Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE"

Transcript

1 Psicometria (8 CFU) Corso di Laurea triennale

2 Un punteggio all interno di una distribuzione è in realtà privo di significato se preso da solo. Sapere che un soggetto ha ottenuto un punteggio x=52 in una scala di aggressività dice abbastanza poco sulla caratteristica del soggetto Non si sa, cioè, se è poco o molto aggressivo o se la sua aggressività è nella media.

3 Per variabili misurate su scale a rapporti un singolo valore è già più informativo Sappiamo ad esempio cosa vuol dire avere 18 anni Tuttavia anche con variabili di questo tipo conoscere un punteggio potrebbe non essere informativo delle caratteristiche del soggetto

4 Esempio Se si sa che un soggetto è alto 1.80 m Questa informazione assume un significato ben diverso se il soggetto è un pigmeo o uno svedese Nel primo caso sarebbe molto alto mentre nel secondo sarebbe nella media

5 Per avere un idea chiara del significato di un dato valore dobbiamo riferire il valore stesso alla distribuzione di punteggi del gruppo di cui fa parte Gli aspetti da considerare sono due: la scala di misura utilizzata il confronto tra punteggi in test diversi

6 la scala di misura i punteggi di un test sono su scale a intervalli equivalenti prive dello zero (utilizzabile come riferimento); i punteggi vengono quindi riferiti alla media e alla varianza di un gruppo confronto tra punteggi in test diversi per confrontare misure ottenute con strumenti diversi è necessario riferirle ad una scala comune o standard

7 Questa operazione consente di definire la posizione di un soggetto all interno di una distribuzione di frequenza e, dunque, di: a) confrontare due prestazioni dello stesso soggetto entro due diverse distribuzioni b) confrontare le prestazioni di soggetti diversi in differenti distribuzioni

8 Standardizzare significa riferire la misura ad una scala standard di cui sono noti i parametri (media e varianza) Gli indicatori di tendenza centrale e di dispersione (media e deviazione standard) possono essere utilizzati per ottenere la standardizzazione delle misure

9 Una delle scale più comunemente utilizzate è detta standard o z e ha media = 0 e varianza = 1 Questa scala si ottiene trasformando i punteggi x i di una distribuzione in punteggi z i tramite la formula PUNTI z z = X s X

10 PUNTI zeta Consentono riferire una misura ad una scala standard con media uguale a zero e deviazione standard uguale a 1 La trasformazione dei valori X i in valori z i significa esprimere i valori come distanza dalla media in termini di deviazioni standard (cioè, usare la deviazione standard come unità di misura)

11 - PUNTI Z Esempio In un test di percezione visiva la media è e la deviazione standard di Trasformare in punti z i seguenti punteggi ottenuti da 6 soggetti dislessici. Ss x i

12 - PUNTI Z Si standardizzano i punteggi: z 1 z = = 1.97 z = = = = 0.63 z 4 = = z 5 = = 0.56 z 6 = =

13 - PUNTI Z x i z i MEDIA Il soggetto n 2 con 14 è una deviazione standard sotto alla media ( ) Il soggetto n 6 con 28 è una deviazione standard sopra alla media ( = 28)

14 - PUNTI Z x i z i MEDIA Il soggetto n 5 con 25 è circa mezza deviazione standard sopra la media e, ad esempio, dista dalla media la metà rispetto al soggetto n 6 Il soggetto n 1 con 8 è due deviazioni standard sotto la media e, ad esempio, dista dalla media il doppio rispetto al soggetto n 2.

15 - PUNTI Z ESEMPIO Un soggetto ha ottenuto il punteggio di 30 sia in un test che misura l ansia sia in uno che misura l introversione; come è possibile sapere se in certe situazioni il soggetto si dimostra più introverso o più ansioso? E necessario utilizzare una scala comune sulla quale leggere i punteggi dei due test

16 - PUNTI Z ESEMPIO Sapendo che la media dei punteggi al test di ansia è 36,6 e la deviazione standard 5.97 il punteggio 30 del nostro soggetto potrà essere trasformato in z = = 1.07 Sapere che ha ottenuto un punto zeta di significa che si trova al di sotto della media (segno negativo) di circa 1 dev st

17 - PUNTI Z ESEMPIO Il nostro soggetto ha un uguale punteggio (30) anche alla scala di introversione; affermare che le due caratteristiche sono presenti in ugual misura è un errore, poiché si deve tener conto del fatto che le due scale possono essere diverse Per poter confrontare le due misure occorre standardizzarle, cioe fare riferimento ad una scala comune

18 - PUNTI Z ESEMPIO La media dei punteggi al test di introversione è 31.2 e la deviazione standard 5.62; di conseguenza il punteggio 30 diviene z = = 0.21 Quindi z ansia= e z introversione= Su questa base si può affermare che il nostro soggetto è molto meno ansioso che introverso anche se in ambedue le caratteristiche si colloca al di sotto della media

19 - PUNTI Z Naturalmente può essere effettuato il percorso inverso nel caso in cui si voglia conoscere il valore di x a partire dal valore di z corrispondente. Basta trasformare la formula z = X X s Risolvendo l equazione con incognita X X = X + zs

20 - PUNTI Z ESEMPIO In un test attitudinale la media dei punteggi è 72 con s=4 Se si volesse conoscere il punteggio di uno soggetto di cui si conosce z= -.25 X = X + zs X = 72 + ( 0.25)x4 = 72 1 = 71

21 ALTRE SCALE Oltre alla scala in punti z, nei manuali dei test psicologici si incontrano altre scale che sono trasformazioni lineari della scala z: - Scala in punti T - Scala stanine (standard nine) - Scala sten (standard ten)

22 Scala in punti T Si tratta di una scala con M= 50 e s=10 Si ottiene applicando la formula: T = z Varia tra 0 e 100 Non prevede valori negativi

23 Scala stanine (standard nine) La scala ha M = 5 e s = 2 s tanine = 5 + 2z Divide la distribuzione in 9 categorie

24 Scala sten (standard ten) La scala ha M = 5.5 e s = 2 sten = z Divide la distribuzione in 10 categorie

25 RANGO PERCENTILE DEFINIZIONE Il rango percentile di un punteggio X, Il rango percentile di un punteggio X, RP(x) può essere definito come la percentuale di dati che assumono valore minore o uguale a X

26 RANGO PERCENTILE ESEMPIO Se un soggetto ha un punteggio X, Se un soggetto ha un punteggio X i, dire che RP(X i ) = 35 significa che nella distribuzione ordinata dei dati il punteggio X i lascia alla sua sinistra il 35% dei dati della distribuzione

27 CALCOLO DEL RANGO PERCENTILE Dati non raggruppati in classi -si dispongono i dati in ordine crescente -si individua la posizione (POS) del punteggio che interessa - si applica la formula RP POS N + 1 ( X ) = 100 POS N Se N è > o = a 30 RP ( X ) = 100

28 CALCOLO DEL RANGO PERCENTILE ESEMPIO Supponiamo di aver ottenuto i seguenti punteggi: Vogliamo conoscere il RP del punteggio 38 Ordino i dati: occupa la terza posizione RP POS N+ 1 ( X) = RP = ( X) =

29 CALCOLO DEL RANGO PERCENTILE Dati raggruppati in classi (distribuzione di frequenza) -si dispongono le classi in ordine crescente -si individua la posizione (POS) del punteggio X i che interessa con la formula POS = fcum 0 + X i X 0 f i f cumo = frequenza cumulata immediatamente inferiore al valore X i f i = frequenza della classe che include il valore X i i = ampiezza della classe che include il valore X i X 0 = limite reale inferiore della classe che include il valore X i

30 ESEMPIO Classi f f cum i Limiti reali Calcoliamo il RP del punteggio 28

31 CALCOLO DEL RANGO PERCENTILE ESEMPIO - si individua la posizione (POS) del punteggio 28 con la formula POS = fcum + 0 X i X 0 f i POS= RP ( X ) =

32 ESERCIZIO Nella classe di Giulio i voti all ultimo compito di Matematica sono stati i seguenti x i f Giulio ha preso 6 al compito di matematica. Come valuto la sua prova?

33 ESERCIZIO (Soluzione) Si calcola il rango percentile del voto 6 x i f f c X X i 0 = fcum + f POS = = 21 i POS RP = 30 ( 6 ) =

34 CALCOLO DEL RANGO PERCENTILE Se le classi hanno ampiezza unitaria si può usare la formula abbreviata: RP (X) = f cum 0 N + fi 2 100

35 ESERCIZIO Giulio ha preso 6 anche al compito di Italiano. I voti della classe sono i seguenti x i f Come valuto la sua prova? Avendo preso sia a Matematica che a Italiano 6, posso dire che Giulio è ugualmente bravo nelle due materie rispetto alla sua classe?

36 ESERCIZIO (Soluzione) Si calcola il rango percentile del voto 6 x i f f c RP (X) = f cum 0 n + fi RP( 6) = 100 = 30 20

37 ESERCIZIO (Soluzione) Il voto 6 in Italiano corrisponde al 20 percentile Giulio lascia dietro di sé soltanto il 20% dei compagni. Sebbene il voto sia lo stesso, la sua prova è peggiore rispetto a quella di matematica relativamente alla classe Giulio non è particolarmente bravo in Italiano, mentre è abbastanza bravo in Matematica (RP=70).

38 ESERCIZIO Marta ha preso 6 al compito di Matematica. I voti della sua classe sono i seguenti: x i f Come valuto la sua prova? Posso dire che Giulio e Marta sono ugualmente bravi in Matematica, tenendo conto dei risultati delle rispettive classi di appartenenza?

39 ESERCIZIO (Soluzione) Si calcola il rango percentile del voto 6 di Marta x i f f c RP (X) = f cum 0 n + fi RP (6) = 100 = 30 50

40 ESERCIZIO (Soluzione) Il voto 6 in matematica corrisponde al 50 percentile Marta lascia dietro di sé il 50% dei compagni. Sebbene il voto sia lo stesso di Giulio, relativamente alle classi di appartenenza, la sua prestazione è peggiore rispetto a quella Giulio

41 PERCENTILE E RANGO PERCENTILE NOTA BENE Il percentile è un valore Il rango percentile è una posizione Il 20 percentile è 6 valore Il rango percentile di 6 è 20 posizione

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Punteggi. Punteggi grezzi, norme e percentili

Punteggi. Punteggi grezzi, norme e percentili Punteggi Punteggi grezzi, norme e percentili Punteggio grezzo Si tratta del conteggio delle risposte individuali attraverso una serie di item secondo una regola di codifica Esempio 1. 10 domande di Cultura

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I

INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I CeSe.Di. - Riorientamento nel primo anno delle superiori INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I dati Sezione 1 - AFFERMAZIONI GENERALI (10 item): affermazioni che afferiscono alle percezioni

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007

Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007 Metodi Matematici ed Informatici per la Biologia Esame Finale, I appello 1 Giugno 2007 Nome: Alberto Cognome: De Sole Matricola: 01234567890 Codice 9784507811 Esercizio Risposta Voto 1 a b c d e 1 2 V

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Rappresentazione di numeri Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Un numero e un entità teorica,

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Valori medi e misure della tendenza centrale

Valori medi e misure della tendenza centrale TERZA UNITA Valori medi e misure della tendenza centrale Una delle maggiori cause di confusione presso l uomo della strada nonché di diffidenza verso la statistica, considerata più un arte che una scienza,

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/010 1. Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13.

Dettagli

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

FONDAMENTI DI PSICOMETRIA - 8 CFU

FONDAMENTI DI PSICOMETRIA - 8 CFU Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria E2-Riepilogo finale vers. 1.2 Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia) ElemPsico 2010-2011

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 2.1 Statistica descrittiva (Richiami) Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 INTRODUZIONE 1.0 PREVENZIONE CONTRO INDIVIDUAZIONE. L'approccio tradizionale nella fabbricazione dei prodotti consiste nel controllo

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

EQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione

Dettagli

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m = Una ricetta per il calcolo dell asintoto obliquo Se f() è asintotica a m+q allora abbiamo f() m q = o(1), da cui (dividendo per ) m = f() q + 1 f() o(1) = + o(1), mentre q = f() m = o(1). Dunque si ha

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Le Frazioni Prof. Marco La Fata

Le Frazioni Prof. Marco La Fata Le Frazioni Prof. Marco La Fata Spesso ci troviamo di fronte a dover dividere una certa grandezza, ad esempio una pizza, una tavoletta di cioccolata, un segmento, ecc.., in TANTE PARTI UGUALI. Supponiamo,

Dettagli