Lenti sottili/1. Menisco convergente. Menisco divergente. Piano convessa. Piano concava. Biconcava. Biconvessa. G. Costabile

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lenti sottili/1. Menisco convergente. Menisco divergente. Piano convessa. Piano concava. Biconcava. Biconvessa. G. Costabile"

Transcript

1 Lenti sottili/1 La lente è un sistema ottico costituito da un pezzo di materiale trasparente omogeneo (vetro, policarbonato, quarzo, fluorite,...) limitato da due calotte sferiche (o, più generalmente, da due superfici non piane, e.g., cilindriche o gaussiane). A differenza dei sistemi diottrici piani, essa può formare immagini reali. Nel seguito, considereremo solo lenti sferiche. Biconvessa Piano convessa Lenti convergenti Menisco convergente Menisco divergente Piano concava Lenti divergenti Biconcava Una lente sottile è definita come una lente il cui spessore è considerato piccolo rispetto alle distanze generalmente associate alle sue proprietà ottiche (raggi di curvatura delle calotte, distanze focali, distanze degli oggetti e delle immagini). Dal punto di vista geometrico, la lente sottile è assimilata ad un piano.

2 Lenti sottili/2 d d f f Asse r 2 r 1 F fuoco secondario F fuoco primario Asse Lente positiva (convergente) d d f f F Asse F Asse r 2 r 1 Lente negativa (divergente) Il fuoco primario F è un punto assiale tale che ogni raggio proveniente da esso o diretto in esso si propaga parallelamente all asse a seguito della rifrazione. Il fuoco secondario F è un punto assiale tale che ogni raggio propagantesi parallelamente all asse è diretto in esso o appare provenire da esso a seguito della rifrazione.

3 Lenti sottili/3 Indicando con f ed f rispettivamente le distanze di F ed F dalla lente, dal principio di reversibilità segue: f = f (a differenza di quanto si verifica nel diottro sferico). Costruzione dell immagine s s Q f S f f f Q T Q T y M raggio principale F A F M Asse y M F M A raggio principale F Asse S Q s s Nell approssimazione parassiale il raggio passante per il centro della lente A è indeviato perché attraversa superfici parallele con piccolo angolo di incidenza. Applicando il principio di reversibilità, il ruolo dell oggetto e dell immagine si invertono. Come per il diottro sferico, M ed M sono coniugati, e così pure i piani per essi perpendicolari all asse.

4 Lenti sottili/4 Q M T y F A F M y S x f f x s s Q Dalla proporzionalità fra i triangoli F AS seguono, rispettivamente: y y s = y f e Q T S ed F T A e fra i triangoli QT S ed y y s = y f Sommando membro a membro e ponendo f = f, si ottiene nella forma gaussiana la formula dei punti coniugati: 1 s + 1 s = 1 f

5 Lenti sottili/5 Dalla proporzionalità fra i triangoli F M Q, rispettivamente (f = f ): y x = y f QMF ed F AS e fra i triangoli e y x = y f T AF ed Moltiplicando membro a membro si ricava la forma newtoniana della formula dei punti coniugati: xx = f 2 Nella forma gaussiana le distanze sono misurate rispetto alla lente, in quella newtoniana esse sono misurate rispetto ai fuochi. La seconda viene semplicemente generalizzata quando i mezzi ai lati della lente hanno indice di rifrazione diverso: xx = ff L ingrandimento lineare m nella forma newtoniana si ricava direttamente dalle prime due equazioni: m = y y = f x = x f

6 Lenti sottili/6 Ingrandimento lineare Poiché i triangoli rettangoli QMA e Q M A sono simili, sostituendo y = MQ e y = M Q M Q MQ = AM AM m = y y = s s Quando s ed s sono entrambe positive, il segno negativo indica l inversione dell immagine. Formula del costruttore di lenti Noto l indice di rifrazione del materiale della lente (generalmente specificato per la riga D del sodio), si possono calcolare i raggi di curvatura delle superfici sferiche di una lente per ottenere una specifica distanza focale f per una lente sottile a : ( 1 1 = (n 1) 1 ) f r 1 r 2 Nella formula, la propagazione dei raggi è da sinistra a destra, e le superfici attraversate in questo verso sono considerate aventi raggio positivo se convesse, raggio negativo se concavo. a Per la dimostrazione, cfr. F.A. Jenkins, H.E. White, Fundamentals of Optics, McGraw-Hill, 1976, par. 4.9

7 Lenti sottili/7 Combinazione di lenti sottili La formazione delle immagini si calcola applicando la formula dei punti coniugati ad ogni lente e considerando come oggetto per ogni lente l immagine formata dalla lente precedente, prendendo cura di rispettare le convenzioni sui segni (notando, cioè, se gli oggetti considerati sono reali o virtuali) Potere di una lente sottile Il potere di una lente sottile è misurato in diottrie se la distanza focale f è misurata in metri, ed è definito come P = 1 f oppure ( 1 P = (n 1) 1 ) r 1 r 2 Es., P = 2 D è il potere diottrico di una lente divergente avente f = 50 cm.

8 Lenti sottili/8 Lenti sottili addossate I raggi paralleli che incidono sulla prima lente L 1 convergerebbero nel fuoco secondario F 1 posto alla distanza f 1. Esso costituisce l oggetto (virtuale) per la seconda lente L 2, caratterizzata dalla distanza focale secondaria f 2. Il punto in cui si forma l immagine finale è (per definizione) il fuoco secondario del sistema F, e la sua distanza dalle lenti, f, si calcola applicando la formula dei punti coniugati: 1 f f = 1 f 2 1 f = 1 f f 2. Se le lenti sono in aria, le distanze focali primarie e secondarie sono uguali, gli apici possono essere soppressi, e si ricava P = P 1 + P 2 Il potere diottrico di lenti sottili a contatto è dato dalla somma dei poteri diottrici delle singole lenti.

9 Lenti spesse/1 Se lo spessore di una lente d (distanza tra i vertici delle superfici) non è trascurabile rispetto alle lunghezze caratteristiche (ed in particolare alla distanza focale), essa si dice spessa. In questa categoria si può far rientrare, più in generale, ogni sistema ottico centrato, considerandolo come tutt uno. Nel seguito questo è implicitamente assunto, anche se, per semplicità ci si riferisce ad una singola lente spessa. Si considerino due superfici sferiche coassiali di raggio r1 ed r 2 delimitanti un mezzo con indice n posto tra due mezzi aventi indice n ed n, rispettivamente, e sia M un punto immagine sull asse ottico posto nel mezzo 1 a distanza s 1 dal vertice A 1. Riapplicando il procedimento già adoperato in precedenza: si calcola la distanza s 1 da A 1 dell immagine M formata dal primo diottro; rispetto al secondo diottro, si considera M come un oggetto posto a distanza s 2 = s 1 d dal vertice A 2; si calcola la distanza s 2 dell immagine M da A 2. Nell approssimazione di raggi parassiali, M ed M sono punti coniugati. Le formule da adoperare (rispettando le convenzioni) sono: n s 1 + n s 1 = n n r 1 n s 2 + n s 2 = n n r 2

10 Lenti spesse/2 Piano principale primario Piano principale secondario n n n n n n F A 1 H A2 A H A 1 2 F f f La figura mostra il fuochi di una lente spessa. I piani passanti per le intersezioni dei raggi incidenti con i raggi rifratti costituiscono il piano principale primario ed il piano principale secondario, e le loro intersezioni H ed H con l asse sono dette punti principali. Tra i due piani principali c è corrispondenza punto a punto: I piani principali sono due piani caratterizzati da ingrandimento lineare unitario positivo. Le distanze focali sono misurate dai fuochi F ed F ai rispettivi punti principali H ed H (e non dai fuochi ai vertici A 1 ed A 2 ). Se n = n, allora f = f. Se n n, allora n /n = f /f.

11 Lenti spesse/3 La conoscenza dei fuochi e dei punti principali consente di costruire graficamente le immagini con le stesse procedure adoperata per diottro e lente sottile. É anche possibile applicare, nell approssimazione di raggi parassiali, le formule dei punti coniugati, se anche le distanze s, s sono misurate rispetto ai punti principali: n s + n s = n f = n f (n n ) 1 s + 1 s = 1 f = 1 f (n = n ) Dalla geometria è possibile ricavare una serie di relazioni tra le distanze caratteristiche del sistema: n f = n A 1 F = f A 2 F = +f f 1 + n f 2 ( 1 d f 2 ( 1 d ) f 1 ) dn f 1 f 2 = n f A 1 H = f d f 2 A 2 H = f d f 1

12 Lenti spesse/4 Dato un punto oggetto fuori asse, si consideri quello tra i raggi incidenti che emerge dalla lente parallelo a sé stesso. I due punti di intersezione, N ed N, dei suoi prolungamenti con l asse sono detti punti nodali. Fuochi, punti principali e punti nodali costituiscono i punti cardinali. Se n = n, allora i punti nodali coincidono con i punti principali. Comunque, in generale, vale la proprietà NN = HH L interesse per i punti nodali sta nel fatto che la loro posizione può essere determinata sperimentalmente a, e dalle relazioni N F = F H f NF = H F f avendo pure individuato sperimentalmente la posizione dei fuochi primario e secondario, si ricava la posizione dei punti principali. La distanza HN può anche essere calcolata dalla formula HN = f (1 n/n ); essa è utile per calcolare l ingrandimento lineare: a F.A. Jenkins, H.E. White, op. cit. m = y y = s HN s + HN

13 Aberrazioni Quando l approssimazione parassiale non è sufficiente: Aberrazione di sfericità Crown Flint Doppietto acromatico Aberrazione cromatica

Lenti sottili: Definizione

Lenti sottili: Definizione Lenti sottili: Definizione La lente è un sistema ottico costituito da un pezzo di materiale trasparente omogeneo (vetro, policarbonato, quarzo, fluorite,...) limitato da due calotte sferiche (o, più generalmente,

Dettagli

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce.

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce. Ottica geometrica L ottica geometrica tratta i fenomeni che si possono descrivere per mezzo della propagazione in linea retta e dei fenomeni di riflessione e la rifrazione della luce. L ottica geometrica

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Un onda e.m. e un onda trasversa cioe si propaga in direzione ortogonale alle perturbazioni ( campo elettrico e magnetico) che l hanno generata. Nel vuoto la velocita di propagazione

Dettagli

Definizione di lente. Tipi di lenti

Definizione di lente. Tipi di lenti LENTI Sommario Definizione di lente... 2 Tipi di lenti... 2 Punti e piani principali... 5 Punti e piani nodali... 10 Terminologia... 12 Focale, distanze coniugate ed ingrandimento... 19 Immagine generata

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

- B.1 - MANUALE DI OTTICA. per la classe seconda (professionale) a cura dei docenti dell'iis G.Galilei - Milano

- B.1 - MANUALE DI OTTICA. per la classe seconda (professionale) a cura dei docenti dell'iis G.Galilei - Milano - B.1 - MANUALE DI OTTICA per la classe seconda (professionale) a cura dei docenti dell'iis G.Galilei - Milano Agosto 2010 - B.2 - - B.3-1. Diottri sferici e specchi sferici La curvatura di una superficie

Dettagli

Laboratorio per il corso Scienza dei Materiali II

Laboratorio per il corso Scienza dei Materiali II UNIVERSITÀ DI CAMERINO Corso di Laurea Triennale in Fisica Indirizzo Tecnologie per l Innovazione Laboratorio per il corso Scienza dei Materiali II a.a. 2009-2010 Docente: E-mail: Euro Sampaolesi eurosampaoesi@alice.it

Dettagli

1 Introduzione 1. Ottica Geometrica

1 Introduzione 1. Ottica Geometrica 1 Introduzione 1 1 Introduzione Ottica Geometrica 1.1 Estratto Lo scopo di questa esperienza è quello di apprendere come la luce interagisce con elementi ottici quali le lenti, e come, in sequito alla

Dettagli

PROGRAMMA OPERATIVO NAZIONALE

PROGRAMMA OPERATIVO NAZIONALE PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio Ottica geometrica Sommario 1) Cos è la luce

Dettagli

1.Visione_01 Ottica geometrica. Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona

1.Visione_01 Ottica geometrica. Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona 1.Visione_01 Ottica geometrica Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona Obiettivi Principi di refrazione delle lenti, indice di refrazione

Dettagli

MANUALE DI OTTICA. per il secondo biennio dell'indirizzo di ottica (professionale) (Ottica geometrica) a cura dei docenti dell'iis G.

MANUALE DI OTTICA. per il secondo biennio dell'indirizzo di ottica (professionale) (Ottica geometrica) a cura dei docenti dell'iis G. - C. - MANUALE DI OTTICA per il secondo biennio dell'indirizzo di ottica (professionale) (Ottica geometrica) a cura dei docenti dell'iis G.Galilei - Milano Luglio 0 - C. - INTRODUZIONE Lo studio dell'ottica

Dettagli

PERCORSO DIDATTICO DI OTTICA GEOMETRICA

PERCORSO DIDATTICO DI OTTICA GEOMETRICA PERCORSO DIDATTICO DI OTTICA GEOMETRICA Tipo di scuola e classe: Liceo Scientifico, classe II Nodi concettuali: riflessione della luce; rifrazione della luce, riflessione totale, rifrazione attraverso

Dettagli

IL MICROSCOPIO OTTICO. DOWNLOAD Il pdf di questa lezione (microscopio2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/fistrum/ 09/03/2011

IL MICROSCOPIO OTTICO. DOWNLOAD Il pdf di questa lezione (microscopio2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/fistrum/ 09/03/2011 IL MICROSCOPIO OTTICO DOWNLOAD Il pdf di questa lezione (microscopio2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/fistrum/ 09/03/2011 Lo scopo di questi appunti è la descrizione dei principi

Dettagli

28/05/2009. La luce e le sue illusioni ottiche

28/05/2009. La luce e le sue illusioni ottiche La luce e le sue illusioni ottiche Cosa si intende per raggio luminoso? Immagina di osservare ad una distanza abbastanza elevata una sorgente di luce... il fronte d onda potrà esser approssimato ad un

Dettagli

APPUNTI DI OTTICA GEOMETRICA

APPUNTI DI OTTICA GEOMETRICA APPUNTI DI OTTICA GEOMETRICA ) Introduzione L ottica geometrica puo essere considerata un metodo per la costruzione di immagini date da sistemi ottici quali lenti e specchi. Essa costituisce una teoria

Dettagli

SCIENTIA MAGISTRA VITAE

SCIENTIA MAGISTRA VITAE 1 -Argomento Lenti fatte in casa Esperimenti usando lenti realizzate con materiali a costo nullo o basso o di riciclo. Cosa serve: acqua, bottiglie di plastica trasparente (es. quelle dell acqua minerale

Dettagli

Ottica fisiologica (2)

Ottica fisiologica (2) Ottica fisiologica (2) Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it http://homes.dsi.unimi.it/~boccignone/giuseppeboccignone_webpage/modelli_percezione.html

Dettagli

4.6 Lenti Capitolo 4 Ottica

4.6 Lenti Capitolo 4 Ottica 4.6 Lenti Esercizio 04 Due lenti biconvesse sono posizionate lungo il cammino ottico di un fascio di luce, separate da una distanza d. Il fascio di luce è parallelo e esce parallelo dopo le due lenti.

Dettagli

OTTICA. Ottica geometrica. Riflessione e rifrazione

OTTICA. Ottica geometrica. Riflessione e rifrazione Ottica geometrica OTTICA Sappiamo che la luce è un onda elettromagnetica. Essa perciò può non propagarsi in linea retta, analogamente alle altre onde (p. es. quelle sonore). Però, come avviene per tutte

Dettagli

- Formazione delle immagini per riflessione: specchio sferico

- Formazione delle immagini per riflessione: specchio sferico Ottica geometrica: - condizione di validità: o occorre conrontare la lunghezza d onda λ della luce e le dimensioni degli oggetti su cui la luce incide. Se λ è MINORE, valgono le leggi dell ottica geometrica.

Dettagli

! L occhio come sistema ottico complesso. Corso di Principi e Modelli della Percezione. ! Prof. Giuseppe Boccignone!

! L occhio come sistema ottico complesso. Corso di Principi e Modelli della Percezione. ! Prof. Giuseppe Boccignone! L occhio come sistema ottico comlesso Corso di Princii e Modelli della Percezione Prof. Giusee Boccignone Diartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it htt://homes.dsi.unimi.it/~boccignone/giuseeboccignone_webage/modelli_percezione.html

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica

Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica Corso di Laurea in Ottica e Optometria Laboratorio di Ottica Geometrica Richiami teorici Equazione della lente sottile in approssimazione parassiale: p + q = () f dove: p = distanza oggetto-lente q = distanza

Dettagli

3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI

3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI 3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI Il processo di formazione di una immagine da parte di un sistema ottico è facilmente descrivibile in termini di raggi. In figura la scatola rappresenta un generico

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.2 Riflettendo sulla sensazione di calore che proviamo quando siamo esposti ad un intensa sorgente luminosa, ad esempio il Sole, è naturale pensare alla luce

Dettagli

Basi di ottica. n 1. a b. n 2. figura 1 - riflessione. figura 2 - rifrazione. tabella 1. rifrazione n. vuoto 1

Basi di ottica. n 1. a b. n 2. figura 1 - riflessione. figura 2 - rifrazione. tabella 1. rifrazione n. vuoto 1 Basi di ottica L'ottica geometrica: riflessione e rifrazione Il comportamento dei raggi di luce viene descritto dalla cosiddetta ottica geometrica. L'ottica geometrica è solo una approssimazione del comportamento

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

Risultati Esercizi volume Ottica Visuale

Risultati Esercizi volume Ottica Visuale Risultati Esercizi volume Ottica Visuale Zeri F, Rossetti A, Fossetti A, Calossi A. Capitolo 2 Es.2.1: Effettuare il calcolo del potere della cornea, attraverso la formula per lenti sottili usando i dati

Dettagli

O 6 - GLI SPECCHI. Fig. 85

O 6 - GLI SPECCHI. Fig. 85 O 6 - GLI SPECCHI Quando un fascio di luce (radiazione ottica) incide sulla superficie di separazione fra due materiali diversi, possono avvenire tre cose, generalmente tutte e tre allo stesso tempo, in

Dettagli

Ottica fisiologica (2): sistemi ottici

Ottica fisiologica (2): sistemi ottici Ottica fisiologica (2): sistemi ottici Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it http://boccignone.di.unimi.it/pmp_2014.html

Dettagli

Disciplina: OTTICA, OTTICA APPLICATA - PRIMO BIENNIO

Disciplina: OTTICA, OTTICA APPLICATA - PRIMO BIENNIO DIPARTIMENTO DI FISICA Disciplina: OTTICA, OTTICA APPLICATA - PRIMO BIENNIO PROGRAMMAZIONE ANNUALE - CLASSE PRIMA L AZIONE DIDATTICA ED EDUCATIVA NEL PRIMO BIENNIO PERSEGUE L OBIETTIVO PRIORITARIO DI FAR

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Lenti e ingrandimento

Lenti e ingrandimento Microscopia Lenti e ingrandimento q1 q2 Interfaccia sferica a g b R n1 n2 L s s N ) - (N N N ) ( N N N sin N sin 1 2 2 1 2 1 2 1 2 2 1 1 b g a g b a b g q b b a q q q s' L, s L, R L g a b R N ) - (N s'

Dettagli

Formazione delle immagini

Formazione delle immagini 1 Formazione delle immagini Oggetto dell ottica geometrica Se accendiamo una lampadina al centro di una stanza buia l intero spazio della stanza è immediatamente reso visibile. La rapidità con cui la luce

Dettagli

ABERRAZIONI OTTICHE. Aberrazioni ottiche - 1/26

ABERRAZIONI OTTICHE. Aberrazioni ottiche - 1/26 ABERRAZIONI OTTICHE Sommario Prestazioni ottiche... 2 Diffrazione... 2 Natura delle aberrazioni delle lenti... 2 Aberrazione sferica... 5 Astigmatismo... 10 Coma... 12 Curvatura di campo... 13 Distorsione...

Dettagli

Esecuzione: Ho indossato gli occhiali ( che funzionano come un prisma di vetro), quindi ho osservato una fonte di luce

Esecuzione: Ho indossato gli occhiali ( che funzionano come un prisma di vetro), quindi ho osservato una fonte di luce Esperimento 1: Dispersione della luce Materiali e strumenti: Occhiali speciali, luce Esecuzione: Ho indossato gli occhiali ( che funzionano come un prisma di vetro), quindi ho osservato una fonte di luce

Dettagli

Qual è la differenza fra la scala Celsius e la scala assoluta delle temperature?

Qual è la differenza fra la scala Celsius e la scala assoluta delle temperature? ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011 Via G. Carducci 4 21052 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli

ESERCIZI DI OTTICA GEOMETRICA

ESERCIZI DI OTTICA GEOMETRICA ESERCIZI DI OTTICA GEOMETRICA Prima di ogni argomento sono raccolte alcune formule utili, e non banali, per lo svolgimento degli esercizi. Si presuppongono lo studio e la comprensione teorica delle stesse.

Dettagli

La rifrazione della luce: le lenti e gli strumenti ottici

La rifrazione della luce: le lenti e gli strumenti ottici CPITOLO 4 La rifrazione della luce: le lenti e gli strumenti ottici Una fibra ottica è una specie di filo di vetro in grado di trasmettere impulsi luminosi a grandi distanze dalla sorgente che li ha generati.

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Costruirsi un cannocchiale galileiano

Costruirsi un cannocchiale galileiano Costruirsi un cannocchiale galileiano I. INFORMAZIONI PRELIMINARI - IL PRINCIPIO OTTICO Un cannocchiale galileiano impiega due sole lenti. La lente obbiettiva è convergente (piano-convessa), la lente oculare

Dettagli

Il riduttore di focale utilizzato è il riduttore-correttore Celestron f/ 6.3.

Il riduttore di focale utilizzato è il riduttore-correttore Celestron f/ 6.3. LE FOCALI DEL C8 Di Giovanni Falcicchia Settembre 2010 Premessa (a cura del Telescope Doctor). Il Celestron C8 è uno Schmidt-Cassegrain, ovvero un telescopio composto da uno specchio primario concavo sferico

Dettagli

Ottica geometrica. Superfici rifrangenti e lenti

Ottica geometrica. Superfici rifrangenti e lenti Nome ile d:\scuola\corsi\corso isica\ottica\lenti.doc Creato il 09/05/003 0.33 Dimensione ile: 48640 byte Andrea Zucchini Elaborato il 8/05/003 alle ore.54, salvato il 8/05/03 0.54 stampato il 8/05/003.54

Dettagli

1) Una lente ha lunghezza focale di 20 cm. A quale distanza, al di là della lente, si forma l immagine della sorgente?

1) Una lente ha lunghezza focale di 20 cm. A quale distanza, al di là della lente, si forma l immagine della sorgente? ) Una lente ha lunghezza ocale di 20 cm. A uale distanza, al di là della lente, si orma l immagine della sorgente? 2) Un oggetto è osto a 20 cm da una lente sottile di distanza ocale 0,25 cm. A uale distanza

Dettagli

Processo di rendering

Processo di rendering Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)

Dettagli

L ottica geometrica. Capitolo 10. 10.1 La velocità della luce

L ottica geometrica. Capitolo 10. 10.1 La velocità della luce Capitolo 10 10.1 La velocità della luce L ipotesi alla base dell ottica geometrica è la propagazione rettilinea della luce, in virtù della quale la luce può essere considerata un insieme di raggi emessi

Dettagli

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico Università degli studi di Messina facoltà di Scienze mm ff nn Progetto Lauree Scientifiche (FISICA) Prisma ottico Parte teorica Fenomenologia di base La luce che attraversa una finestra, un foro, una fenditura,

Dettagli

la luce 14.1 La propagazione della luce n La propagazione della luce

la luce 14.1 La propagazione della luce n La propagazione della luce online.zanichelli.it/ruffo_fisica, pagina Prerequisiti 4unità 4 la luce 4. La propagazione della luce IDE-CHIVE In un mezzo omogeneo, la luce si propaga in linea retta con velocità costante; il valore

Dettagli

GLI SPECCHI SPECCHI SFERICI (CONCAVI E CONVESSI) E PIANI

GLI SPECCHI SPECCHI SFERICI (CONCAVI E CONVESSI) E PIANI GLI SPECCHI SPECCHI SFERICI (CONCAVI E CONVESSI) E PIANI Specchi sferici In approssimazione parassiale l equazione dei punti coniugati in uno specchio sferico è l: posizione oggetto (S nella figura) l

Dettagli

Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale...

Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale... IMMAGINI Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale... 9 Immagini - 1/11 Ottica geometrica È la branca dell ottica che

Dettagli

I esonero di Ottica Geometria a.a compito A

I esonero di Ottica Geometria a.a compito A I esonero di Ottica Geometria a.a. 2016-17 compito A Un onda elettromagnetica piana con frequenza 5x10 12 Hz entra con incidenza normale in un mezzo spesso 10 Km. Sapendo che la luce impiega un tempo t=50

Dettagli

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2 OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura

Dettagli

Ottica. 1 p + 1 q = 2 R

Ottica. 1 p + 1 q = 2 R - - I amosi specchi ustori usati da rchimede per bruciare le navi nemiche erano specchi serici. Sapendo che la distanza delle alture, dove erano posti gli specchi, dal mare era di 00 m, dite uale doveva

Dettagli

OTTICA DELLA VISIONE Mauro Zuppardo 2015

OTTICA DELLA VISIONE Mauro Zuppardo 2015 OTTICA DELLA VISIONE OTTICA DELLA VISIONE STIGMATICO ASTIGMATICO OTTICA DELLA VISIONE 90 SUPERFICIE TOROIDALE Disco di Minima Confusione Intervallo di Sturm Asso O=co OTTICA DELLA VISIONE Disco di Minima

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Interazione & Multimedia 1

Interazione & Multimedia 1 Il nostro viaggio nell image processing deve iniziare con lo studio di come l occhio umano percepisce una immagine e come la elabora. Ci interessa capire quali sono i limiti della visione umana al fine

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

OTTICA TORNA ALL'INDICE

OTTICA TORNA ALL'INDICE OTTICA TORNA ALL'INDICE La luce è energia che si propaga in linea retta da un corpo, sorgente, in tutto lo spazio ad esso circostante. Le direzioni di propagazione sono dei raggi che partono dal corpo

Dettagli

VISIONE_01 OTTICA GEOMETRICA. FGE aa

VISIONE_01 OTTICA GEOMETRICA. FGE aa VISIONE_01 OTTICA GEOMETRICA FGE aa.2015-16 OBIETTIVI Principi di refrazione delle lenti, indice di refrazione Lenti biconcave e lenti biconvesse, fuoco principale e distanza focale Potere refrattivo di

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Lenti, Cannocchiali e Telescopi

Lenti, Cannocchiali e Telescopi tradizione e rivoluzione nell insegnamento delle scienze Istruzioni dettagliate per gli esperimenti mostrati nel video Lenti, Cannocchiali e Telescopi prodotto da Reinventore con il contributo del MIUR

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

I Esonero di Elementi di Ottica del 13/06/2011

I Esonero di Elementi di Ottica del 13/06/2011 I Esonero di Elementi di Ottica del 13/06/2011 1) L onda elettromagnetica piana sinusoidale di frequenza f= 100 khz emessa da un sottomarino in superficie, si propaga orizzontalmente sia nell aria che

Dettagli

OTTICA GEOMETRICA. L ottica geometrica è valida quando la luce interagisce solo con oggetti di dimensioni molto maggiori della sua lunghezza d onda.

OTTICA GEOMETRICA. L ottica geometrica è valida quando la luce interagisce solo con oggetti di dimensioni molto maggiori della sua lunghezza d onda. Un raggio di luce si propaga rettilineamente in un mezzo omogeneo ed isotropo con velocità: c v =, n > 1 n OTTICA GEOMETRICA L ottica geometrica è valida quando la luce interagisce solo con oggetti di

Dettagli

Argomenti di diottrica oculare

Argomenti di diottrica oculare 0303_Oftalmologia_cap03:Layout 1 23-01-2013 11:49 Pagina 51 CAPITOLO 3 Argomenti di diottrica oculare Giampaolo Lucarini 3.1 INTRODUZIONE ALLʼOTTICA PARASSIALE Il compito dell ottica geometrica è sostanzialmente

Dettagli

Specchio parabolico: MIRASCOPE. a cura di Pietro Pozzoli

Specchio parabolico: MIRASCOPE. a cura di Pietro Pozzoli Specchio parabolico: MIRASCOPE Proprietà coinvolte: Rifrazione dei raggi partenti dal fuoco lungo rette parallele all asse Focalizzazione dei raggi paralleli all asse sul fuoco PUNTO DI VISTA FISICO: Quali

Dettagli

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile)

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile) Ottica geometrica Propagazione per raggi luminosi (pennello di luce molto sottile) All interno di un mezzo omogeneo la propagazione e rettilinea: i raggi luminosi sono pertanto rappresentati da tratti

Dettagli

Esercizi Ottica: la rifrazione

Esercizi Ottica: la rifrazione Esercizi Ottica: la rifrazione " = = = "# "# 1) Scrivere la legge di snell tra due superfici di indice di rifrazione n1 (mezzo dove parte l onda) e n2 (mezzo dove l onda arriva). Se l indice di rifrazione

Dettagli

QUOTATURA. Introduzione

QUOTATURA. Introduzione QUOTATURA 182 Introduzione Per quotatura si intende l insieme delle norme che permettono l indicazione esplicita delle dimensioni(lineari ed angolari) dell oggetto rappresentato. Poiché a ciascun disegno

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Lenti. Capitolo Lenti sottili

Lenti. Capitolo Lenti sottili Capitolo 3 Lenti 3. Lenti sottili Indichiamo con il termine lente un sistema ottico costituito da materiale trasparente e omogeneo limitato da due superfici che possono essere entrambe sferiche oppure

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa.

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa. SPECCHI SPECCHI PIANI Per specchio si intende un dispositivo la cui superficie è in grado di riflettere immagini di oggetti posti davanti a essa. Uno specchio è piano se la superficie riflettente è piana.

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

2. OTTICA FISIOLOGICA

2. OTTICA FISIOLOGICA 2. OTTICA FISIOLOGICA 1. MODELLI DELL OCCHIO L occhio è costituito da una serie di diottri con curvature non propriamente sferiche. Gli indici di rifrazione sono diversi tra individuo e individuo e molto

Dettagli

GIOCHI A SQUADRE. 30 marzo 2012

GIOCHI A SQUADRE. 30 marzo 2012 Centro Pristem Università Bocconi GIOCHI A SQUADRE 30 marzo 2012 1. La campestre Carla, Milena, Anna, Fausta e Debora hanno partecipato alla corsa campestre della loro classe. Carla e Anna non hanno vinto.

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

proiezione geometrica modalità di propagazione dei raggi di luce incidenti il sistema ottico

proiezione geometrica modalità di propagazione dei raggi di luce incidenti il sistema ottico Capitolo 4 Sistema ottico 4.1 Introduzione Nel processo di formazione dell immagine, il sistema ottico genera in un piano (il piano immagine) l immagine bidimensionale degli oggetti 3D del mondo la cui

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

OLIMPIADI DI FISICA 2004

OLIMPIADI DI FISICA 2004 Associazione per l Insegnamento della Fisica Progetto Olimpiadi OLIMPIADI DI FISICA 2004 13 Febbraio 2004 Gara di 2 Livello SOLUZIONE dei QUESITI Quesito n.1 Nell urto si conserva la quantità di moto,

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

O5 - LE ABERRAZIONI delle LENTI

O5 - LE ABERRAZIONI delle LENTI O5 - LE ABERRAZIONI delle LENTI Per aberrazione intendiamo qualsiasi differenza fra le caratteristiche ottiche di un oggetto e quelle della sua immagine, creata da un sistema ottico. In altre parole, ogni

Dettagli