso di Matematia a ura di D. Tondini a.a. 3/4 CAPITOLO II LE EQUAZIONI DIFFERENZIALI. GENERALITÀ È

Dettagli

= 0 Ciascuna frazione tende ad x x 4 2 cos x lim x = il secondo addendo del numeratore è una funzione x (cos sin x 3 1) cos(x π 2 )

= 0 Ciascuna frazione tende ad x x 4 2 cos x lim x = il secondo addendo del numeratore è una funzione x (cos sin x 3 1) cos(x π 2 ) + sen x Es. lim x = il numeratore tende ad un numero positivo, il x 4 denominatore tende a zero. x 4 lim x = il denominatore ha grado maggiore del numeratore. x 8 + x sen x lim x +( + x) sen x = lim x

Dettagli

Espansione dell Universo e redshift

Espansione dell Universo e redshift Espansione dell Universo e redshift Primo Galletti Aldo Aluigi Roma, 21 Settembre 2002 In un Universo in ui avviene ontinuamente la nasita e la morte della materia 1 l ipotesi di una grande esplosione

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Materia Matematica Complementi di Matematica. Docente/i

Materia Matematica Complementi di Matematica. Docente/i Cod. me. ALTF01000R Anno solastio 2014 / 2015 Classe 4 Sezione B Indirizzo Informatia Materia Matematia Complementi di Matematia Doente/i Nome e ognome PierCarlo Barbierato Nome e ognome Firma Firma Nome

Dettagli

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4 I modelli di Chebyshev Si può ottenere una veloità di aduta più rapida in prossimità della frequenza di taglio rispetto a quella del modello di Butterworth, a disapito di una diminuzione di monotoniità

Dettagli

10. Integrazione delle funzioni RAZIONALI FRATTE ( = rapporti di polinomi)

10. Integrazione delle funzioni RAZIONALI FRATTE ( = rapporti di polinomi) 0. Integrazione delle funzioni RAZIONALI FRATTE ( rapporti di polinomi) Studieremo ora tecniche specifiche per gli integrali della forma A ( ), B ( ) essendo A( ) e B ( ) due polinomi. E lecito supporre

Dettagli

Note sulla correttezza di RSA e sulla complessità degli attacchi

Note sulla correttezza di RSA e sulla complessità degli attacchi Note sulla orrettezza di RSA e sulla omplessità degli attahi P. Bonatti 21 novembre 2016 1 Rihiami elementari di algebra Elevamento a potenza di binomi Riordiamo la definizione di oeffiiente binomiale:

Dettagli

1 Integrale multiplo di una funzione limitata su di un rettangolo

1 Integrale multiplo di una funzione limitata su di un rettangolo INTEGLE DELLE FUNZIONI DI PIÙ VIBILI INTEGLE MULTIPLO DI UN FUNZIONE LIMITT SU DI UN ETTNGOLO Integrale delle funzioni di più variabili Indie Integrale multiplo di una funzione limitata su di un rettangolo

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 28 maggio 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 005/06 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 9 settembre 005 Dimostrare

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013 FACOLTÀ DI INGEGNERIA ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meania PROF A PRÁSTARO /0/03 Fig Diso D, ruotante, on rihiamo elastio radiale in un piano vertiale π, e portatore di aria

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Metodi di Integrazione. Integrazione per decomposizione in somma

Metodi di Integrazione. Integrazione per decomposizione in somma Metodi di Integrazione Integrazione per decomposizione in somma Integrazione per parti Integrazione per sostituzione Integrazione per decomposizione in somma In molti casi il calcolo dell integrale indefinito

Dettagli

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) Lagrangiana del ampo elettromagnetio Il ampo elettromagnetio nel vuoto è desritto dalle equazioni di Maxwell (in unità MKSA) B = 0 () E = B (2) E = ϱ (3) ɛ 0 B = µ 0 j + µ 0 ɛ 0 E L equazione di ontinuità

Dettagli

Le condizioni date nel testo del quesito non sono sufficienti per concludere che f(a) = l, perché manca l ipotesi della continuità della funzione.

Le condizioni date nel testo del quesito non sono sufficienti per concludere che f(a) = l, perché manca l ipotesi della continuità della funzione. Matematica per la nuova maturità scientifica A Bernardo M Pedone Questionario Quesito Indicata con f() una funzione reale di variabile reale, si sa che f() l per a, essendo l ed a numeri reali Dire se

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Integrazione delle funzioni razionali fratte

Integrazione delle funzioni razionali fratte Integrazione delle funzioni razionali fratte Avvertenza: è opportuno che lo studente provi a rifare tutti i calcoli presentati nel seguito. Caso generale Consideriamo l integrale (indefinito o definito)

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 0/3 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi del 0 ottobre 0 La sottrazione

Dettagli

Analisi dei segnali campionati

Analisi dei segnali campionati Analisi dei segnali ampionati - 1 Analisi dei segnali ampionati 1 - Il teorema del ampionamento Campionamento ideale Il ampionamento (sampling) di un segnale analogio s( onsiste nel prenderne solo i valori

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 008/09 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 4 ottobre 008 Dimostrare

