Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:"

Transcript

1 Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w b L rezione è quindi molto spostt verso i prodotti: uno dei requisiti richiesti per essere un buon rezione di titolzione. Ad un volume noto di soluzione di HA si ggiungono liquote crescenti di NOH, e come nel cso dell titolzione cido forte bse forte si osserv l vrizione di ph in funzione del volume di titolnte ggiunto. 1

2 Acido Debole Bse Forte Acido Forte Bse Forte ph V NOH ph V NOH L ndmento è simile quello dell titolzione cido forte bse forte, d esempio il ph l PE è sul punto di mssim pendenz dell curv di titolzione, m vi sono due differenze: 1) L prim prte dell curv h un ndmento diverso ) Il punto equivlente non cde ph=7

3 1) Prim di comincire l titolzione, qundo il volume di titolnte V t =, in soluzione è presente l cido debole, differenz del cso visto in precedenz, l cido debole è solo przilmente dissocito e per conoscere il ph dell soluzione dobbimo considerre le equzioni viste in precedenz per gli cidi deboli. se (circ) C HA > 1, l cido è pochissimo dissocito, ed è: [H = 3O ] CHA se (circ) C HA <.1, l cido è tutto dissocito, cioè si comport d cido forte [H O ] = 3 C HA se C HA è intermedio, l cido è pprezzbilmente m non tutto dissocito. [ H O ] 3 = C HA 3

4 ) Qundo si ggiungono liquote crescenti di NOH, m inferiori l volume necessrio per rggiungere il punto equivlente, si gener un soluzione tmpone, dl momento che in soluzione sono presenti si HA che A. Il ph dell soluzione può essere clcolto dll equzione di Henderson. In quest regione il ph vri poco con ggiunte di NOH crescenti, dl momento che l soluzione si comport come un tmpone e contrst le vrizioni di ph del sistem trsformndo HA in A. L pendenz dell curv in quest prim zon, è funzione delle concentrzioni reltive di HA e A e quindi del «potere tmponnte» dell soluzione. L pendenz è inversmente proporzionle l potere tmponnte.

5 Qundo le concentrzioni [HA] e [A ] sono uguli, l equzione di Henderson mostr che: [H3 O ] = ph = p In questo punto l curv di titolzione h l pendenz minim perché il potere tmponnte è mssimo. Il volume di titolnte impiegto per rggiungere questo punto è: 1 V t = V PE ph ph = p 1 V t = V PE V NOH 5

6 3) Qundo il volume di titolnte ggiunto rggiunge il volume equivlente, tutto l cido HA è stto trsformto nell bse coniugt A. Il ph di quest soluzione, coincide col ph di un soluzione ottenut prtendo dll sol bse coniugt A. A (q) HO(solv) HA(q) OH ( q) Per clcolre il ph l punto equivlente si usno le formule discusse in precedenz per un bse debole. Ad esempio: [OH ] = C = A b b w Nel clcolre [A ] d inserire nel clcolo dell stim del ph, bisogn tenere conto dell diluizione procurt dll ggiunt del titolnte. Il ph l punto equivlente dipende d: Concentrzione inizile di HA L costnte di cidità dell cido

7 Più l cido HA d titolre è concentrto, più è concentrt l bse A l PE, quindi più bsico è il ph l PE = C HA =.1 C HA =.1 C HA = 1 C HA = 1 Prim dell titolzione ph Al PE [OH ] = b C B oppure un ltr formul vlid diluizione mggiore ph PE =. [H 3 O ] = C HA oppure un ltr formul vlid diluizione mggiore V (ml) ph PE =.39 ph PE = 7. ph PE = 7.1 7

8 Più l cido HA è debole (minore è ), più è forte l bse A (mggiore è b ), quindi più bsico è il ph l PE C HA =.1 M = = = = = [H 3 O ] = C HA ph [OH ] = b C B ph PE = 11.7 ph PE = 1. ph PE = 9. ph PE = 9.3 ph PE = V (ml)

9 Considerzioni sull titolzione cido debole bse forte: Al diminuire dell concentrzione inizile di cido e l diminuire dell costnte di cidità diminuisce l vrizione di pendenz e quindi il slto tipico del punto equivlente nell titolzione cido bse. Di conseguenz l identificzione del punto equivlente risult difficile e crtterizzt d un errore rilevnte. In questi cso l titolzione NON E UN METODO AFFIDABILE per determinre quntittivmente l concentrzione dell cido nell mbiente di rezione. L diminuzione di pendenz è legt llo spostmento dell equilibrio di titolzione verso i regenti, questo spostmento può essere indotto: - D un concentrzione bss di cido debole inizile - D un bss costnte di cidità, dl momento che l costnte di equilibrio per l rezione coinvolt nell titolzione è: = w = 1 b 9

10 Si not inoltre che: Qunto l rezione di titolzione si effettivmente spostt destr non dipende solo dll su, m nche dlle concentrzioni inizili di OH e di HA: Per Le Chtelier, l rezione di titolzione è tnto più spostt destr, qunto più concentrti sono l cido debole e l bse forte HA(q) NOH(q) N (q) A (q) HO Si può clcolre che, per i vlori tipici usti nei processi di titolzione (circ.1 M), l rezione di titolzione è sufficientemente spostt destr se > circ 1 ( > circ 1 ) Si può nche clcolre che se non è molto bss (> 1 5 ), l rezione di titolzione è sufficientemente spostt destr se C A nlit > circ 1 M (vle per qulunque nlit, es. vedere cidi forti) 1

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

10 Progetto con modelli tirante-puntone

10 Progetto con modelli tirante-puntone 0 Progetto con modelli tirnte-puntone 0. Introduzione I modelli tirnte-puntone (S&T Strut nd Tie) sono utilizzti per l progettzione delle membrture in c.. che non possono essere schemtizzte come solidi

Dettagli

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni:

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni: Mod. RED Sede di Domnd n. del Pensione n. ct. nto il stto civile bitnte Prov. CAP vi n. DICHIARA, sotto l propri responsbilità, che per gli nni: A B (brrre l csell reltiv ll propri situzione) NON POSSIEDE

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata Comprzione delle performnce di 6 cloni di Gmy d ltitudine elevt 1 / 46 Motivzioni Selezione clonle IAR-4 Lo IAR-4 è stto selezionto in mbiente montno d un prticolre popolzione di mterile stndrd, dll qule

Dettagli

Epigrafe. Premessa. D.Lgs. 29 dicembre 2006, n. 311 (1).

Epigrafe. Premessa. D.Lgs. 29 dicembre 2006, n. 311 (1). D.Lgs. 29-12-2006 n. 311 Disposizioni correttive ed integrtive l D.Lgs. 19 gosto 2005, n. 192, recnte ttuzione dell direttiv 2002/91/CE, reltiv l rendimento energetico nell'edilizi. Pubblicto nell Gzz.

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine YOGURT FATTO IN CASAA CON YOGURTIERA Lo yogurt ftto in cs è senz ltro un modoo sno per crere un limento eccezionlee per l nostr slute. Ricco di ltticii iut intestino fermenti il nostroo lvorre meglioo

Dettagli

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it Ftturimo Versione 5 Mnule per l utente Active Softwre Corso Itli 149-34170 Gorizi emil info@ctiveweb.it Se questo documento ppre nell finestr del vostro browser Internet di defult, richimte il comndo Registr

Dettagli

ISTRUZIONI OPERATIVE PER GLI INTERVENTI SULLE TARIFFE INCENTIVANTI RELATIVE AGLI IMPIANTI FOTOVOLTAICI ai sensi dell art. 26 della Legge 116/2014

ISTRUZIONI OPERATIVE PER GLI INTERVENTI SULLE TARIFFE INCENTIVANTI RELATIVE AGLI IMPIANTI FOTOVOLTAICI ai sensi dell art. 26 della Legge 116/2014 ISTRUZIONI OPERATIVE PER GLI INTERVENTI SULLE TARIFFE INCENTIVANTI RELATIVE AGLI IMPIANTI FOTOVOLTAICI i sensi dell rt. 26 dell Legge 116/2014 (c.d. Legge Copetitività ) Ro, 3 novebre 2014 Indice 1. Contesto

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

ESERCIZI ph SOLUZIONI

ESERCIZI ph SOLUZIONI ESERCIZI ph SOLUZIONI 1. Una soluzione contiene 3,6 g di LiOH (PM = 23,9 g/mole). Calcolare il ph di questa soluzione [13,3] 2. Calcolare il ph di una soluzione preparata con 10,85 ml di HCl (PM = 36,46

Dettagli

PERDITE SU CREDITI E SVALUTAZIONE CREDITI

PERDITE SU CREDITI E SVALUTAZIONE CREDITI PERDITE SU CREDITI E SVALUTAZIONE CREDITI Codice civile: I crediti devono essere iscritti secondo il vlore presumibile di relizzzione; quindi già l netto dell svlutzione derivnte dl monitorggio di ciscun

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

INTERCONNESSIONE CONNETTIVITÀ

INTERCONNESSIONE CONNETTIVITÀ EMC VMA AX 10K EMC VMAX 10K fornisce e un'rchitettu ur scle-out multi-controlller Tier 1 rele e che nsolidmento ed efficienz. EMC VMAX 10 0K utilizz l stess s grntisce lle ziende con stemi VMAX 20 0K e

Dettagli

STUD FOTOVOLTAICO 16 LED 1.2W CW

STUD FOTOVOLTAICO 16 LED 1.2W CW Cod. 1879.185M STUD FOTOVOLTAICO 16 LED 1.2W CW Crtteristiche tecniche Corpo in lluminio pressofuso Portello di chiusur vno cblggio/btterie in termoindurente Riflettore in lluminio vernicito binco Diffusore

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA lsse qurt Docente: In. Ntt MODULO I: IL RILIEVO TOOGRFIO UD I: L INQUDRMENTO ON LE RETI - INTERSEZIONI LE INTERSEZIONI Dispense didttiche di TOOGRFI r M unto di ollins O s θ 00 O d O d 00 θ θ ω ' ω θ c'

Dettagli

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi 11. Attività svolt dll Agenzi, risorse e spetti orgnizztivi 11.1 Attività istituzionle svolt i sensi dell Deliberzione istitutiv In un vlutzione complessiv delle ttività svolte dll Agenzi i sensi dell

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica www.suolinweb.ltevist.og L Dinmi Poblemi di isi L Dinmi PROBLEA N. Un opo di mss m 4 kg viene spostto on un foz ostnte 3 N su un supefiie piv di ttito pe un ttto s,3 m. Supponendo he il opo inizilmente

Dettagli

Esercizi sul calcolo del ph. Generalità introduttive. 2. Spiega il significato del termine «acido coniugato» e «base coniugata».

Esercizi sul calcolo del ph. Generalità introduttive. 2. Spiega il significato del termine «acido coniugato» e «base coniugata». Esercizi sul calcolo del ph Generalità introduttive 1. L'ammoniaca :NH 3 non possiede alcun ruppo ossidrilico. Come puoi spieare il suo comportamento basico? 2. Spiea il sinificato del termine «acido coniuato»

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

Grazie. Normativa sulle emissioni dell'epa. Avviso relativo alla garanzia. Servizio "Mercury Premier"

Grazie. Normativa sulle emissioni dell'epa. Avviso relativo alla garanzia. Servizio Mercury Premier Grzie per vere cquistto uno dei migliori motori fuoribordo sul mercto che si rivelerà un ottimo investimento per l nutic d diporto. Il fuoribordo è stto fbbricto d Mercury Mrine, leder internzionle nel

Dettagli

GUIDA INCENTIVI all ASSUNZIONE e alla CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI

GUIDA INCENTIVI all ASSUNZIONE e alla CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI GUIDA ll ASSUNZIONE e ll CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI Aggiornt l 31 gennio 2015 PROGRAMMA POT Pinificzione Territorile Opertiv PROGRAMMA POT Pinificzione

Dettagli

SOLUZIONI, DILUIZIONI, TITOLAZIONI

SOLUZIONI, DILUIZIONI, TITOLAZIONI SOLUZIONI, DILUIZIONI, TITOLAZIONI 1. Quanti ml di NaOH 1,25 N debbono essere aggiunti ad 1 litro di NaOH 0,63 N per ottenere una soluzione 0,85 N? [550 ml] 2. Quali volumi 0,55 N e 0,098 N debbono essere

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni.

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni. Credimo nel concetto di cucin chilometro zero e nei prodotti di stgione, credimo nel rispetto dell mbiente e delle trdizioni. L nostr propost enogstronomic è bst sull riscopert delle ricette più semplici

Dettagli

LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE:

LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE: LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE: DAI MODELLI TRADIZIONALI AI NUOVI APPROCCI REAL-TIME TEMPERATURE MINIMUM PREDICTION: FROM TRADITIONAL MODELS TO NEW APPROACHES Stefno Dll Nor 1, Emnuele

Dettagli

INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni

INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni Memorie >> Titnio e ue leghe INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni I. Rmpin, K. Brunelli, M. Dlà In queto lvoro ono tti ottenuti rivetimenti di Ni

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

ELETTROMAGNETI IBK Elettromagneti per l automazione flessibile

ELETTROMAGNETI IBK Elettromagneti per l automazione flessibile INDUCTIVE COMPONENTS I 0 I 0 IBK ELETTROMAGNETI IBK Elettomneti e l utomzione flessibile Ctloo eli elettomneti IBK e l zionmento ei sistemi oscillnti Eizione Mio 2004 www.eoitli.it/ootti/feee.tml Elettomneti

Dettagli

4. Trasporto pubblico non di linea: taxi e noleggio con conducente (NCC)

4. Trasporto pubblico non di linea: taxi e noleggio con conducente (NCC) 4. Trsporto pubblico non di line: txi e noleggio con conducente (NCC) L domnd di mobilità dei cittdini incontr un corrispondente offert delle diverse modlità di trsporto, sull bse delle crtteristiche degli

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

L ACQUA : STRUTTURA E PROPRIETA

L ACQUA : STRUTTURA E PROPRIETA L ACQUA : STRUTTURA E PROPRIETA 1. Sostanza più abbondante in tutti gli esseri viventi 2. Più del 70% del peso di tutti gli esseri viventi 3. Influenza la struttura e la proprietà di tutte le molecole

Dettagli

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di FISICA-TECNICA Ki Gllucci ki.gllucci@univq.i kgllucci@unie.i Progr del corso Dinic dei fluidi: Regii di oo; Moo szionrio di un fluido idele; Moo szionrio di un fluido rele; Il eore di Bernoulli; Perdie

Dettagli

ALLEGATO I PERIZIA DI STIMA RELATIVA AL PIU PROBABILE VALORE DI MERCATO DELL IMMOBILIE OGGETTO DI DISMISSIONE SITO IN

ALLEGATO I PERIZIA DI STIMA RELATIVA AL PIU PROBABILE VALORE DI MERCATO DELL IMMOBILIE OGGETTO DI DISMISSIONE SITO IN ISTITUTO NZIONLE PER L SSICURZIONE CONTRO GLI INFORTUNI SUL LVORO CONSULENZ TECNIC PER L EDILIZI SETTORE II COSTRUZIONI D USO DIREZIONLE!! PERIZI DI STIM RELTIV L PIU PROILE VLORE DI MERCTO DELL IMMOILIE

Dettagli

ESERCIZI SUI PRODOTTI NOTEVOLI. ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ERCIZI SURUFFINI

ESERCIZI SUI PRODOTTI NOTEVOLI. ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ERCIZI SURUFFINI Esercii dell leione di Alger di se ESERCIZI SUI PRODOTTI NOTEVOLI ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ES ES ERCIZI SURUFFINI ERCIZI SULLE SEMPLIFICAZIONI DI FRAZIONI

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

SISTEMA CIRCOLATORIO. Permette, attraverso il sangue, il trasporto di O 2. , sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2

SISTEMA CIRCOLATORIO. Permette, attraverso il sangue, il trasporto di O 2. , sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2 SISTEMA CIRCOLATORIO Permette, attraverso il sangue, il trasporto di O 2, sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2 e cataboliti, per mantenere costante la composizione del liquido

Dettagli

CONCENTRAZIONE DELLE SOLUZIONI. Solvente: normalmente liquido in eccesso Soluto: gas, liquido o solido, normalmente in difetto

CONCENTRAZIONE DELLE SOLUZIONI. Solvente: normalmente liquido in eccesso Soluto: gas, liquido o solido, normalmente in difetto CONCENTRAZIONE DELLE SOLUZIONI Solvente: normalmente liquido in eccesso Soluto: gas, liquido o solido, normalmente in difetto Percentuale in peso = g soluto / g soluzione x 100 H 2 O 2 al 3% Percentuale

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

DICHIARAZIONE DI INIZIO ATTIVITÀ, VARIAZIONE DATI O CESSAZIONE ATTIVITÀ AI FINI IVA

DICHIARAZIONE DI INIZIO ATTIVITÀ, VARIAZIONE DATI O CESSAZIONE ATTIVITÀ AI FINI IVA Modello 9/11 DIHIRZIONE DI INIZIO TTIVITÀ, VRIZIONE DTI O ESSZIONE TTIVITÀ I FINI IV (IMPRESE INDIVIDULI E LVORTORI UTONOMI) Informativa sul dei dati personali ai sensi dell art. 13 del D.Lgs. n. 196 del

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1 Aferru un etiquet identifictiv v999999999 de codi de brres Itlià (més grns de 25 nys) Model 1 Not 1ª Not 2ª Aferru l cpçler d exmen un cop cbt l exercici Puntució: preguntes vertder/fls: 1 punt; preguntes

Dettagli

x = AP = AC PC = R (θ sen θ) y = PB = PQ + BQ = R (1 cos θ).

x = AP = AC PC = R (θ sen θ) y = PB = PQ + BQ = R (1 cos θ). L iloide L urv no oggi ome iloide fu onsider per primo d Glileo, he in un primo momeno ongeurò he l re dell figur rhius fosse re vole quell del erhio he l gener Più rdi, forse us di qulhe esperimeno ml

Dettagli

IL DIRIGENTE SCOLASTICO IN EUROPA

IL DIRIGENTE SCOLASTICO IN EUROPA n u m e r o m o n o g r f i c o IL DIRIGENTE SCOLASTICO IN EUROPA PREMESSA Nell Comuniczione dell Commissione Europe del 3 luglio 2008, intitolt Migliorre le competenze per il 21 secolo: un ordine del

Dettagli

Sommario GIOVANI... 5 DONNE... 7. iscritti nelle liste. di mobilità IRAP... 24. Basilicataa. Piemontee Sicilia Toscana.

Sommario GIOVANI... 5 DONNE... 7. iscritti nelle liste. di mobilità IRAP... 24. Basilicataa. Piemontee Sicilia Toscana. lle ASSUN ZIONI AGEVOLAZIONI SU DISPOSIZIO NI NAZIONALI, REGIONALI E PROVINCIALII Guid 2013 PROGRAMMAA POT Pinificzione territorile opertiv Aggiornt l 31 dicembre 20133 Sommrio PRINCIPI GENERALI... 4 GIOVANI...

Dettagli

NUMERI DI OSSIDAZIONE

NUMERI DI OSSIDAZIONE NUMERI DI OSSIDAZIONE Numeri in caratteri romani dotati di segno Tengono conto di uno squilibrio di cariche nelle specie poliatomiche Si ottengono, formalmente, attribuendo tutti gli elettroni di valenza

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie?

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie? ESERCITZIONI. I 1)Un coppi h già due figlie. Se pinificssero di vere 6 figli, con qule probbilità vrnno un fmigli di tutte figlie? ) 1/4 b)1/8 c)1/16 d)1/32 e)1/64 2)In un fmigli con 3 bmbini, qul e l

Dettagli

LOGISTICA APPUNTI DI STATISTICA

LOGISTICA APPUNTI DI STATISTICA Cos'é la Statistica LOGISTICA APPUNTI DI STATISTICA La statistica è la disciplina che applica metodi scientifici alla raccolta di dati e informazioni per una loro classificazione, elaborazione e rappresentazione

Dettagli

L EQUILIBRIO CHIMICO

L EQUILIBRIO CHIMICO EQUIIBRIO CHIMICO Molte reazioni chimiche possono avvenire in entrambe i sensi: reagenti e prodotti possono cioè scambiarsi fra di loro; le reazioni di questo tipo vengono qualificate come reazioni reversibili.

Dettagli

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di un solido (polvere) che diverrà il ceramico, con un

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Forza centripeta e gravitazione

Forza centripeta e gravitazione pitolo 6 Foz centipet e gitzione 1. Il oto cicole Quli sono le ctteistiche del oto cicole? Un pticell si dice nit di oto cicole qundo l su tiettoi è un ciconfeenz. Lo studio di questo tipo di oto iene

Dettagli

Progetto macchina con tetto fotovoltaico

Progetto macchina con tetto fotovoltaico ITIS A.PACINOTTI Via Montaione 15 Progetto macchina con tetto fotovoltaico Classe 2 C Informatica Docente referente: Prof.ssa Leccesi Progetto: Educarsi al futuro Premessa Motivazione per la partecipazione

Dettagli

Effetto reddito ed effetto sostituzione.

Effetto reddito ed effetto sostituzione. . Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene

Dettagli

NOME BUBBICO ROCCO LUIGI CODICE FISCALE

NOME BUBBICO ROCCO LUIGI CODICE FISCALE Riservto ll Poste itline Sp N. Protocollo t di presentzione UNI CONORME AL PROVVEIMENTO AGENZIA ELLE ENTRATE EL 000 E SUCCESSIVI PROVVEIMENTI Periodo d'impost 0 COGNOME COICE ISCALE Informtiv sul trttmento

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

Codici bifissi ed insiemi Sturmiani

Codici bifissi ed insiemi Sturmiani Università degli Studi di Plermo Fcoltà di Scienze MM. FF. NN. Corso di Lure Specilistic in Mtemtic Codici ifissi ed insiemi Sturmini Studente Frncesco Dolce Reltore Prof. Antonio Restivo Anno Accdemico

Dettagli

INSUFFICIENZA RESPIRATORIA

INSUFFICIENZA RESPIRATORIA INCAPACITA VENTILATORIA (flussi e/o volumi alterati alle PFR) INSUFFICIENZA RESPIRATORIA (compromissione dello scambio gassoso e/o della ventilazione alveolare) Lung failure (ipoossiemia) Pump failure

Dettagli

Biblioteca Tecnica Knauf 05/2006. L acustica con Knauf. Soluzioni tecniche per l edilizia civile e industriale

Biblioteca Tecnica Knauf 05/2006. L acustica con Knauf. Soluzioni tecniche per l edilizia civile e industriale Biliotec Tecnic Knuf 05/2006 L cutic con Knuf Indice 1. Introduzione...4 2. Suoni e rumori...5 Glorio...5 Rumori erei...5 Rumori impttivi...6 Tempo di rivererzione (T60)...6 Fonoiolmento e fonoorimento...7

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

LE SOLUZIONI 1.molarità

LE SOLUZIONI 1.molarità LE SOLUZIONI 1.molarità Per mole (n) si intende una quantità espressa in grammi di sostanza che contiene N particelle, N atomi di un elemento o N molecole di un composto dove N corrisponde al numero di

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

L impresa che non fa il prezzo

L impresa che non fa il prezzo L offerta nei mercati dei prodotti L impresa che non fa il prezzo L impresa che non fa il prezzo (KR 10 + NS 6) Dipartimento di Economia Politica Università di Milano Bicocca Outline L offerta nei mercati

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli