Esercizi Di Geometria 1 (BAER) Canale 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi Di Geometria 1 (BAER) Canale 1"

Transcript

1 Esercizi Di Geometria 1 (BAER) Canale 1 SETTIMANA 9 (23 29 Novembre 2015) da consegnare Mercoledi 2 Dicembre. Esercizio 1. Sia E = (V,, ) uno spazio metrico finito dimensionale. sottospazio vettoriale di V. Dimostrare che V = W W ovvero che Sia W un Dedurre che dim W + dim W = dim V. V = W + W, e W W =. Soluzione 1. Poiché, é per ipotesi una forma bilineare definita positiva, per ogni vettore non nullo w V, w, w > 0. In particolare, nessun vettore non nullo puó essere ortogonale a se stesso, e quindi W W =. Dato comunque un vettore v V esso si scrive come v = P W (v) + (v P W (v)) dove P W : V V é la proiezione ortogonale su W. Poiché P W (v) W e (v P W (v)) W, concludiamo che V = W + W. Si poteva anche osserrvare che data una base ortogonale B 1 di W ed una base ortogonale B 2 di W, gli elementi di B 1 B 2 sono linearmente indipendenti essendo mutuamente ortogonali. Siccome W = Ker P W e W = Im P w, per la formula delle dimensioni si ha dim V = dim W + dim W e quindi la cardinalitá di B 1 B 2 é uguale alla dimensione di V e quindi B 1 B 2 é una base di V. Da questo segue subito che V = W W. Peró questo argomento richiede di aver giá dimostrato che la proiezione ortogonale é un applicazione lineare. Esercizio 2. Sia V = Mat n n lo spazio vettoriale delle matrici quadrate n n. Dato un vettore A Mat n n la sua traccia é il numero Tr(A) := a + a a nn ottenuto sommando le entrate di A sulla diagonale principale. 1. Calcolare la traccia delle seguenti matrici Dimostrare che T r(a) = T r( t A), per ogni A Mat n n. 3. Dimostrare che T r : Mat n n R é un applicazione lineare e calcolare la dimensione del nucleo e dell immagine. 1

2 4. Dimostrare che T r(ab) = T r(ba), per ogni A, B Mat n n. 5. Dimostrare che se C Mat n n é una matrice invertibile, allora T r(c 1 AC) = T r(a), per ogni A Mat n n. Soluzione , 4, 8 2. Gli elementi diagonali di A sono esattamente gli elementi diagonali di t A. 3. T r(αa + βb) = n i=1 (αa + βb) ii = n i=1 (αa ii + βb ii ) = αt r(a) + βt r(b). Dato comunque x R la matrice A tale che A = x e A ij = 0 per ogni (i, j) (1, 1) soddisfa T r(a) = x. Per cui la traccia é un applicazione suriettiva. Ne segue che dim Im Tr = 1 e quindi dim Ker Tr = dim Mat n n 1 = n T r(ab) = n i=1 (AB) ii = n i=1 n j=1 (A ijb ji ) = n j=1 n i=1 (B jia ij ) = T r(ba). 5. T r(c 1 AC) = T r((ac)c 1 ) = T r(a(cc 1 )) = T r(a1 n ) = T r(a). Esercizio 3. Sia V = Mat n n lo spazio vettoriale delle matrici quadrate n n. Si consideri l applicazione, : V V R definita da (la traccia della trasposta di A per B). A, B := Tr ( t AB) (1) 1. Dimostrare che l applicazione, appena definita é un prodotto scalare definito positivo su V (ovvero una forma bilineare simmetrica e definita positiva). 2. Sia W il sottospazio vettoriale di V composto di tutte le matrici di traccia nulla, ovvero W := Ker Tr. Trovare una base ortonormale di W e completarla ad una base ortonormale di V. Soluzione Grazie all esercizio 2 la forma cosi definita é un prodotto scalare. Infatti: 1) é simmetrica: A, B = T r( t AB) = T r( t ( t AB)) = T r( t BA) = B, A ; 2) é bilineare: essendo simmetrica basta dimostrare che é lineare nella seconda variabile: A, αb + γc = T r( t A(βB + γc)) = T r(β t AB + γ t AC) = βt r( t AB) + γt r( t AC) grazie alla linearitá della traccia; 3) é definita positiva: A, A = T r( t AA) = i Ai A i = i Ai 2 e per le proprietá della norma segue che A, A 0 per ogni A ed é uguale a zero se e solo se A = Abbiamo dimostrato nell esercizio 2 che dim W = n 2 1. La base standard C = {E ij i, j = 1, 2,, n} forma una base ortonomale per lo spazio metrico E = (V,, ). Infatti, la seguente formula segue subito dalla definizione (1): E ij, E kl = { 1 se Eij = E kl 0 altrimenti (2) Troviamo adesso una base ortogonale per W : gli elementi E ij con i j appartengono a W e sono in numero di n 2 n. Per completarli ad una base di W dobbiamo 2

3 quindi trovare n 1 elementi. E naturale scegliere matrici diagonali poiché esse sono ortogonali agli elementi E ij con i j. La scelta naturale degli E ii E i+1,i+1 non produce una base ortogonale. Consideriamo invece i seguenti elementi: s h s := E + E E ss se s+1,s+1 := E ii se s+1,s+1. al variare di s = 1, 2,, n 1. Ad esempio per n = 4 essi sono h 1 = h 2 = h 3 = i= Segue subito da (2) che gli elementi {h i i = 1, 2, n 1} sono mutuamente ortogonali. Quindi l insieme B W = {E ij i j} {h 1,, h n 1 } é una base ortogonale di W. Per renderla ortonormale, basta osservare che h s = s + s 2 e sostituire in B W gli elementi h i con i loro normalizzati h i := h i / h i ed ottenere cosi la base ortonormale B W := {E ij i j} { h 1,, h n 1 } di W. Per completare B W ad una base ortogonale di V basta aggiungere la matrice identitá 1 n. Per ottenere una base ortonormale, bisogna osservare che 1 n = n e quindi l insieme B W {1 n / n} é una base ortonormale di E. Esercizio 4. Sia E = (V,, ) uno spazio metrico finito dimensionale. Sia U V un sottospazio vettoriale di V. Consideriamo la proiezione ortogonale su U: essa é la funzione P U : V V che ad ogni vettore v V associa l unico vettore P U (v) U che ha distanza minima da v. (A lezione abbiamo visto come definire P U rispetto ad una base ortogonale di U). 1. Dimostrare che P U : V V é un applicazione lineare, e calcolarne nucleo e immagine; 2. Dimostrare che P U : V V é un endomorfismo autoaggiunto (o simmetrico) di E (ovvero P U (v), w = v, P U (w) per ogni v, w V ). 3. Dimostrare che P U + P U = id V. Soluzione Abbiamo dimostrato nell esercizio 1, che V = U U. Per cui dato comunque v V, esistono unici u U ed u U tale che v = u + u. La proiezione ortogonale P U : V V agisce su v come segue P U (v) = u. Quindi P U é ovviamente lineare. Un altro modo per dimostrare la linearitá di P U é il seguente: sia {u 1,, u k } una base ortonormale di U. Allora P U (v) = n i=1 v, u i u i e la linearitá di P U segue subito dalla linearitá sulla prima variabile del prodotto scalare,. Il nucleo di P U é U e l immagine é U. 2. Siano v 1 = u 1 + u 1 e v 2 = u 2 + u 2 due vettori di V (con u 1, u 2 U e u 1, u 2 U ). Allora P U (v 1 ), v 2 = u 1, u 2 + u 2 = u 1, u 2 = u 1 + u 1, u 2 = v 1, P U (v 2 ). 3. Siano v = u + u un vettore di V (con u U e u U ). Allora P U (v) = u e P U (v) = u per definizione. Per cui P U (v) + P U (v) = u + u = v per ogni v V e quindi P U + P U = id V. 3

4 Esercizio 5. Sia b : V V R una forma bilineare su uno spazio vettoriale V di dimensione n. Sia B = {v 1,, v n } una base di V e sia A Mat n n la matrice che rappresenta b nella base B. Sia B = {w 1,, w n } un altra base di V. Trovare la matrice che rappresenta b in questa nuova base B (Suggerimento: basta usare la definizione di matrice associata ad una forma bilineare rispetto ad una base e la matrice di cambiamento di base). Come esempio, si consideri la base B = {(1, 1, 0), (1, 1, 0), (0, 1, 1)} di e si consideri la forma bilineare b A dove A é la matrice: A := Trovare la matrice che rappresenta b A rispetto alla base B. Soluzione 5. Siano z 1 e z 2 due vettori di V e siano X 1 = F B (z 1 ) e X 2 = F B (z 2 ) i loro vettori di coordinate rispetto alla base B. Per definizione si ha b(z 1, z 2 ) = b A (X 1, X 2 ) := t X 1 AX 2. (3) Consideriamo adesso la matrice B di cambiamento di base da B a B : essa per definizione rende commutativo il seguente diagramma: V id V V F B F B R n S B R n per cui se Y 1 := F B (z 1 ) e Y 2 := F B (z 2 ) sono i vettori delle coordinate di z 1 e z 2 nella base B, si ha X 1 = BY 1 e X 2 = BY 2. Sostituendo in (3) si ha b(z 1, z 2 ) = t X 1 AX 2 = t (BY 1 )A(BY 2 ) = t Y 1 ( t BAB) Y 2. Per cui la matrice t BAB é la matrice che rappresenta la forma bilineare b nella base B. Nell esempio basta osservare che la matrice di cambiamento di base dalla base standard C di alla base B ha per colonne gli elementi di B per cui essa é B = La matrice che rappresenta b A nella base B é quindi t BAB = come si calcola facilmente. Esercizio 6. Sia E := (R 4, ) lo spazio euclideao standard di dimensione 4. Trovare una base ortonormale del sottospazio vettoriale di R 4 generato dai vettori (1, 1, 1, 1), (5, 1, 1, 1) e ( 3, 3, 1, 3). 4

5 Soluzione 6. Poniamo v 1 := (1, 1, 1, 1), v 2 := (5, 1, 1, 1) e v 3 := ( 3, 3, 1, 3). Si vede facilmente, ad esempio attraverso una eliminazione di Gauss, che i tre vettori v 1, v 2 e v 3 sono linearmente dipendenti con relazione di dipendenza lineare v 3 = 2v 1 v 2. In particolare, il sottospazio che essi generano ha dimensione 2 ed ha come base B = {v 1, v 2 }. Ortogonalizziamo B: consideriamo il vettore w 2 = v 2 v 2 v 1 v 1 v 1 v 1 = v v 1 = v 2 v 1 = (4, 2, 0, 2). Esso é ortogonale a v 1. Una base ortonormale dello spazio generato da v 1 e v 2 é quindi data dai vettori e 1 ed e 2 definiti da e 1 := v 1 / v 1 = 1 2 v 1 e e 2 = w 2 / w 2 = w 2. Esercizio 7. Sia E = (V,, ) uno spazio metrico. Dimostrare che per ogni v, w V valgono le seguenti uguaglianze 1. v + w 2 + v w 2 = 2( v 2 + w 2 ); 2. v, w = 1 4 ( v + w 2 v w 2 ). Soluzione 7. Dalla bilinearitá e simmetria del prodotto scalare, si ha v + w 2 = v, v + 2 v, w + w, w e v w 2 = v, v 2 v, w + w, w. Le due uguaglianze richieste sono ovvie conseguenze di questo. Esercizio 8. Sia U il sottospazio di R 4 generato dai vettori (1, 1, 0, 0), (1, 2, 0, 0) e (1, 0, 0, 1). Trovare una base ortonormale B di W, rispetto al prodotto scalare standard di R 4. Estendere la base B di W ad una base ortonormale C di (R 4, ). Calcolare la matrice che rappresenta la proiezione ortogonale su W, sia nella base C che nella base canonica di R 4. Soluzione 8. W é il sottospazio vettoriale di R 4 di equazione cartesiana x 3 = 0. In altre parole W = Span{(0, 0, 1, 0)}. Una sua base é quindi data da B := {E 1, E 2, E 4 } che é anche ortonormale. Per completare B ad una base ortonormale di R 4, basta aggiungere il terzo vettore standard E 3 di R 4. Otteniamo la base C = {E 1, E 2, E 4, E 3 }. La matrice che rappresenta la proiezione ortogonale su W nella base C é quindi mentre nella base standard {E 1, E 2, E 3, E 4 } la matrice cercata é Esercizio 9. Sia B := { t (1, 1, 1), t (0, 1, 1), t (2, 1, 1)} un sottoinsieme di. Mostrare che gli elementi di B sono mutuamente ortogonali, rispetto al prodotto scalare standard di. Dedurne che B é una base ortogonale di (, ). Determinare le coordinate del vettore v = t (1, 2, 1) nella base B. 5

6 Soluzione 9. Poniamo v 1 := t (1, 1, 1), v 2 := t (0, 1, 1) e v 3 := t (2, 1, 1). Si verifica subito che gli elementi di B sono ortogonali a due a due (c era un errore di stampa nella versione precedente dell esercizio). In particolare sono linearmente indipendenti e quindi formano una base di. Per trovare le coordinate del vettore v utilizziamo la formula dimostrata a lezione: v = v v 1 v 1 v 1 v 1 + v v 2 v 2 v 2 v 2 + v v 3 v 3 v 3 v 3 = 4 3 v v v 3 da cui deduciamo che il vettore delle coordinate del vettore v nella base B é ( 4 3, 1 2, 1 6 ). Esercizio 10. Sia W il sottospazio vettoriale di di equazione x y + 3z = 0. Scrivere la matrice che rappresenta la proiezione ortogonale su W rispetto al prodotto scalare standard di, nella base standard di. Soluzione 10. Ci sono diversi modi per risolvere questo esercizio, a seconda dei gusti. Cominciamo seguendo il piú veloce (ovvero quello che richiede di fare meno conti): una base per W é composta dai due vettori w 1 := (1, 1, 0) e w 2 := ( 3, 0, 1). Una base ortogonale di W é la seguente : v 1 = w 1 := (1, 1, 0) e v 2 = ( 3, 3, 2). Per completarla ad una base ortogonale di basta aggiungere il vettore (1, 1, 3) (che é il vettore dei coefficienti dell equazione che definisce W ). Normalizziamo questa base ortogonale e troviamo la base ortonormale B 0 = {e 1, e 2, e 3 } di, composta dai vettori e 1 := 1 2 (1, 1, 0), e 2 := 1 22 ( 3, 3, 2) ed e 3 := 1 (1, 1, 3). La matrice B 0 := 1/ 2 3/ 22 1/ 1/ 2 3/ 22 1/ 0 2/ 22 3/ che ha per colonne le coordinate dei vettori di questa base ortonormale é ortogonale, ovvero B0 1 = t B 0 (questo é il vantaggio di lavorare con basi ortonormali!). La matrice B 0 é la matrice di cambiamento di base dalla base standard C := {E 1, E 2, E 3 } di alla base B 0 ovvero rende commutativo il seguente diagramma 1 3 S B0 La matrice che rappresenta la proiezione ortogonale P W nella base B 0 é chiaramente la seguente A = Per trovare la matrice che rappresenta P W nella base C consideriamo il seguente diagramma 1 3 P W 1 3 S B0 S A S B0 6

7 da cui deduciamo che la matrice C che rappresenta P W nella base C é la seguente C := B 0 AB0 1 = B 0 A t B 0 = Si noti che non abbiamo dovuto fare praticamente nessun conto, a parte moltiplicare le matrici. Il secondo metodo consiste nel trovare una base ortogonale B di W e poi calcolare l inversa con Gauss Jordan: una base ortogonale di W é B := {v 1, v 2 } dove v 1 = (1, 1, 0) e v 2 = ( 3, 3, 2). Per completarla ad una base ortogonale di basta aggiungere il vettore v 3 := (1, 1, 3) (che é il vettore dei coefficienti dell equazione che definisce W ). La matrice B := che ha per colonna questi vettori, é la matrice di cambiamento di base dalla base standard C := {E 1, E 2, E 3 } di alla base B ovvero rende commutativo il seguente diagramma 1 3 S B La matrice che rappresenta la proiezione ortogonale P W nella base B é chiaramente la seguente A = Per trovare la matrice che rappresenta P W nella base C consideriamo il seguente diagramma 1 3 P W 1 3 S B S A S B da cui deduciamo che la matrice C che rappresenta P W nella base C é C := BAB 1. Calcoliamo B 1 con Gauss Jordan: /2 1/ /22 3/22 1/ / 1/ 3/ e deduciamo che B 1 = 1/2 1/2 0 3/22 3/22 1/ 1/ 1/ 3/ 7

8 Calcoliamo quindi C C = BAB 1 = Il terzo metodo é il piú brutale di tutti e consiste nel calcolare le coordinate delle tre proiezioni ortogonali P W (E 1 ), P W (E 2 ) e P W (E 3 ) nella base standard C = {E 1, E 2, E 3 }. Per calcolare le proiezioni ortogonali utilizziamo la formula vista a lezione: costruiamo una base ortogonale di W, ad esempio la base B = {v 1, v 2 } dove v 1 := (1, 1, 0) e v 2 := ( 3, 3, 2). Si ha P W (E 1 ) = E 1 v 1 v 1 + E 1 v 2 v 2 = 1 v 1 v 1 v 2 v 2 2 v v 2 = 1 (10, 1, 3) P W (E 2 ) = E 2 v 1 v 1 + E 2 v 2 v 2 = 1 v 1 v 1 v 2 v 2 2 v v 2 = 1 (1, 10, 3) P W (E 3 ) = E 3 v 1 v 1 + E 3 v 2 v 2 = 0v v 1 v 1 v 2 v 2 22 v 2 = 1 ( 3, 3, 2) La matrice C che ha questi tre vettori per colonne é la matrice che rappresenta P W nella base C: C =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 = aa -6 Soluzioni Esercizi Applicazioni lineari Sia data l applicazione lineare F : R R, F X A X, dove A i Sia {e, e, e } la base canonica di R Far vedere che i vettori e e + e, e e + e, e e, formano una

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

Geometria BAER Canale A-K Esercizi 9

Geometria BAER Canale A-K Esercizi 9 Geometria BAER Canale A-K Esercizi 9 Esercizio Sia (V,, ) uno spazio metrico Si mostri che se U V, v V, p U la proiezione ortogonale su U, allora v p U (v) U Soluzione: Il vettore v si scrive in modo unico

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 =

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 = Università degli Studi di Roma Tor Vergata. Corso di Laurea in Matematica Esame di Geometria 1 con Elementi di Storia Prof. F. Tovena 30 gennaio 2015 Le risposte vanno giustificate con chiarezza. 1 Nello

Dettagli

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente,

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente, Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Esonero del 1/12/06 con soluzione Esercizio. Spazio vettoriale R 2 con base canonica fissata e coordinate associate (x 1,

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5 8 Analogamente, T 0 = 6 4 5 4 2. (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre 4 A = 5 C AB = 4 cioé la matrice dei coefficienti delle espressioni

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

x 1 x 2 x 3 x 4 x 3 x 1 + x 3

x 1 x 2 x 3 x 4 x 3 x 1 + x 3 a.a. -6 Esercizi. Applicazioni lineari. Soluzioni. Sia : R 4 R 4 l applicazione lineare data da e siano dati i sottospazi + x ( x ) = +, + x 4 + x 4 U = span{, } W = span{, }. (i) Determinare ker e dire

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile:

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile: aa 5-6 Esercizi 5 Basi dimensione e coordinate Soluzioni Apostol: Sezione 5 Esercizi 6a 7 8 9 Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse quando è possibile: i

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico Capitolo 3 Matrici Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Matrice) Una matrice A M R (k, n) è

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016) Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed

Dettagli

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B =

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B = Corso di Laurea in Fisica. Geometria. a.a. 26-7. Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 7//6 Soluzione esercizio. Sia B {e, e 2 } e sia B {v, v 2 }. La matrice B del cambiamento di base

Dettagli

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data un

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Registro dell insegnamento. Facoltà Ingegneria... Insegnamento GEOMETRIA... Settore Mat03... Corsi di studio Ingegneria Meccanica (M-Z)...

Registro dell insegnamento. Facoltà Ingegneria... Insegnamento GEOMETRIA... Settore Mat03... Corsi di studio Ingegneria Meccanica (M-Z)... UNIVERSITÀ DEGLI STUDI Registro dell insegnamento Anno Accademico 2014/2015 Facoltà Ingegneria...................................... Insegnamento GEOMETRIA............................. Settore Mat03...........................................

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Compito di MD A.A. 2013/14 4 Settembre 2014

Compito di MD A.A. 2013/14 4 Settembre 2014 Compito di MD A.A. 3/4 4 Settembre 4 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non saranno valutate risposte prive

Dettagli

Algebra lineare e geometria AA Esercitazione del 14/6/2018

Algebra lineare e geometria AA Esercitazione del 14/6/2018 Algebra lineare e geometria AA. 2017-2018 Esercitazione del 14/6/2018 1) Siano A, B due matrici n n tali che 0 < rk(a) < rk(b) = n. (a) AB è invertibile. (b) rk(ab) = nrk(b). (c) det(ab) = det(a). (d)

Dettagli

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 10 Novembre 2014 Soluzione

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 10 Novembre 2014 Soluzione 1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 10 Novembre 2014 Soluzione 1. Scrivere la matrice associata all applicazione lineare T : R 3 R 4 definita da T (x, y, z) (2x + y z, 3y +

Dettagli

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3. Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria 1 che ho tenuto presso la

Dettagli

ESAMI DI MATEMATICA DISCRETA 2009/2010

ESAMI DI MATEMATICA DISCRETA 2009/2010 ESAMI DI MATEMATICA DISCRETA 2009/2010 09/06/2009 (1) In R 4 si considerino il sottospazio vettoriale W k = Span{(2, 1, 0, 1), (1, 1, 1, 1), (k, 1, 0, 1)} e il sottospazio vettoriale U dato da tutti i

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

Geometria BAER I canale Foglio esercizi 5

Geometria BAER I canale Foglio esercizi 5 Geometria BAER I canale Foglio esercizi 5 Esercizio. Si considerino i sottospazi di R 4 : E = L[v =, v = Si trovi una base di E F. ] F = L[w = 3, w = 4, w 3 = Soluzione: Osserviamo che w 3 = w + w, dunque

Dettagli

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI febbraio 0 - Soluzione esame di geometria - Ing. gestionale - a.a. 0-0 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 8/9 Canali A C, L Pa, Pb Z Durata: ore e 3 minuti Alessandro D Andrea Simone Diverio Paolo Piccinni Riccardo Salvati Manni 5 giugno

Dettagli

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A }

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A } Algebra e Geometria per Informatica Primo Appello 3 giugno 6 Tema A Sia M (R lo spazio vettoriale delle matrici a coefficienti reali Sia W = { A M (R A T = A } il sottospazio vettoriale delle matrici simmetriche

Dettagli

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Maggio 8 Prova Intermedia Il tempo per la prova è di ore. Durante la prova non è permesso l uso di appunti e libri. Esercizio

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

Esercizi di Geometria 1 - Foglio 3bis

Esercizi di Geometria 1 - Foglio 3bis Esercizi di Geometria - Foglio 3bis Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso dicembre 7 Esercizio. Sia f : V W un applicazione e G = {(v,

Dettagli

11 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

11 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria BAER Canale I Esercizi 9

Geometria BAER Canale I Esercizi 9 Geometria BAER Canale I Esercizi 9 Esercizio 1. Si trovi la matrice del prodotto standard di R 3 rispetto alle basi B = (2, 0, 1) t, (1, 0, 2) t, (1, 1, 1) t } e D = (2, 2, 1) t, ( 1, 2, 2) t, (2, 1, 2)

Dettagli

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare]

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare] Università di Bergamo Anno accademico 20182019 Primo anno di Ingegneria Foglio 7 Geometria e Algebra Lineare Sottospazi, basi e dimensione Esercizio 7.1. Sia u = (1, 1, 1) e si consideri il sottoinsieme

Dettagli

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n.

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n. Esercizi proposti 1. astratti 1.1 Si consideri lo spazio R [x] dei polinomi nella variabile x con coefficienti reali. Si dica se il suo sottoinsieme S formato dai polinomi privi del termine di grado 2

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2015 Rossi Algebra Lineare 2015 1 / 41 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y  #z = 1 & '#x  y+ z =1 Istituzioni di Matematica I Esercizi su sistemi lineari Esempio. Dire per quali valori di λ R il sistema x " y+ z = 2 % x + y " z = " x " y+ z = ha una sola soluzione, per quali nessuna, per quali infinite

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Esercizio. x = 0 x = Date le rette r : y = t e s : y = t, si verifichi che sono sghembe e si scrivano le equazioni z = t z = t parametriche di una retta r ortogonale ed

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. R. Sanchez - T. Traetta - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, dell Innovazione del Prodotto, Meccatronica

Dettagli

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 208/209 Canali A C, L Pa, Pb Z Durata: 2 ore e 30 minuti Alessandro D Andrea Simone Diverio Paolo Piccinni Riccardo Salvati Manni 2

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre SETTIMANA 4 (19 25 Ottobre) Matrici elementari Gli esercizi sono presi dal libro Intorduction to Linear Algebra di Serge Lang. Esercizio

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 2017 1 Introduzione Gli esercizi di questo capitolo riguardano i seguenti

Dettagli

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3. CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3

Dettagli

Geometria BAER I canale Foglio esercizi 3

Geometria BAER I canale Foglio esercizi 3 Geometria BAER I canale Foglio esercizi 3 Esercizio. Discutere le soluzioni del seguente sistema lineare nelle incognite,, z al variare del parametro k. 3 + kz = k k + 3z = k k + z = Soluzione: Il determinante

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Esercizi di Geometria e Algebra Lineare

Esercizi di Geometria e Algebra Lineare Esercizi di Geometria e Algebra Lineare 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}) 2) Nello spazio vettoriale R 3 sul campo R, sia

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

12 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

12 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 1 dicembre 005 - Soluzione esame di geometria - Ing. gestionale - a.a. 005-006 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti

Dettagli

Esercitazioni di Geometria A: spazi euclidei

Esercitazioni di Geometria A: spazi euclidei Esercitazioni di Geometria A: spazi euclidei 9-10 marzo 2016 Esercizio 1 Sia V uno spazio vettoriale sul campo K = R e si consideri una base B = {e 1, e 2, e 3 }. Si consideri la matrice a coefficienti

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare 1. Quali dei seguenti sottoinsiemi sono sottospazi di R 3? Motivare la risposta. (a) {(x, y, 1) x, y R} (b) {(0, y, 0) y R} (c)

Dettagli

Algebra Proff. A. D Andrea e P. Papi Quarto scritto

Algebra Proff. A. D Andrea e P. Papi Quarto scritto Algebra Proff. A. D Andrea e P. Papi Quarto scritto LUGLIO 8 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 6.5 6.5 3 6.5 4 6.5 5 6.5 otale 3 Occorre motivare le risposte. Una soluzione

Dettagli

A.A GEOMETRIA CDL IN INGEGNERIA MECCANICA FACOLTÀ DI INGEGNERIA CIVILE ED INDUSTRIALE SOLUZIONI TEST 4

A.A GEOMETRIA CDL IN INGEGNERIA MECCANICA FACOLTÀ DI INGEGNERIA CIVILE ED INDUSTRIALE SOLUZIONI TEST 4 A.A.8-9 GEOMETRIA CDL IN INGEGNERIA MECCANICA FACOLTÀ DI INGEGNERIA CIVILE ED INDUSTRIALE SOLUZIONI TEST 4 Esercizio (). Sia γ la conica di equazione: γ : x xy + y + 8x + =. (a) Verificare che la conica

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi 11 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

8 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

8 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 8 luglio 015 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 014-015 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2017-2018 Prima prova di esonero TESTO E SOLUZIONI 1. Determinare, utilizzando esclusivamente operazioni elementari,

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

25 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

25 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

ALGEBRA LINEARE: LEZIONI DAL 10 AL 18 OTTOBRE

ALGEBRA LINEARE: LEZIONI DAL 10 AL 18 OTTOBRE ALGEBRA LINEARE: LEZIONI DAL 10 AL 18 OTTOBRE Sommario delle lezioni 10 Ott: Lezione 4. Dipendenza ed indipendenza lineare. Sottospazio generato da un sottoinsieme. Sottospazio generato da un numero finito

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 011-01 Prima prova di esonero TESTO E SOLUZIONI 1. Per h, k R si consideri il sistema lineare kx 1 + hx + X 4 = 1

Dettagli

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in R n. Piani nello spazio. 19 Dicembre 2016 Indice 1 Prodotto scalare nello spazio 2

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre Esercizi Di Geometria (BAER Canale Da consegnare Lunedi 9 Ottobre SETTIMANA 3 (2 8 Ottobre Moltiplicazione di matrici Gli esercizi sono presi dal libro Intorduction to Linear Algebra di Serge Lang Esercizio

Dettagli

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data

Dettagli

Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 2009/2010. Soluzioni esercitazione 11/11/2009

Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 2009/2010. Soluzioni esercitazione 11/11/2009 Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 29/2 Soluzioni esercitazione //29 Esercizio. Risolvere, al variare del parametro reale λ, il seguente sistema lineare: x 2 y z = λ

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 15 GIUGNO 2010 VERSIONE A. 1 a 1. 0 a a 2

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 15 GIUGNO 2010 VERSIONE A. 1 a 1. 0 a a 2 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 5 GIUGNO 2 VERSIONE A Esercizio Al variare del parametro reale a, si consideri l endomorfismo : R R definito dalle condizioni: a a a 2 a a 2 =,

Dettagli

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare Errata corrige p. 9 esercizio 5. Modificare testo dell esercizio come segue: Dati una retta r e un punto P, esistono infiniti piani per P paralleli a r: si tratta dei piani che contengono la retta s per

Dettagli

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 000 Tempo assegnato: ore e 30 minuti PRIMO ESERCIZIO [7 punti] 1 Dimostrare che, per ogni naturale n, ciascuna

Dettagli