Dettagli

TRASFORMATA DI HILBERT

TRASFORMATA DI HILBERT TRASFORMATA DI ILBERT La Trasformata di ilbert è una partiolare rappresentazione he, ontrariamente ad altre trasformate (Fourier, Laplae, Z, ) non realizza un ambiamento del dominio di definizione. In

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 7 giugno 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch O Le omotetie Dato un numero reale non nullo h e un punto P del piano l omotetia di rapporto h e entro O è quella trasformazione he assoia a P il punto P' tale he P P OP' = h OP. Se è P(xy) allora P'(hx

Dettagli

1 + 2 x) x. e x + e x e x e x. lim

1 + 2 x) x. e x + e x e x e x. lim Esame per il corso di Matematica per CTF Prof G Gaeta) Febbraio 24 Tempo a disposizione: due ore e mezza; non sono ammessi ausili libri, appunti, etc) I diversi esercizi hanno lo stesso peso in termini

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 14 gennaio nel punto x = 0

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 14 gennaio nel punto x = 0 log(1 + Domanda 1 La funzione f( = sin( se < 0 ( se 0, nel punto = 0 è continua a sinistra ma non a destra è continua è continua a destra ma non a sinistra D non è continua né a destra né a sinistra sin

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. 9- Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. 9/ Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Integrazione delle funzioni razionali e applicazioni

Integrazione delle funzioni razionali e applicazioni Integrazione delle funzioni razionali e applicazioni Tutte le funzioni razionali sono integrabili elementarmente. Inparticolare: l integrale di un polinomio si calcola per linearità ed è sempre un polinomio

Dettagli

Analisi di segnali campionati

Analisi di segnali campionati Analisi nel dominio della frequenza Analisi di segnali ampionati - 1 Analisi di segnali ampionati 1 Analisi dei segnali nel dominio della frequenza I prinipali metodi di analisi dei segnali di misura possono

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

Moto vario elastico: fenomeno del colpo d ariete

Moto vario elastico: fenomeno del colpo d ariete Moto vario elastio: fenomeno del olpo d ariete 1. Desrizione del fenomeno Si onsideri un semplie impianto ostituito da un serbatoio di grande ampiezza in modo tale he in esso il livello di ario rimanga

Dettagli

Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 19 Giugno ( 1) n sin 1. n 3

Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 19 Giugno ( 1) n sin 1. n 3 Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 9 Giugno 203 TRACCIA A. Studiare il carattere della seguente serie numerica + n= ( ) n sin. Si tratta di una serie a termini di

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

Analisi Numerica: Introduzione

Analisi Numerica: Introduzione Analisi Numerica: Introduzione S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste Analisi numerica e calcolo numerico Analisi numerica e calcolo numerico La matematica del continuo

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI Fondamenti Segnali e Trasmissione Numerizzazione dei segnali Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono di tipo numerio, normalmente

Dettagli

Esame di Analisi Matematica Prova scritta del 9 giugno 2009

Esame di Analisi Matematica Prova scritta del 9 giugno 2009 Prova scritta del 9 giugno 2009 A1 Data la funzione f(x) = x2 3 e x, (f) determinare in base al grafico di f il numero delle soluzioni dell equazione f(x) = λ al variare di Calcolare un valore approssimato

Dettagli

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x)

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x) Integrazione di Funzioni Razionali Un polinomio di grado n N è una funzione della forma P () = a 0 + a +... + a n n dove a 0, a,..., a n sono costanti reali e a n 0. Una funzione della forma R() = P ()

Dettagli

1 La Lagrangiana di una particella in una campo di forze potenziale

1 La Lagrangiana di una particella in una campo di forze potenziale Introduzione alle equazioni di Eulero-Lagrange e ai potenziali generalizzati G.Falqui, Dipartimento di Matematia e Appliazioni, Università di Milano Bioa. Corso di Sistemi Dinamii e Meania Classia, a.a.

Dettagli

f(x) lim x c g(x) = lim x c f(x) lim x c g(x)

f(x) lim x c g(x) = lim x c f(x) lim x c g(x) Matematica I, 10.10.2012 Limiti di funzioni (II) 1. Limiti e Operazioni Algebriche L operazione di ite di successioni si comporta bene rispetto alle operazioni algebriche di somma (e sottrazione), prodotto

Dettagli

Il teorema fondamentale del calcolo

Il teorema fondamentale del calcolo Il teorema fondamentale del calcolo Versione da non divulgare. Scritta per comodità degli studenti. Può contenere errori. 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013

Dettagli

1 Integrazione per parti

1 Integrazione per parti Integrazione per parti Un pò di teoria Date le funzioni f, g : [a, b] R con f, g C [a, b] la regola di integrazione per parti per gli integrali definiti è: b a f(g ( d = f(bg(b f(ag(a b a f (g( d la regola

Dettagli

REGISTRO DELLE LEZIONI 2004/2005. Lezione Insiemistica. Tipologia. Insiemistica. Addì Tipologia. Addì

REGISTRO DELLE LEZIONI 2004/2005. Lezione Insiemistica. Tipologia. Insiemistica. Addì Tipologia. Addì Insiemistica. Insiemistica. Gli insiemi e le operazioni tra insiemi. Le formule di De Morgan. Gli insiemi N, Q, R. L unione, l intersezion, la differenza tra insiemi, il complementare di un insieme. Addì

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli